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Abstract: Several pipeline blockage detection methods assume blockages have a regular geometric shape; that is, the blocked section is a
pipe of smaller diameter than the original. These methods require a priori knowledge of the number of blockages in the pipeline. Restricting
blockages to such special forms also raises identification issues such as nonuniqueness, nonconvergence, and computational inefficiencies.
This paper develops a detection method that does not assume regularly shaped blockages and that reconstructs an internal pipe area
of unconstrained form. The mathematical and physical bases of the proposed method are described, and a step-by-step solution algorithm
is provided. A numerical example of a pipe with irregular blockages is considered to test the performance of the method. It is found that
the proposed method accurately identifies multiple blockages of arbitrary shapes and sizes at a relatively low computational cost.
The described method is compared with a method for area reconstruction as well as a method for blockage characteristic identification. The
proposed method is shown to be more accurate and efficient than the other methods.DOI: 10.1061/(ASCE)HY.1943-7900.0001602.© 2019
American Society of Civil Engineers.
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Introduction

Defects in water supply systems result in significant loss of resour-
ces. The presence of blockages increases the energy consumption
required to convey the same volume of water, resulting in consid-
erable energy loss and an increase in potential for contamination
due to velocity increases and sloughing of material at the blockage
location. Unlike some other defects in pipes, blockages are difficult
to detect as there are no external visible indicators, nor do they in-
duce detectable sounds (as leakages do) under steady-state flow
conditions. However, it is known that blockages cause a detectable
change in transient waveforms that can be used for blockage de-
tection (Wang et al. 2005; Mohapatra et al. 2006; Sattar et al.
2008; Duan et al. 2012b; Meniconi et al. 2013; Scola et al. 2017;
Louati et al. 2017; Zouari et al. 2017).

There are two primary approaches that can be used to detect
blockages using hydraulic transient probing waves and waveform
information. The first approach assumes a blocked pipe to be equiv-
alent to a series of circular pipes of different lengths and diameters
[Fig. 1(a)] (Wang et al. 2005; Mohapatra et al. 2006; Duan et al.

2012b; Meniconi et al. 2013; Scola et al. 2017; Louati et al. 2017;
Zouari et al. 2017). Blockages of this special form are called regular
blockages. This approach is referred to as regular blockage de-
tection. The second approach considers more realistic blockages,
which may have a continuously varying cross-sectional area AðxÞ
[Fig. 1(b)] (Gong et al. 2014; Massari et al. 2015). Blockages of
this general form are called irregular blockages. This approach is
referred to as area reconstruction.

In urban water supply systems (UWSSs), regular blockage
detection is more commonly used. This is because, in practice,
blockage location and size (i.e., diameter) are the most critical char-
acteristics. Moreover, regular blockage detection is considered sim-
pler than area reconstruction as the number of unknown variables is
limited to three variables per blockage, while in area reconstruction,
AðxÞ is to be determined. Last but not least, an analytical solution
of the transient response of pipes with regular blockages [Fig. 1(a)]
can be easily obtained from transfer matrix (Eisner 1967; El-Raheb
and Wagner 1982; Bonder 1983; Duan et al. 2012b; Chaudhry
2014). However, there are several disadvantages in using regular
blockage: (1) the analytical solution is formulated only for spe-
cial types of blockages, and therefore irregular-shaped blockages
[Fig. 1(b)] cannot be easily accounted for; (2) the total number
of blockages in the system needs to be assumed (known) a priori;
(3) the number of unknown variables, and therefore the computa-
tional complexity, increases rapidly when multiple blockages of
irregular shape are considered; and (4) the solution (identification)
is not unique unless nontrivial geometrical constraints are imposed
(Bonder 1983).

The area reconstruction approach is not commonly used in
UWSSs, but has been used in other fields of acoustics. For instance,
to teach deaf persons how to speak, researchers developed methods
for vocal tract shape reconstruction using acoustic measurements
(Schroeder 1967; Heinz 1967; Gopinath and Sondhi 1970; Sondhi
and Gopinath 1971; Sondhi 1979; Sondhi and Resnick 1983).
Furthermore, Bruckstein and Kailath (1987) showed that methods
developed for other applications (physics and mathematics, geo-
physics, network theory, etc.) can be applied to vocal tract area
reconstruction and vice versa. In theory, many area reconstruction
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methods can be applied to water supply systems. However, choos-
ing a suitable one depends on the type of measurements available.
For example, if an area reconstruction method requires an accu-
rate measurement of a transient flow rate, it cannot be easily
applied in UWSSs because the transient flow rate cannot be ac-
curately measured in water pipes with existing flow measurement
technologies.

In this paper, an area reconstruction method originally proposed
by Sondhi and Gopinath (1971) for vocal tract shape reconstruction
is adopted for blockage detection in water supply systems. As the
area reconstruction approach is not well known to water system en-
gineers, a comprehensive illustration and detailed algorithm of the
method is provided in the section “Proposed Blockage Detection
Method.”A numerical test case of irregularly shaped blockages with
and without friction is considered for illustration and discussed in
the section “Numerical Results.”A comparison of the proposed area
reconstruction method and two other blockage detection methods
is carried out in the section “Comparison with Other Methods” to
illustrate advantages of the proposed method.

Proposed Blockage Detection Method

Theoretical Background

Consider a pipe with a cross-sectional area AðxÞ and a wave speed
aðxÞ, bounded by a valve (or other transient-generating device) at
x ¼ 0 as shown in Fig. 1(a). The one-dimensional water hammer
equations are assumed to govern the pipeline flow (Wylie et al.
1993; Ghidaoui et al. 2005; Chaudhry 2014) [Eqs. (8) and (9)].
For simplicity, flow is assumed frictionless and initially stagnant;
that is, the flow rate Qðx; tÞ is equal to zero and the pressure head
Hðx; tÞ is constant and equal to H0 for t < 0. In a later section, fric-
tion and initially nonstagnant flow [Qðx; tÞ ≠ 0] are considered.

At t ¼ 0, a transient flow is generated by a flow impulse at
x ¼ 0 [i.e., Qð0; tÞ ¼ ∀0δðtÞ, where ∀0 is the volume injected;
and δðtÞ is the Dirac delta function]. The resulting variation in
pressure head, normalized by the initial pulse, at x ¼ 0, ΓðtÞ ¼
½Hð0; tÞ −H0�=∀0, is therefore called the impulse response func-
tion (IRF) and is measured for a time of duration 2L=a0 seconds
(a0 being the mean wave speed in the pipe). With this short
time measurement, the internal pipe area AðxÞ is reconstructed
for x ∈ ½0;L�.

Because of the linearity and time invariance of the water ham-
mer equations, the IRF can be used to determine any pressure head
response from any given type of input (Chen 1998). Equivalently,
the IRF can be used to determine a special input Q1;τ ð0; tÞ that in-
duces a constant pressure head, Hðx; τÞ ¼ H0 þ h0, at time t ¼ τ .

Such an inputQ1;τ ð0; tÞ can be shown to satisfy the following equa-
tion (See Appendix I for details):

Q1;τ ð0; tÞ þ
1

2

Z
2τ

0

Q1;τ ð0; sÞrmðjt − sjÞds ¼ gAð0Þ
að0Þ h0 ð1Þ

where rmðtÞ = reflected impulse response (RIR) and relates
to the measured pressure head by ΓðtÞ ¼ ½Hð0; tÞ −H0�=∀0 ¼
½að0Þ=gAð0Þ�½δðtÞ þ rmðtÞ�. In this paper, measurement is per-
formed by numerical simulation. The design of an input that sat-
isfies a prescribed response is generally called valve stroking in the
context of water hammer (Wylie et al. 1993). It is the crux of the
modern boundary control method (Belishev 1997) and the classical
work on Gel’fand-Levitan-Krein’s equations (Bruckstein and
Kailath 1987).

It is shown in Eqs. (14) and (27) in Appendix I that the special
inputQ1;τ ð0; tÞ can be used to determine the internal pipe area AðxÞ:

A½xðτÞ� ¼ a½xðτÞ�
gh0

d
dτ

Z
τ

0

Q1;τ ð0; tÞdt ð2Þ

where xðτÞ = location at which a wave traveling from x ¼ 0
arrives after time τ [e.g., for a constant wave speed aðxÞ ¼ a0,
xðτÞ ¼ a0τ ]. Eq. (2) shows that, if the wave speed aðxÞ and
Q1;τ ð0; tÞ for t ∈ ½0; τ � are known, then the area AðxðτÞÞ can be
obtained. Other cases where the wave speed aðxÞ is not known
are discussed in the last paragraph of Appendix I. For simplicity,
the wave speed is considered constant with aðxÞ ¼ að0Þ ¼ a0
elsewhere in this paper.

The impulse response function from t ¼ 0 to t ¼ 2L=a0 is used
to solve Eq. (1) for the function Q1;τ . Then Eq. (2) is used to solve
for the area AðxÞ. It should be noted that the information for
the right-side boundary condition at x > L is not used during the
area reconstruction because the measurement period used is only
2L=a0 s long. This contrasts with many methods in the literature,
especially frequency domain methods (e.g., Schroeder 1967; Heinz
1967; Gopinath and Sondhi 1970; Qunli and Fricke 1990; De Salis
and Oldham 1999, 2001; Duan et al. 2012b; Scola et al. 2017;
Zouari et al. 2017; Louati et al. 2017), and constitutes a major ad-
vantage for the proposed method. It is for this reason that the right
boundary is not shown in Fig. 1. In the next section, implementa-
tion of the proposed area reconstruction method for practical
scenarios (numerical data) is further discussed.

Implementation of the Algorithm

The numerical algorithm used to apply the method of the previous
section is discussed here.

Fig. 1. Blocked pipe: (a) arbitrary blockage shape (irregular blockages); and (b) simplified blockage shape (regular blockages).
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Step 1
Send an impulse Qð0; tÞ ¼ ∀0δðtÞ and measure the pressure head
response denoted by Hð0; tÞ for 0 ≤ t < 2L=a0, where L is the dis-
tance up to which the pipe is examined. Given the pressure head
measurement, calculate the IRF ΓðtÞ ¼ ½Hð0; tÞ −H0Þ�=∀0, then
extract the RIR rmðtÞ such as ½gAð0Þ=a0� � δðtÞ. An example of
the application of this step is shown in Appendix II.

Step 2
Use rmðtÞ obtained from Step 1 to deduce the functions Q1;τ ð0; tÞ
for different values of τ . For any value of τ , Eq. (1) is solved
numerically. To do this, let q1;τ be the vector representingQ1;τ ð0; tÞ
in the interval t ∈ ½0; 2τ �:
q1;τ ¼ fQ1;τ ð0; 0Þ;Q1;τ ð0;ΔtÞ; : : : ;Q1;τ ½0; ð2N − 1ÞΔt�gT ð3Þ

where superscript T = transpose operator; Δt = discrete time step;
and NΔt ¼ τ . The integral in Eq. (1) is computed by a rectangular
approximation. As a result, Eq. (1) is written as a system of linear
equations (Appendix III)

Hq1;τ ¼
gAð0Þ
a0

h0 ð4Þ

where H ¼ 2N × 2N matrix such that Hði; jÞ ¼ δi;j þΔt ×
rmðji − jjΔtÞ=2 in which δi;j = Kronecker delta function and h0 ¼
1 × 2N vector with all elements equal to h0. The vector q1;τ is ob-
tained by inverting the matrixH. The matrixH is a Toeplitz matrix;
hence, the vector q1;τ can be alternatively solved for by faster
algorithms such as the Levinson algorithm or least-squares fitting.
An example of the application of this step is shown in Appendix II.

Step 3
Compute the value of the integral of Q1;τ for different values of τ .
Let ∀ðτÞ denote the value of the integral of Q1;τ in the right-hand
side of Eq. (2). The value of ∀ðτÞ at τ ¼ iΔt, i ∈ f0; 1; : : : ;Mg
with MΔt ¼ L=a0, is approximated numerically as follows:

∀ðiΔtÞ ¼ 1

2

Xj¼2i

j¼0

Q1;iΔtð0; jΔtÞΔt ð5Þ

Here, the integral ofQ1;τ ð0; tÞ is instead computed from t ¼ 0 to
t ¼ 2τ and then divided by 2, because Q1;τ ð0; tÞ is symmetric with

respect to τ . This gives more stable numerical results. An example
of the application of this step is shown in Appendix II.

Step 4
Compute the estimated area AðxÞ. The area AðxÞ can be calculated
at different locations xðiΔtÞ ¼ ia0Δt ¼ iΔx by differentiation of
the function ∀ obtained in Step 3 [Eq. (2)]. This is approximated
numerically as follows:

AðiΔxÞ ¼ a0
gh0

∀ ½iΔt� − ∀ ½ði − 1ÞΔt�
Δt

; i ∈ f1; 2; : : : ;Mg
ð6Þ

An example of the application of this step is shown in Appendix II.

Numerical Results and Discussion

To validate the proposed method, consider the case of a single
pipe containing blockages of irregular shapes as shown in Fig. 2.
Although it is difficult to choose blockage shapes that best mimic
real blockages (because no information of this type appears to be
collected in water supply pipe systems), the blockages considered
in Fig. 2 are chosen for the purpose of illustration and for their
generality.

The pipe section to be inspected is 2,000 mð¼LÞ long, has a
wave speed a0 ¼ 1,000 m=s, and is bounded by a valve on the
left (x ¼ 0) as shown in Fig. 1. The knowledge of the right boun-
dary condition is not needed for the application of the proposed
method. Any type of boundary is allowed after x ¼ L. In other
words, at x > L there could be a pump, a dead end, a reservoir,
or a network of pipes, or any other system that maintains a steady
state. This is the reason that the boundary condition at x ¼ L is
not shown in Fig. 1. The pressure head and the flow rate are con-
sidered to be initially (t < 0) constants, Hðx; tÞ ¼ H0 ¼ 50 m and
Qðx; tÞ ¼ Q0 ¼ 0.

The method of characteristics (MOC) (Wylie et al. 1993;
Chaudhry 2014) is used to simulate the transient at every Δx ¼
2.5 m and Δt ¼ Δx=a ¼ 2.5 × 10−3 s. The area AðxÞ is discre-
tized accordingly. Data are collected for t ∈ ½0; 2L=a0 ¼ 4 s�. At
time t ¼ −Δt, a transient is generated by a sudden opening and
closing of the valve (i.e., during the time interval ½−Δt;þΔt�).

Fig. 2. Normalized pipe cross-sectional area AðxÞ=A0 function of the normalized longitudinal coordinate x=L of the reference pipe (to be estimated).
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The maximum flow rate after the valve opening is recorded at
time t ¼ 0 s and is equal to 1 m3=s. The valve is fully closed
when t ≥ Δt. The pressure head is measured at the location x ¼
0 for a time t ∈ ½0.0 s,4.0 s�. The measured pressure head is not
the impulse response function because the input is not a true
unit impulse. To derive the impulse response function from
the measured pressure head, the pressure head variation is nor-
malized by ∫∞−∞Qð0; tÞdt. That is, Hð0; tÞ −H0 is divided by
∀0 ¼ ∫∞−∞Qð0; tÞdt, which is equal to 2.5 × 10−3 m3 in this case.
In practice, an impulse of flow can be approximated by a pulse that
can be performed in different ways, such as a rapid injection of
fluid (Brunone et al. 2008), a rapid opening or the closing of a valve
(Lee et al. 2010). Furthermore, other transient generation methods,
such as rapid closure of a downstream valve and pseudo-random
binary signal, can be used to obtain an IRF (Lee 2005).

Following the steps of the algorithm outlined in the previous
section and using the IRF obtained from numerical simulation
(MOC), the internal pipe area is reconstructed and shown in Fig. 3.
As shown, the reconstructed area using the proposed method and
the reference area used in the forward problem coincide. This
illustrates that the proposed method has the ability to accurately
identify blockages of different sizes and shapes.

Comparison with Other Methods

To illustrate the advantages of the proposed method, it is compared
with two other blockage detection methods using the same numeri-
cal test case as in Fig. 3. One method for comparison assumes a
blocked pipe to be a series of pipes of different diameters as in
[Fig. 1(b)] and is presented first. Then a second method for com-
parison using area reconstruction is presented. Both methods re-
quire knowledge of the right boundary conditions and the total
length of the pipe. In this numerical simulation, the right boundary
condition is considered to be a constant level reservoir located at
x ¼ L0 ¼ 2,250 m. This information is not needed in the proposed
method. Moreover, as the two alternate methods use resonant
frequencies, a 20 × 4L0=a0 numerical simulation time is considered
to ensure high resolution in the frequency domain. Note that the
advantage of the proposed method is that it only uses a measurement

of 2L=a0 duration and does not require knowledge of the boundary
condition at the right end of the pipe.

The sampling frequency used for the numerical simulation is
maintained as in the previous test; that is, fs ¼ 1=Δt ¼ 400 Hz.
The 400-Hz frequency band considered contains about 1,800
resonant frequencies [the resonant frequencies for an intact pipe
are given by frn ¼ ð2n − 1Þ × a0=4L0].

Resonant Frequencies Matching

The method described here is based on the regular blockage
assumption [Fig. 1(b)] and is referred to as resonant frequencies
matching (RFM). It is proposed in Duan et al. (2012b) and validated
numerically and experimentally in Duan et al. (2013), Meniconi
et al. (2013), and Duan (2016). The method uses eigenfrequency
values to constrain the system dispersion relation using an optimi-
zation technique.

Only the first 30 resonant frequencies are used for the applica-
tion of the RFM because use of all resonant frequencies (1,800)
would incur a large computational cost. To apply RFM (Duan
et al. 2012b), an a priori assumption must be made as to the number
of blockages existing in the inspected pipe. When a single blockage
is assumed, only three parameters need to be obtained (blockage
location, blockage length and blockage size). Blockage detection
results for a single blockage obtained by RFM are indicated by
a continuous black line in Fig. 4.

It is clear that RFM with one blockage gives poor results, as it
detects only one of the two blockages, identifying its midlength
location but not its total length along the pipe.

Another possible assumption is that the pipe contains two block-
ages; that is, it is made up of five sections. In this case, the problem
has eight unknown parameters (length and size of each pipe sec-
tion). To reduce the unknowns of the problem (from eight to six),
the area of the pipes beyond the blockages (Pipes 1, 3, and 5 count-
ing from the valve location x ¼ 0) is assumed equal the intact pipe
area A0. It should be noted that genetic algorithms give different
results at different simulations. This is because the optimization
function is highly nonconvex and contains several local minima
Therefore, to increase the chance of convergence, the optimization
process is repeated 50 times and the optimal solution with the least

Fig. 3. Normalized pipe cross-sectional area function of the normalized longitudinal coordinate for two cases. Case 1 (gray): reference; and Case 2
(dashed black): estimated from proposed method.
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penalty is chosen. The result for this case is indicated by the dashed
black line in Fig. 4. Again, the results of the RFM with two block-
ages are poor.

Of course, one may increase the number of assumed blockages
to improve the results for this case where the internal pipe area is
known. It would, however, be impossible to do this in practice since
the number of blockage sections cannot be known a priori. More-
over, the more blockages one assumes, the less computationally
efficient RFM becomes (Duan et al. 2012b). The same drawbacks
apply to other regular blockage detection methods (e.g., Scola et al.
2017; Zouari et al. 2017).

Perturbation-Based Area Reconstruction

Perturbation-based area reconstruction (PAR) is an area recon-
struction method that uses perturbation theory to derive an explicit
relation between the pipe area and the measured resonant frequen-
cies (Schroeder 1967; Heinz 1967). It is a simple and computation-
ally efficient method for area reconstruction, which was used by
Qunli and Fricke (1990) for blockage detection in the cooling
systems of nuclear power plants. More recently, De Salis and
Oldham (1999, 2001) proposed a similar method requiring fewer
measurements.

PAR is easier than RFM in the sense that no assumptions need
to be made regarding blockage shape or number and no optimiza-
tion is involved. However, it requires an additional numerical sim-
ulation where the reservoir located at x ¼ 2,250 m is replaced by a
closed valve. The resonant frequencies for this case (valve-pipe-
valve) are obtained in the same way as in the previous case (valve-
pipe-reservoir). The two sets of resonant frequencies, one from
valve-pipe-reservoir and another from valve-pipe-valve, are used
to reconstruct the area using PAR as proposed by Qunli and Fricke
(1990). In this case, all resonant frequencies in the band from 0 to
400 Hz are used. Results are shown in Fig. 5.

It can be seen in Fig. 5 that blockage locations and shapes are
well predicted. However, PAR gives less accurate results compared
with the proposed method (results shown in Fig. 3). In fact, two
issues are observed. First, the area function is somehow shifted up.
This is due to error in what is referred to by Qunli and Fricke (1990)
as the “DC term,” which is the constant term in the Fourier series of
the area. This term cannot be determined from the eigenfrequency

shift and can therefore only be approximated. The second issue is
that, even if the shifting along the area axis is resolved, there remains
an up and down variation between the two actual blockages that
might mistakenly be construed as a third blockage. If the extended
blockage (shown on the left in Fig. 5) is more severe, then the ficti-
tious variation can be higher. Therefore, PAR is sensitive to block-
age severity and/or sharp variations in the cross-sectional area.

In summary, the proposed method has the following advantages
compared with the methods discussed previously:
• It gives more accurate results than the RFM and PAR methods.
• It uses only the impulse response function measured at a single

location for a time 2L=a0 s (i.e., the part of the signal that is
most reliable).

• It does not require a priori knowledge of all boundary conditions
in the system and the total length of the pipe.

• Most important, it does not require a priori assumptions regard-
ing blockage shape or number of blockages, and it applies to
arbitrary blockage profiles.

Correction for Friction

In the previous section and in the derivation of the algorithm, the
flow is assumed to be inviscid for simplicity. This section shows
how friction effects are included in the proposed method.

Duan et al. (2012a) showed that the transient response in the
case of viscous flow can be written as a frictionless response multi-
plied by a friction envelope

HFð0; tÞ −HF
0 ð0Þ ≈ e−RjQ0jt=2½Hð0; tÞ −H0� ð7Þ

where HF
0 ðxÞ and H0 = steady-state pressure head for cases with

and without friction, respectively; Q0 = steady-state flow rate;
HFðx; tÞ and Hðx; tÞ = pressure head fluctuations for cases with
and without friction, respectively. In this case, only the steady-state
friction model is considered. That is, the wall shear is given by
ρfQjQj=8A2, where f is the Darcy-Weisbach friction factor;
ρ is the density; and A is the constant area of the pipe. Hence,
R in Eq. (7) is given by R ¼ f

ffiffiffi
π

p
=4A3=2. However, unsteady fric-

tion may be accounted for in a similar way (Duan et al. 2012a).
Since the cases of primary interest in this paper are those for which
area AðxÞ is not constant, the envelope equation with a constant
area should be thought of as an approximation for varying area.

Fig. 4.Normalized pipe cross-sectional area function of the normalized longitudinal coordinate for three cases. Case 1 (gray): reference; Case 2 (solid
black): estimated from RFM method assuming one blockage; and Case 3 (dashed black: estimated from RFM method assuming two blockages).
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To show the validity of the area reconstruction algorithm for
friction and initial flow, the numerical example with the pipe cross-
sectional area as in Fig. 2 is again considered. An initial steady-
state flow rate is given as Qðx; t < 0Þ ¼ Q0 ¼ 1 m3=s, the friction
factor is assumed to be f ¼ 0.02, and the pressure head at the valve
is Hð0; t < 0Þ ¼ 46.96 m. At time t ¼ 0, the valve is suddenly
closed; that is, at time t ¼ Δt the valve is completely closed.
The method of characteristics (Chaudhry 2014) is used to obtain
the pressure head response at the valve HFð0; tÞ.

As far as the area reconstruction algorithm is concerned, the
only change is in Step 1. The required change is to apply Eq. (7)
to estimate the pressure head response for the frictionless case
Hð0; tÞ from the measured pressure head response HFð0; tÞ. Once
the frictionless pressure head responseHð0; tÞ is obtained, the same
algorithm steps (described in the previous section) can be used to
estimate the internal cross-sectional area along the pipe.

Since the transient is generated by a rapid valve closure, further
processing is performed to obtain the IRF, which will be used
for the reconstruction. In this example, the IRF, ΓðtÞ, is obtained
byΓðtÞ ¼ ð1=Q0Þ=Tc½Hð0; tþ TcÞ −Hð0; tÞ�, where Tc is the valve
closure time.

Fig. 6 shows the exact area and the area reconstructed from the
pressure head response under friction. It indicates that the area
reconstruction is still accurate; that is, the blockages, location, size,
and shape are accurately identified. It can be seen from the figure
that the area after x=L > 0.5 is slightly smaller than the actual area.
This is because the friction envelope assumes that area is constant
along the pipe so large changes in area, as occur at the blockage
centered at x=L ¼ 0.8, induce more errors.

These numerical examples show that the area reconstruction
method can be applied to general blockage types. The flow can
be viscous or inviscid, and the transient can be generated in various

Fig. 5. Normalized pipe cross-sectional area function of the normalized longitudinal coordinate for two cases. Case 1 (bold grey): reference; and
Case 2 (continuous black): estimated from PAR method.

Fig. 6. Normalized pipe cross-sectional area function of the normalized longitudinal coordinate for two cases. Case 1 (gray): reference; and Case 2
(dashed black): estimated from proposed method when friction is considered.
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ways provided that the IRF can be obtained. The blockage detec-
tion results for the numerical cases are highly accurate.

Conclusions

In this paper, an area reconstruction method was proposed as a
tool for blockage detection. Fundamental physical and theoreti-
cal bases for the derivation of the method were discussed, and
numerical tests, with and without friction, were considered to
validate the method. The proposed method gives highly accurate
results for general cases of multiple blockages of different
shapes.

The proposed area reconstruction method was compared with
other area reconstruction methods as well as with a regular block-
age detection method. It was shown that the proposed method
requires less information than other methods, in the sense that it
needs only a single time measurement of duration 2L=a and does
not require (a priori) knowledge of the system boundaries. More-
over, the proposed method makes no assumptions regarding the
number of blockages or their shapes. This gives more accuracy in
the results and makes the proposed method more practical for
realistic applications.

The method is undergoing further validation with experimental
data. Current work in progress shows that the proposed method can
be extended to a branched network system (i.e., without loops).

Appendix I. Derivation of the Inverse Method

Problem Statement

Consider the linear water hammer equations on a finite segment
½0;L�. Let g be the constant of gravity; aðxÞ, the wave speed at
x ∈ ½0;L�; and AðxÞ, the pipe cross-sectional area at x. If Hðx; tÞ
and Qðx; tÞ denote the change in the background pressure head
and pipe discharge at x and time t ≥ 0, the one-dimensional fric-
tionless water hammer model is given by Wylie et al. (1993) and
Ghidaoui et al. (2005) as

∂H
∂t þ a2ðxÞ

gAðxÞ
∂Q
∂x ¼ 0 ð8Þ

∂Q
∂t þ gAðxÞ ∂H∂x ¼ 0 ð9Þ

with initial conditions on x ∈ ½0;L� of

Hðx; 0Þ ¼ 0; Qðx; 0Þ ¼ 0 ð10Þ

These conditions mean that the pipe is unperturbed at time t ¼ 0.
Note that Hðx; tÞ is used here to denote perturbation in the pressure
head, whereas in the main text Hðx; tÞ is the overall pressure head.

Two boundary conditions are imposed: (1) a control valve at x ¼
0 and (2) an arbitrary condition x ¼ L. In this case, the transient is
generated by changing the flow Qð0; tÞ and the pressure head
Hð0; tÞ is measured for t ≥ 0. The purpose is to find information
about aðxÞ and AðxÞ inside the pipe x ∈ ½0; xmax� from the measured
pressure head Hð0; tÞ.

Comments about the Algorithm

The proposed algorithm was originally suggested by Sondhi and
Gopinath (1971) for reconstructing the shape of vocal tracts. It re-
covers the area AðxÞ for a vocal tract of known constant wave speed.

In this paper, the method is further extended to recover either the
wave speed [if AðxÞ is known] or the cross-sectional area [if aðxÞ
is known] in a segment ½0; xmax�. This is done by measuring the
pressure Hð0; tÞ for time t in a finite time interval after generating
a transient flow by an impulse of flowQð0; tÞ ¼ ∀0δðtÞ, where∀0 is
the volume injected by the impulse. The following paragraphs dis-
cuss various concepts needed for the algorithm and then a step-by-
step solution method.

Impulse Response

If the flow is governed by the water hammer Eqs. (8)–(10), an im-
pulse boundary source Qð0; tÞ ¼ ∀0δðtÞ is applied at x ¼ 0 and an
unknown boundary condition is applied at x ¼ L, the impulse re-
sponse function is then defined to be the normalized measured pres-
sure variation and is denoted ΓðtÞ. Linearity of the model guarantees
that these data are enough to reconstruct the response to any kind of
input flowQð0; tÞ by convolution. Hence, for a general inputQð0; tÞ
the pressure head measurement Hð0; tÞ is given by

Hð0; tÞ ¼ ðQ � ΓÞðtÞ ¼
Z ∞
−∞

Qð0; sÞΓðt − sÞds ð11Þ

Note that ΓðtÞ ¼ 0 for t < 0 because the pipe is unperturbed
then. Similarly, Qð0; sÞ ¼ 0 whenever s < 0. Thus, the integral is
actually Hð0; tÞ ¼ ∫ t

0Qð0; sÞΓðt − sÞds.

Travel Time Coordinates

If t ≥ 0, the travel time coordinate xðtÞ is defined as the point x that
a perturbation from x ¼ 0 would reach in time t. It is given by the
unique solution xðtÞ to either

t ¼
Z

xðtÞ

0

dx
aðxÞ or xðtÞ ¼

Z
t

0

a½xðτÞ�dτ ð12Þ

In the case of constant wave speed xðtÞ ¼ a0t.

Boundary Integral Identity

In this section, an integral identity that gives information on the
region x > 0 from time domain measurements at the boundary x ¼
0 is calculated. Let H and Q satisfy the model Eqs. (8)–(10). Fix
τ > 0 such that xðτÞ < L and integrate Eq. (8) on ½0;L� × ½0; τ �.
Then

−
Z

τ

0

Z
L

0

∂Q
∂x ðx; tÞdxdt ¼

Z
τ

0

Z
L

0

gAðxÞ
a2ðxÞ

∂H
∂t ðx; tÞdxdt ð13Þ

Note, however, that Qðx; tÞ ¼ Hðx; tÞ ¼ 0 when x > xðtÞ be-
cause of the finite speed of propagation. After switching the order
of integration on the right and noting that Hðx; tÞ ¼ Qðx; tÞ ¼ 0
when x > xðτÞ, the last equation becomes

Z
τ

0

Qð0; tÞdt ¼
Z

xðτÞ

0

gAðxÞ
a2ðxÞ Hðx; τÞdx ð14Þ

Constant Pressure

Given τ > 0 the strategy in this algorithm is to choose a boundary
source Qð0; tÞ ¼ Q1;τ ð0; tÞ such that at t ¼ τ the corresponding
pressure Hðx; tÞ ¼ H1;τ ðx; tÞ is constant h0 in ½0; xðτÞ� and zero
elsewhere. The question is how to build such a function. Note
that the constant functions Hðx; tÞ ¼ 2h0 and Qðx; tÞ ¼ 0 satisfy
Eqs. (8) and (9). The theory of Cauchy problems for hyperbolic
partial differential equations (e.g., Garabedian 1964) implies the
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following: if the boundary data satisfyHð0; tÞ ¼ 2h0 andQð0; tÞ ¼
0 for time 0 < t < 2τ , then Hðx; tÞ ¼ 2h0 and Qðx; tÞ ¼ 0 in the
triangular region x < xðτ − jτ − tjÞ.

Let H1;τ ðx; tÞ and Q1;τ ðx; tÞ satisfy Eqs. (8) and (9). Then so do
H and Q defined by

Hðx; tÞ ¼ H1;τ ðx; tÞ þH1;τ ðx; 2τ − tÞ ð15Þ

Qðx; tÞ ¼ Q1;τ ðx; tÞ −Q1;τ ðx; 2τ − tÞ ð16Þ

Imposing the boundary conditionsHð0; tÞ ¼ 2h0 andQð0; tÞ ¼
0 for 0 < t < 2τ makes, by the previous paragraph, H ¼ 2h0 and
Q ¼ 0 in the triangular region x < xðτ − jτ − tjÞ. Both conditions
H ¼ 2h0 and Q ¼ 0 are required; otherwise, H ¼ 2h0 and Q ¼ 0
are not guaranteed in the triangular region x < xðτ − jτ − tjÞ. These
conditions are used in the next section to deduce a boundary
equation. At t ¼ τ , Eq. (15) gives

2h0 ¼ Hðx; τÞ ¼ H1;τ ðx; τÞ þH1;τ ðx; τÞ ð17Þ

therefore H1;τ ðx; τÞ ¼ h0 for all 0 < x < xðτÞ.
For any τ > 0, then, the goal is to compute H ¼ H1;τ and

Q ¼ Q1;τ , satisfying Eqs. (8) and (9) and the initial conditions
of Eq. (10), such that the functions H and Q from Eqs. (15)
and (16) satisfy the boundary conditionsHð0; tÞ¼ 2h0, Qð0; tÞ¼ 0
for 0 < t < 2τ.

Boundary Integral Equation

The purpose of this subsection is to write, for a given time τ > 0, an
equation whose solution is the input Q1;τ ð0; tÞ, which produces the
constant pressure change H1;τ ðx; τÞ ¼ h0 for x < xðτÞ. As dis-
cussed in the previous subsection, this can be achieved by choosing
Qð0; tÞ ¼ 0 and Hð0; tÞ ¼ 2h0 for 0 < t < 2τ. This implies that
Q1;τ ð0; tÞ¼Q1;τ ð0;2τ − tÞ and H1;τ ð0; tÞ þH1;τ ð0; 2τ − tÞ ¼ 2h0
in that same time interval. Using Eq. (11) gives

Z ∞
−∞

Q1;τ ð0; sÞΓðt − sÞdsþ
Z ∞
−∞

Q1;τ ð0; sÞΓð2τ − t − sÞds ¼ 2h0

ð18Þ

In the second integral change the variable s to s 0 ¼ 2τ − s; note
that Q1;τ ð0; sÞ ¼ Q1;τ ð0; 2τ − sÞ as seen above. Then

Z ∞
−∞

Q1;τ ð0; sÞΓðt − sÞdsþ
Z ∞
−∞

Q1;τ ð0; s 0ÞΓðs 0 − tÞds 0 ¼ 2h0

ð19Þ
This gives an integral equation for Q1;τ ð0; tÞ.

Integral Equation For Smooth Model

If the wave speed aðxÞ and pipe cross-sectional area AðxÞ are twice
continuously differentiable functions, then the impulse response
function has the following form:

ΓðtÞ ¼ að0Þ
gAð0Þ ½δðtÞ þ rmðtÞ� ð20Þ

where rmðtÞ = continuously differentiable function (Sondhi and
Gopinath 1971). Inserting this into Eq. (19) gives

2Q1;τ ð0; tÞ þ
Z ∞
−∞

Q1;τ ð0; sÞrmðt − sÞds

þ
Z ∞
−∞

Q1;τ ð0; sÞrmðs − tÞds ¼ 2gAð0Þ
að0Þ h0 ð21Þ

Recalling thatQ1;τ ð0; sÞ ¼ 0when s < 0, and sinceQ1;τ ð0; sÞ ¼
Q1;τ ð0; 2τ − sÞ, then Q1;τ ð0; sÞ ¼ 0 for s > 2τ. Moreover,
rmðs − tÞ ¼ 0 when s < t, so the last equation becomes

2Q1;τ ð0; tÞ þ
Z

t

0

Q1;τ ð0; sÞrmðt − sÞds

þ
Z

2τ

t
Q1;τ ð0; sÞrmðs − tÞds ¼ 2gAð0Þ

að0Þ h0 ð22Þ

or

Q1;τ ð0; tÞ þ
1

2

Z
2τ

0

Q1;τ ð0; sÞrmðjt − sjÞds ¼ gAð0Þ
að0Þ h0 ð23Þ

which is a Fredholm integral equation of the second kind.

Solving for Cross-Sectional Area or Wave Speed

Assume now that, for any 0 < τ < T, the input pipe discharge
function Qð0; tÞ ¼ Q1;τ ð0; tÞ, which would make the pressure head
change Hðx; τÞ constant h0 for position 0 < x < xðτÞ, is known.
The purpose of this subsection is to deduce aðxÞ or AðxÞ from
Q1;τ ð0; tÞ.

Define

∀ðτÞ ¼
Z

τ

0

Q1;τ ð0; tÞdt ð24Þ

Recall that, by Eq. (14)

∀ðτÞ ¼
Z

xðτÞ

0

gAðxÞ
a2ðxÞ h0dx ð25Þ

for 0 < τ < T [assume that xðTÞ < L]. Also recall that the definition
of travel-time coordinates is

xðτÞ ¼
Z

τ

0

a½xðsÞ�ds ð26Þ

By the chain rule

∀ 0ðτÞ ¼ gA½xðτÞ�
a2½xðτÞ� h0x

0ðτÞ ¼ gA½xðτÞ�
a2½xðτÞ� h0a½xðτÞ� ¼

gA½xðτÞ�
a½xðτÞ� h0

ð27Þ
where ∀ 0 = derivative of V with respect to τ . Eq. (27) shows that
local hydraulic impedance is recovered at a different travel-time
distance xðτÞ.

There are a few options for recovering aðxÞ or AðxÞ at any given
point x as follows:
• If aðxÞ is constant a0, then

AðxÞ ¼ ∀ 0ðx=a0Þa0
gh0

ð28Þ

• If AðxÞ is a constant A0, then the situation is slightly more
complicated. The travel time coordinate xðtÞ is first obtained
at t ¼ t0

xðt0Þ ¼
Z

t0

0

a½xðτÞ�dτ ¼
Z

t0

0

gA0

∀ 0ðτÞ h0dτ ð29Þ

© ASCE 04019019-8 J. Hydraul. Eng.
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Fig. 7. Algorithm steps through an example: (a) space-time wave propagation; (b) impulse response function; (c) reflected impulse response;
(d) computed input Q1;τ ðtÞ; (e) integral of Q1;τ ðtÞ; and (f) reconstructed area AðxÞ.
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Then the wave speed aðxÞ at x ¼ xðt0Þ is obtained by

aðxÞ ¼ a½xðt0Þ� ¼
gA0

∀ 0ðt0Þ
h0 ð30Þ

• If aðxÞ or AðxÞ are known but not constants, first xðtÞ is obtained
in the same way as above and then AðxÞ or aðxÞ, respectively, is
obtained through Eq. (27).

• If neither aðxÞ nor AðxÞ are known, but there is a known relation
between a and A, the wave speed a½xðτÞ� can be solved from
Eq. (27) and then xðτÞ from Eq. (26) and a fortiori aðxÞ and
AðxÞ as in the second option in this list.

Appendix II. Algorithm Steps through an Example

Consider a simple pipe of length L in which the wave speed is a
constant equal to a0. The internal pipe area is A0 everywhere except
in the region from x ¼ L=4 to x ¼ 3L=8, in which region the area is

equal to A0=2. A sketch of the pipe is shown vertically for conven-
ience in Fig. 7(a).

The reflection and transmission coefficients for a wave traveling
from the valve at x ¼ L=4 are r1 ¼ 1=3 and t1 ¼ 4=3 and at x ¼
3L=8 are r2 ¼ −1=3 and t2 ¼ 2=3. The reflection and transmission
coefficients for a wave traveling toward the valve are r1 0 ¼ −1=3
and t1 0 ¼ 2=3 at x ¼ L=4 and r2 0 ¼ 1=3 and t2 0 ¼ 4=3 at x ¼
3L=8. The wave propagation in the pipe is illustrated in an x − t
diagram in Fig. 7(a). The vertical axis is the x-axis, which coincides
with the longitudinal axis of the pipe. The horizontal axis is the
time axis, which is discretized as Δt ¼ Δx=a0, where Δx is the
discretization step in space. The scattering of a wave generated
at the valve (x ¼ 0, t ¼ 0) is traced in the x − t diagram and is only
shown up to t ¼ L=a0. The area AðxÞ is reconstructed up to x ¼
L=2 for ease of discussion. The magnitude of the reflected and
transmitted waves are computed from the reflection and transmis-
sion coefficients and are shown in Fig. 7(a). It is noted that the

Fig. 7. (Continued.)
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magnitude of a wave reflected at the valve is doubled because
waves are fully reflected at a closed valve (or dead end).

The pressure head response to a unit impulse of flow generated
at the valve (IRF) is shown in Fig. 7(b). The signal rmðtÞ is there-
fore extracted from the measured pressure head as discussed in
Step 1 of the proposed algorithm and is shown in Fig. 7(c).

The measured signal rmðtÞ in the interval ½0; 2τ � is used to
compute the special input Q1;τ ðtÞ for t ∈ ½0; 2τ �. This gives a large
set of curves Q1;τ ðtÞ, which are shown in Fig. 7(d). The hori-
zontal axis represents the time τ , the vertical axis is the time t
and the different patterns indicates different values of Q1;τ ðtÞ.
For example, at τ ¼ 3L=4a0, ða0=gA0ÞQ1;τ ðtÞ is equal to 3=4
when t ∈ ½0;L=2a0� ∪�L=a0; 3L=2a0� and equal to 1 when
t ∈�L=2a0;L=a0�. Q1;τ¼3L=4a0ðtÞ is shown at the left in Fig. 7(d)
as a cut B-B’ of the right plot at the right in Fig. 7(d).

In Step 3, the integral with time t of Q1;τ ðtÞ is computed at dif-
ferent τ and its corresponding values ∀ðτÞ are shown in Fig. 7(e).
In Step 4, the area AðxÞ is easily computed by differentiating ∀ðτÞ
with τ . The area AðxÞ is shown in Fig. 7(f) together with the refer-
ence area.

Appendix III. Numerical Solution of the Integral
Equation in the Main Text

When Eq. (1) is written for different discrete time values t ¼
f0;Δt; 2Δt : : : :; ð2N − 1ÞΔtg with NΔt ¼ τ , it becomes a system
of equations

Q1;τ ð0; 0Þ þ
1

2

Z
2τ

0

Q1;τ ð0; sÞrmðjsjÞds ¼
gAð0Þ
að0Þ h0

Q1;τ ð0;ΔtÞ þ 1

2

Z
2τ

0

Q1;τ ð0; sÞrmðjΔt − sjÞds ¼ gAð0Þ
að0Þ h0

..

.

Q1;τ ½0; ð2N − 1ÞΔt�

þ 1

2

Z
2τ

0

Q1;τ ð0; sÞrmðjð2N − 1ÞΔt − sjÞds ¼ gAð0Þ
að0Þ h0 ð31Þ

If rmðtÞ is also discretized with the same discrete time
domain rm ¼ frmð0Þ; rmðΔtÞ; : : : ; rm½ð2N − 1ÞΔt�g, then the in-
tegral ∫ 2τ

0 Q1;τ ð0; sÞrmðjt − sjÞds can be approximated by a rectan-
gular approximation as follows:

Z
2τ

0

Q1;τ ð0; sÞrmðjt − sjÞds ¼
X2N−1

j¼0

Q1;τ ð0; iΔtÞrmðjt − iΔtjÞΔt

ð32Þ
Hence, the previous system of equations becomes

Q1;τ ð0;0Þþ
1

2

X2N−1

j¼0

Q1;τ ð0;jΔtÞrmðjΔtÞΔt¼gAð0Þ
að0Þ h0

Q1;τ ð0;ΔtÞþ1

2

X2N−1

j¼0

Q1;τ ð0;jΔtÞrmðjΔt−jΔtjÞΔt¼gAð0Þ
að0Þ h0

..

.

Q1;τ ½0;ð2N−1ÞΔt�

þ1

2

X2N−1

j¼0

Q1;τ ð0;jΔtÞrm½jð2N−1ÞΔt−jΔtj�Δt¼gAð0Þ
að0Þ h0 ð33Þ

Therefore, it can be written as

Hq1;τ ¼
gAð0Þ
a0

h0 ð34Þ

where H = 2N × 2N matrix such that Hði; jÞ ¼ δi;j þΔt×
rmðji − jjΔtÞ=2, in which δi;j = Kronecker delta function;
q1;τ = a 2N × 1 vector with the ith element equal to
Q1;τ ð0; 2iΔtÞ, and h0 = a 2N × 1 vector with all elements equal
to h0.
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Notation

The following symbols are used in this paper:
AðxÞ = cross-sectional area of pipe at location x;
aðxÞ = wave speed at location x in pipe;
a0 = constant wave speed along pipe;
f = Darcy-Weisbach friction factor;
g = constant acceleration due to gravity;

Hðx; tÞ = pressure head at location x and time t for frictionless
pipe;

HFðx; tÞ = pressure head at location x and time twhen friction is
considered;

H0 = steady-state pressure head for frictionless pipe;
HF

0 ðxÞ = steady-state pressure head at location x when friction
is considered;

H = matrix obtained from rmðtÞ and used for numerical
calculations;

h0 = added constant pressure head created by injecting
input Q1;τ ;

h0 = vector with all elements equal to h0;
L = length of pipe section to be inspected;
L0 = total length of pipe;
N = variable integer number such as NΔt ¼ τ ;

Qðx; tÞ = flow rate at location x and time t;
Q0 = steady-state flow rate;

Q1;τ ðtÞ = artificial input flow rate which creates constant
pressure h0 along pipe at time τ ;

q1;τ = vector obtained from Q1;τ ðtÞ and used for numerical
calculations;

R = term defined for convenience that depends on friction
factor and pipe area;

rmðtÞ = normalized reflected impulse response (RIR);
s = time variable;
T = time constant that satisfies xðTÞ < L;

t, t0 = time variables;
x = axial coordinate;

δðtÞ = Dirac delta function, or unit impulse;
ΓðtÞ = impulse response function;
H = pressure head that satisfies condition Hðx; τÞ ¼ 2h0;
Q = flow rate that satisfies condition Qðx; τÞ ¼ 0;
ρ = density of fluid in pipe;
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τ = time at which pressure head becomes constant;
∀0 = volume of fluid injected during impulse injection;

and
∀ðτÞ = volume of fluid injected in time interval ½0; τ �.
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