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This paper considers the problem of identifying multiple leaks in a water-filled pipeline
based on inverse transient wave theory. The analytical solution to this problem involves
nonlinear interaction terms between the various leaks. This paper shows analytically and
numerically that these nonlinear terms are of the order of the leak sizes to the power
two and; thus, negligible. As a result of this simplification, a maximum likelihood (ML)
scheme that identifies leak locations and leak sizes separately is formulated and tested.
It is found that the ML estimation scheme is highly efficient and robust with respect to
noise. In addition, the ML method is a super-resolution leak localization scheme because
its resolvable leak distance (approximately 0:15kmin , where kmin is the minimum
wavelength) is below the Nyquist-Shannon sampling theorem limit (0:5kmin). Moreover,
the Cramér-Rao lower bound (CRLB) is derived and used to show the efficiency of the
ML scheme estimates. The variance of the ML estimator approximates the CRLB proving
that the ML scheme belongs to class of best unbiased estimator of leak localization
methods.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Leaks in water supply pipelines is a problem of increasing interest due to their associated financial cost from the wastage
of resources as well as their ability to act as entry points for contaminants into the treated water system. Various leak detec-
tion methods have been developed in the past decades with acoustic analysis as one of the more popular techniques. The fact
that 40% of water is lost from pipes around the world is a clear testimony that current methods are far from satisfactory and
there is an urgent need to fill this gap. As a result, recent researches have focused on transient-based leak detection methods
(TBDMs). TBDMs utilize the hydraulics of transient flows to detect leaks in the pipeline, e.g., Refs. [1–18]. The tenet of TBDM
is that leaks can be identified by injecting perturbations into a pipeline and measuring and analysing the system response
(e.g., pressure head) at specified location(s). The reason that such methods are expected to work is that a leak in a pipeline
system is known to result in an increased damping of the transient pressure and acts as ‘‘reflector” to the transient wave [19].
Many TBDMs have been developed by researchers and applied to water piping systems. The class of TBDM that uses the
reflective property of a leak is called transient reflection based method (TRM) [2,20–23]. Another class that uses the damping
property of leak is called transient damping based Method (TDM) [5]. A third class of TBDM uses both damping and reflective
properties and can be found in Refs. [1,3,4,6–9,24–30]. Note that the TBDMs mainly concern transmission mains but they
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Nomenclature

q discharge oscillation
h head oscillation
xL leak location
zL pipe elevation at leak
sL leak size
QL

0;H
L
0 steady-state discharge and head of leak

xM sensor coordinate
Dh head difference
n measurement noise
a wave speed
A area of pipeline
l pipe length
g gravitational acceleration
Z characteristic impedance
R frictional resistance
F Darcy-Weisbach friction factor
l propagation function
x angular frequency
xth fundamental frequency
kmin minimum wavelength
M sensor number
N leak number
J frequency number
T sample size
r2 variance of noise
log L log-likelihood function

Superscripts
L leak
U upstream node
D downstream node
NL no leak
SL single leak
M measurement
H conjugate transpose

Acronyms
CRLB Cramér-Rao lower bound
FIM Fisher information matrix
FRF frequency response function
MFP matched-field processing
MFP(1) MFP with one-leak model
ML maximum likelihood
MLE maximum likelihood estimate
MSE mean square error
PDF probability density function
RE relative error
RMSE root mean square error
SNR signal-to-noise ratio
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have been used in distribution mains [16]. Furthermore, TBDMs can detect not only leaks but also partial blockages, partially
closed in-line valves, branches, etc [16,31–33]. However, there is no proof that these methods maximize signal-to-noise ratio
(SNR) and there is no concerted effort in the literature to theoretically or analytically study the effect of noise on these exist-
ing methods using a probabilistic framework such as the maximum likelihood theory, although there have been attempts at
evaluating the reliability of leak detection techniques with respect to noise [22]. Yet, ultimately, suchmethods would need to
be applied in an often highly noisy environment due to traffic, turbulence, and mechanical devices.
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Recently, the authors of this paper formulated a transient leak detection method based on a matched-field processing
(MFP) method [34] and found that this approach is efficient, robust, accurate, provides a unique solution and maximizes
SNR. MFP uses the full information in the measured signal, i.e., both the reflective and damping properties of leaks are incor-
porated. As a result, MFP uses all available frequencies, not just resonant frequencies. Therefore, there is no need to identify
which frequencies are resonant frequencies. The fact that MFP uses all frequencies (i.e., all measured information) together
with its ability to maximize SNR means that the MFP method provides precise localization estimates even in noisy environ-
ments. In fact, it is shown that the MFP method can locate and size leaks in the presence of (i) noise even for SNR as low as
SNR ¼ �3:0 dB and (ii) uncertainty in the wave speed. For the case of multiple leaks, MFP identifies separate leaks provided
the distance between leaks is of the same order or larger than half the shortest probing wavelength. For cases where half of
the shortest probing wavelength is large compared to the distance between the leaks, separation of individual leaks in the
pipe is not possible. It is precisely this shortcoming of MFP that this paper addresses.

Following this introduction, a statement of the problem being addressed is given in Section 2. Then, a frequency-domain
transient wave model for pipe systems is introduced in Section 3. The head difference due to the transient wave propagating
from one end of the pipe to the other while passing by multiple leaks is analyzed. The head changes are then approximated
by a linear combination of individual leak contributions, where the accuracy of this linear approximation is justified both
mathematically and numerically. In Section 4, a maximum likelihood (ML) leak detection method is introduced and used
to estimate both the positions and sizes of multiple leaks in a pipe system. In Section 5, the Cramér-Rao lower bound (CRLB)
of leak locations and sizes is derived and it is shown that the ML approach maximizes SNR. Numerical simulations are intro-
duced to illustrate the properties of the ML method in Section 6. Finally, some conclusions are drawn in Section 7.

2. Problem statement and goal of the paper

As stated in the introduction, although the MFP method introduced by the authors in Ref. [34] has several desirable attri-
butes including efficiency, robustness, accuracy, uniqueness of solution and maximizing SNR, it is unable to separate mul-
tiple leaks when the shortest probing wavelength is large compared to the distance between the leaks. Numerical
examples are introduced here to illustrate and clarify this deficiency in the MFP method proposed in Ref. [34]. The numerical
test pipe system is shown in Fig. 1. A single, horizontal pipeline is connected by two reservoirs, whose coordinates are
x ¼ xU ¼ 0 and x ¼ xD and their heads relative to pipeline centreline are respectively H1 ¼ 25 m and H2 ¼ 20 m. The pipe
length is l ¼ 2 km and the diameter is D ¼ 0:5 m. The Darcy-Weisbach friction factor of the pipe is F ¼ 0:02, the steady-
state discharge is Q0 ¼ 0:0306 m3/s (the subscript ‘‘0” indicates the steady-state condition), and the wave speed is assumed
to be a ¼ 1200 m/s. A valve is located at the downstream end of the pipe and two pressure sensors are situated upstream of
the valve. An impulse wave is generated by the valve. The measurements from the sensors at xM1 ¼ 1800 m and xM2 ¼ 1960
m are used in the leak estimation process. First, two leaks at xL1 ¼ 300 m and xL2 ¼ 700 m with sizes sL1 ¼ 1� 10�4 m2 and
sL2 ¼ 1:2� 10�4 m2 are considered. The leak size, flow and head relations are defined in the following section. Fig. 2(a) shows
the estimate using the MFP with single-leak model: the cost function clearly shows two local maxima which correspond to
the two leaks but the estimates of both leaks have slight errors (the two local maxima are at 295 m and 703 m). Then, two
close leaks are considered, whose locations are xL1 ¼ 400 m and xL2 ¼ 460 m. Here, the frequencies
x ¼ fð1þ aÞxth : a ¼ 0;0:02;0:04; . . . ;30g are used, in which xth ¼ ap=ð2lÞ ¼ 0:94 Hz is the fundamental frequency (first
resonant frequency). Therefore, the minimum wavelength is kmin ¼ 258 m. Fig. 2(b) shows that in this case the two close
leaks, whose distance is approximately 0:23kmin, cannot be separately identified. In fact, Ref. [34] has shown that the min-
imum resolvable range that two leaks can be individually estimated is approximately 0:5kmin.

The main goal of this paper is to develop a method capable of identifying ‘‘close” multiple leaks using a super-resolution
method. A super-resolution method should be able to identify multiple leaks even when the distance between them is less
than half the shortest probing wavelength, and it should do so without sacrificing efficiency, robustness, accuracy, unique-
ness, or maximum SNR attributes.

3. Linearized model of transient wave in pipeline with multiple leaks

This section describes a model for propagation of a transient wave in a pipeline. The main result and advantage of the
proposed model is that the pressure head difference due to leakage can be approximated by a linear form, which is a super-
Fig. 1. Setup of the simulation experiment.



Fig. 2. Double-leak detection using MFP based on the single-leak model. The leak positions are (a) 300 m and 700 m and (b) 400 m and 460 m.
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position of contributions from individual leaks. Each individual contribution is a product of the leak size and a function of the
corresponding leak location and is independent of other leaks. This property is used later in this paper to formulate an effi-
cient multi-leak detection scheme that identifies leak locations and leak sizes separately.

3.1. Model description

The pipeline system setup is same as in Section 2. A pressure sensor is assumed to be set near the downstream node
whose coordinate is denoted by xM . A model with N leaks is considered, the coordinates of the leaks are xLn ;n ¼ 1; . . . ;N,
(xL1 < � � � < xLN < xM), zLn denotes the elevation of the pipe at each leak, and QLn

0 and HLn
0 are the steady-state discharge

and head at each leak. The leak size is represented by the lumped leak parameter sLn ¼ CdALn , where Cd is the discharge coef-
ficient of the leak and ALn is the flow area of the leak orifice. The steady-state discharge of a leak is related to the lumped leak

parameter by QLn
0 ¼ sLn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðHLn

0 � zLn Þ
q

, in which g is the gravitational acceleration.

The oscillations of discharge (volume rate of water flow) and pressure head due to a fluid transient are represented by q
and h. Given the discharge qðxUÞ and head hðxUÞ at the upstream node xU , the quantities at xM can be computed in the fol-
lowing way [35]:
qðxMÞ
hðxMÞ

� �
¼ MNLðxM � xLN Þ

Y1
n¼N

1 � QLn
0

2ðHLn
0 �zLn Þ

0 1

0
@

1
AMNLðxLn � xLn�1 Þ

8<
:

9=
; qðxUÞ

hðxUÞ

� �
; ð1Þ
in which xL0 ¼ xU ,
MNLðxÞ ¼ cosh lxð Þ � 1
Z sinh lxð Þ

�Z sinh lxð Þ cosh lxð Þ

 !
ð2Þ
is the field matrix, Z ¼ la2=ðixgAÞ is the characteristic impedance, l ¼ a�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ igAxR

p
is the propagation function, a is

the wave speed, x is the angular frequency, A is the area of pipeline, and R is the frictional resistance term. Note that

R ¼ ðFQ0Þ=ðgDA2Þ for turbulent flows, in which D is the pipe diameter and Q0 is the steady-state discharge. If the pipe is fric-
tionless (F ¼ 0), l ¼ ik where k ¼ x=a is the wavenumber.

In the case of small leaks, i.e., sLn � 1, the right hand side of Eq. (1) can be approximated by a linear form being equal to
the sum of a term independent of leaks and contributions from various leaks:
qðxMÞ
hðxMÞ

� �
� MNLðxMÞ þ

XN
n¼1

sLnMSLðLn; xLn ; xMÞ
 !

qðxUÞ
hðxUÞ

� �
; ð3Þ
in which
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MSLðLn; xLn ; xMÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g
2ðHLn

0 �zLn Þ
q Z sinh lxLn

� �
cosh lðxM � xLnÞ� � � cosh lxLn

� �
cosh lðxM � xLn Þ� �

�Z2 sinh lxLn
� �

sinh lðxM � xLn Þ� �
Z cosh lxLn

� �
sinh lðxM � xLnÞ� �

 !
ð4Þ
is a matrix related to the location xLn of the n-th leak (zLn and HLn
0 are decided by xLn ), but is independent of the other leaks and

the size sLn of n-th leak.
In the following two subsections, the approximation in Eq. (3) is mathematically and numerically verified.

3.2. Mathematical justification of Eq. (3)

The aim of this section is to justify the use of Eq. (3), which will be shown in Theorem 1. To prove this theorem, two lem-
mas are first given.

Lemma 1. The matrices MNL and MSL have the following properties:

(1) MNLðx1ÞMNLðx2Þ ¼ MNLðx1 þ x2Þ;
(2) MSLðLn; x1; x2ÞMNLðx3Þ ¼ MSLðLn; x1 þ x3; x2 þ x3Þ;
(3) MNLðx1ÞMSLðLn; x2; x3Þ ¼ MSLðLn; x2; x1 þ x3Þ.
Proof. (1) can be easily obtained from the basic sum rule of hyperbolic functions.
(2):
MSLðLn; x1; x2ÞMNLðx3Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g

2ðHLn
0 � zLn Þ

s
Z sinh lx1ð Þ cosh lðx2 � x1Þð Þ � cosh lx1ð Þ cosh lðx2 � x1Þð Þ

�Z2 sinh lx1ð Þ sinh lðx2 � x1Þð Þ Z cosh lx1ð Þ sinh lðx2 � x1Þð Þ

 !
cosh lx3ð Þ � 1

Z sinh lx3ð Þ
�Z sinh lx3ð Þ cosh lx3ð Þ

 !

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g

2ðHLn
0 � zLn Þ

s
Z sinh lðx1 þ x3Þð Þ cosh lðx2 � x1Þð Þ � cosh lðx1 þ x3Þð Þ cosh lðx2 � x1Þð Þ

�Z2 sinh lðx1 þ x3Þð Þ sinh lðx2 � x1Þð Þ Z cosh lðx1 þ x3Þð Þ sinh lðx2 � x1Þð Þ

 !

¼ MSLðLn; x1 þ x3; x2 þ x3Þ:
ð5Þ
(3):
MNLðx1ÞMSLðLn; x2; x3Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g

2ðHLn
0 � zLn Þ

s
cosh lx1ð Þ � 1

Z sinh lx1ð Þ
�Z sinh lx1ð Þ cosh lx1ð Þ

 !
Z sinh lx2ð Þ cosh lðx3 � x2ÞÞð Þ � cosh lx2ð Þ cosh lðx3 � x2Þð Þ
�Z2 sinh lx2ð Þ sinh lðx3 � x2Þð Þ Z cosh lx2ð Þ sinh lðx3 � x2Þð Þ

 !

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g

2ðHLn
0 � zLn Þ

s
Z sinh lx2ð Þ cosh lðx1 þ x3 � x2ÞÞð Þ � cosh lx2ð Þ cosh lðx1 þ x3 � x2Þð Þ
�Z2 sinh lx2ð Þ sinh lðx1 þ x3 � x2Þð Þ Z cosh lx2ð Þ sinh lðx1 þ x3 � x2Þð Þ

 !

¼ MSLðLn; x2; x1 þ x3Þ: �
ð6Þ
Lemma 2. Assume that the pipe has N leaks with locations xLn and sizes sLn ðn ¼ 1; . . . ;NÞ, then the head and discharge at
xLNþ ¼ limd!0þ xLN þ d

� �� �
are
qðxLNþÞ
hðxLNþÞ

� �
¼ MNLðxLN Þ þ

XN
n¼1

sLnMSLðLn; xLn ; xLN Þ
 !

qðxUÞ
hðxUÞ

� �
þ o max

n¼1;...;N
ðsLnÞ

� �
ð7Þ
as maxn¼1;...;NðsLn Þ ! 0, where oð�Þ stands for an infinitesimal amount with respect to �, i.e., oð�Þ=�! 0.
Proof. In the case of single leak,
qðxL1þÞ
hðxL1þÞ

� �
¼ 1 � Q

L1
0

2ðHL1
0 �zL1 Þ

0 1

0
@

1
AMNLðxL1 Þ qðxUÞ

hðxUÞ

� �
¼ MNLðxL1 Þ þ sL1MSLðL1; xL1 ; xL1 Þ
� � qðxUÞ

hðxUÞ

� �
: ð8Þ
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Assume that Eq. (7) holds for N � 1 leaks, then in the case of N leaks,
qðxLNþÞ
hðxLNþÞ

� �
¼ 1 � Q

LN
0

2ðHLN
0

�zLN Þ

0 1

0
@

1
AMNLðxLN � xLN�1 Þ qðxLN�1þÞ

hðxLN�1þÞ

� �
¼ MNLðxLN � xLN�1 Þ þ sLNMSLðLN ; xLN � xLN�1 ; xLN � xLN�1 Þ
� �

MNLðxLN�1 Þ þ
XN�1

n¼1

sLnMSLðLn; xLn ; xLN�1 Þ þ o max
n¼1;...;N�1

ðsLn Þ
� � !

qðxUÞ
hðxUÞ

� �

¼ MNLðxLN Þ þ sLNMSLðLN ; xLN ; xLN Þ þ
XN�1

n¼1

sLnMSLðLn; xLn ; xLN Þ
 

þ
XN�1

n¼1

sLn sLNMSLðLN; xLN � xLN�1 ; xLN � xLN�1 ÞMSLðLn; xLN�1 ; xLnÞ þ o max
n¼1;...;N�1

ðsLnÞ
� �!

qðxUÞ
hðxUÞ

� �

¼ MNLðxLN Þ þ
XN
n¼1

sLnMSLðLn; xLn ; xLN Þ
 !

qðxUÞ
hðxUÞ

� �
þ o max

n¼1;...;N
ðsLn Þ

� �
: �

ð9Þ
Theorem 1. Assume that the pipe has N leaks with locations xLn and sizes sLn ;n ¼ 1; . . . ;N, then the head and discharge at xM

(xM > xLN > � � � > xL1 ) is
qðxMÞ
hðxMÞ

� �
¼ MNLðxMÞ þ

XN
n¼1

sLnMSLðLn; xLn ; xMÞ
 !

qðxUÞ
hðxUÞ

� �
þ o max

n¼1;...;N
ðsLn Þ

� �
ð10Þ
as maxn¼1;...;NðsLn Þ ! 0.
Proof. The head and discharge at xM is
qðxMÞ
hðxMÞ

� �
¼ MNLðxM � xLN Þ qðxLNþÞ

hðxLNþÞ

� �
: ð11Þ
By Lemmas 1 and 2, Eq. (10) can be directly obtained. �
3.3. Numerical justification of Eq. (3)

In the following, the precision of the approximation given by Eq. (3) is investigated via numerical examples. A single pipe
is considered; its characteristic is same as in Section 2. First, it is assumed that the pipe has three leaks at xL1 ¼ 400 m,

xL2 ¼ 520 m and xL3 ¼ 800 m. The three leaks have the same size. Two cases of leak sizes CdAL ¼ 8� 10�4 m2 and

CdAL ¼ 3� 10�4 m2 are considered; correspondingly, the ratio between the leak size and the pipe area is respectively

CdAL
=A ¼ 4� 10�3 and CdAL

=A ¼ 1:5� 10�3. The frequency response function (FRF) at xM ¼ 1900 m due to transient wave
from the downstream valve is shown in Fig. 3(a). The solid line and the dash line are obtained from the transfer matrix

method Eq. (1) and its linear approximation Eq. (3) respectively. In the case of large leak where CdAL ¼ 8� 10�4 m2, the
shape of FRF is well-replicated but at resonant frequencies the error is relatively large. For the smaller leak size

CdAL ¼ 3� 10�4 m2, the amplitudes at all frequencies are accurate. Similarly, the results of two cases of double-leak are dis-
played in Fig. 3(b) xL1 ¼ 400 m, xL2 ¼ 520 m and (c) xL1 ¼ 400 m, xL2 ¼ 460 m. In both cases, the FRF for the larger leak size

CdAL ¼ 8� 10�4 m2 is better replicated using the linear approximation Eq. (3).
The average relative error (RE) of FRF with respect to leak size is also studied and plotted in Fig. 4. Here, the average RE is

defined by
RE ¼ 1
30xth

Z 31xth

xth

k~hðxM;xÞk � khðxM;xÞk
khðxM ;xÞk

					
					dx; ð12Þ
where h and ~h are pressure heads obtained from Eqs. (1) and (3), respectively. The three cases of leak locations are consid-
ered here again: (i) xL1 ¼ 400 m, xL2 ¼ 520 m and xL3 ¼ 800 m; (ii) xL1 ¼ 400 m and xL2 ¼ 520 m; (iii) xL1 ¼ 400 m and
xL2 ¼ 460 m. In all three cases the approximation precision decreases as the leak size increases. However, for a small leak

size (the main concern in the leakage detection problem), say CdAL 6 2� 10�4 m2 (CdAL
=A ¼ 1� 10�3), the approximation

errors for all the three cases are acceptable: the average RE is always less than 2%. Furthermore, Fig. 4 also shows that



Fig. 3. Frequency response function (head magnitude) at xM ¼ 1900 m obtained from the transfer matrix method (solid line) and the linearized model (dash
line). The leak locations are (a) xL1 ¼ 400 m, xL2 ¼ 520 m and xL3 ¼ 800 m; (b) xL1 ¼ 400 m and xL2 ¼ 520 m; (c) xL1 ¼ 400 m and xL2 ¼ 460 m. The leak size is
CdAL ¼ 8� 10�4 m2 (left) and CdAL ¼ 3� 10�4 m2 (right). The pipe length is l ¼ 2000 m.
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the three-leak case has a larger error than the other two cases. Besides, a larger distance between the two leaks introduces a
slight increase of FRF error.

4. Maximum likelihood estimation of multiple leaks

4.1. Data model

In this section, multiple leaks are again estimated by the ML approach but this time in the presence of white noise. The
head measurement at the station xm (m ¼ 1; . . . ;M) near the downstream for the frequency xj (j ¼ 1; . . . ; J) is assumed to
follow the theoretical expression from Eq. (3) plus a noise term:
hðxj; xmÞ ¼ hNLðxj; xmÞ þ
XN
n¼1

sLnGðxj; xLn ; xmÞ þ njm; ð13Þ
wherein



Fig. 4. Average relative error of FRF due to model linearization with respect to leak size CdAL . The measurement station locates at xM ¼ 1900 m. The leak
locations are (i) xL1 ¼ 400m, xL2 ¼ 520m and xL3 ¼ 800 m; (ii) xL1 ¼ 400 m and xL2 ¼ 520 m; (iii) xL1 ¼ 400m and xL2 ¼ 460 m. The pipe length is l ¼ 2000 m.
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hNLðxj; xmÞ ¼ �Z sinh lxmð ÞqðxUÞ þ cosh lxmð ÞhðxUÞ; ð14Þ

Gðxj; xLn ; xmÞ ¼ �
ffiffiffi
g

p
Z sinh lðxm � xLn Þ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðHLn

0 � zLnÞ
q Z sinh lxLn

� �
qðxUÞ � cosh lxLn

� �
hðxUÞ� �

; ð15Þ
and njm’s are independent random variables and follow Gaussian random distribution with 0-mean and variance r2. It is
noticeable that the noise is assumed to be white noise, i.e., the power (variance) is constant with various frequencies. For
non-white noise, the signal can be whitened such that the white noise assumption is satisfied [34]. Note that the discharge
qðxUÞ at the upstream node xU can be estimated by adding a measurement station near the upstream boundary [36,37],
denoted by xU þ �, and assuming there is no leak between xU and xU þ �. Using the pressure head measurement hðxU þ �Þ
at xU þ � and applying a boundary condition hðxUÞ of head at xU , the discharge at the upstream node qðxUÞ can be solved via
qðxUÞ
hðxUÞ

� �
¼ MNLð��Þ qðxU þ �Þ

hðxU þ �Þ

� �
¼ coshðl�Þ 1

Z sinhðl�Þ
Z sinhðl�Þ coshðl�Þ

 !
qðxU þ �Þ
hðxU þ �Þ

� �
; ð16Þ
that is,
q̂ðxUÞ ¼ coshðl�ÞhðxUÞ � hðxU þ �Þ
Z sinhðl�Þ : ð17Þ
Let Dhjm � hðxj; xmÞ � hNLðxj; xmÞ denote the head difference between the head measurement in the presence of leaks and
the theoretical head that does not include the leak terms at the frequencyxj and at the measurement station xm, and denote
Dh ¼ ðDh11; . . . ;DhJ1; . . . ;Dh1M; . . . ;DhJMÞ>; ð18Þ
then we have the following equation:
Dh ¼ GðxLÞsL þ n: ð19Þ

In this equation, G is a JM � N-dimensional matrix whose n-th column is
GnðxLn Þ ¼ ðGðx1; xLn ; x1Þ; . . . ;GðxJ; xLn ; x1Þ; . . . ;Gðx1; xLn ; xMÞ; . . . ;GðxJ; xLn ; xMÞÞ>; ð20Þ

xL ¼ ðxL1 ; . . . ; xLN Þ>; sL ¼ ðsL1 ; . . . ; sLN Þ>; ð21Þ

and
n ¼ ðn11; . . . ;nJ1; . . . ;n1M; . . . ;nJMÞ>: ð22Þ
In the following, the data Dh will be used to estimate the leak locations xL and sizes sL.
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4.2. Maximum likelihood estimation for leak locations and sizes

Since the vector of head difference Dh follows a JM-dimensional complex-valued Gaussian distribution, its probability
density function (PDF) is
pðDh; xL; sLÞ ¼ ðpr2Þ�JM
exp � 1

r2 Dh� GðxLÞsL

 

2� �
: ð23Þ
Therefore, the log-likelihood function is
log LðxL; sL;DhÞ ¼ �JM logðpr2Þ � 1
r2 kDh� GðxLÞsLk2: ð24Þ
The ML estimation of the parameters xL and sizes sL are obtained by maximizing Eq. (24):
fx̂L; ŝLg ¼ argmax
xL ;sL

log LðDh; xL; sLÞ ¼ argmin
xL ;sL

kDh� GðxLÞsLk2: ð25Þ
For any xL, the corresponding estimate of sL has the form of least square (LS) solution:
sL ¼ GHðxLÞGðxLÞ
� ��1

GHðxLÞDh: ð26Þ
Therefore, by inserting Eq. (26) into Eq. (25), the estimate of N leak locations are obtained:
x̂L ¼ argmin
xL

Dh� GðxLÞ GHðxLÞGðxLÞ
� ��1

GHðxLÞDh











2

¼ argmax
xL

DhHGðxLÞ GHðxLÞGðxLÞ
� ��1

GHðxLÞDh
� �

: ð27Þ
The size estimates of the N leaks are then obtained by
ŝL ¼ GHðx̂LÞGðx̂LÞ
� ��1

GHðx̂LÞDh: ð28Þ
Finally, the multiple-leak identification algorithm using the ML approach is summarized in Algorithm 1.

Algorithm 1. Maximum likelihood approach for multiple-leak detection

1. Select J frequencies x1; . . . ;xJ;
2. Estimate the discharge at the upstream qðxUÞ from Eq. (17);

3. Calculate hNLjm at the j-th frequencies andm-th measurement station (j ¼ 1; . . . ; J;m ¼ 1; . . . ;M) via Eq. (14) and use the
head differences Dhjm as the data;

4. Estimate the locations of the N leaks by solving the maximization problem Eq. (27);
5. Estimate the size of the N leaks from Eq. (28).
5. Analytical properties of the maximum likelihood leak detection

The analytical properties of the proposed ML method are introduced in this section. The equivalence to matched-field and
matched-filter approaches is also presented.

5.1. Properties of maximum likelihood and Cramér-Rao lower bound

The proposed leak identification method inherits the properties of maximum likelihood estimation (MLE). More specif-
ically, the estimates converge in probability to the actual leak positions and sizes and the variance of each estimator achieves
the CRLB when the sample size tends to infinity [38]. The latter implies that the proposed estimator has the lowest mean
squared error (MSE) for large sample size. A brief introduction of CRLB can be found in Appendix A. The CRLBs of leak loca-
tions and sizes, denoted as H ¼ xL; sL

� �
, are given by
CovðĤÞ P CRLBðHÞ ¼ TIðHÞð Þ�1
; ð29Þ
in which T is the sample size and IðHÞ is the Fisher information matrix (FIM):
IðHÞ ¼ 1
r2

diagðsLÞ 0
0 IN

� � ðG0ÞHG0 þ ðG0ÞHG0
� �>

ðG0ÞHGþ GHG0
� �>

GHG0 þ ðG0ÞHG
� �>

GHGþ GHG
� �>

0
B@

1
CA diagðsLÞ 0

0 IN

� �
: ð30Þ



Fig. 5. jGj and jG0 j as a function of normalized frequenciesx=xth at xM ¼ 1980 m. The pipe has a single leak at xL ¼ 300 m and the pipe length is l ¼ 2000 m.

Fig. 6. CRLB of RMSE of the estimator x̂L1 and x̂L2 with respect to leak distance. The leak locations are xL1 ¼ 400 m and xL2 2 ½402;600�. The minimum
wavelength is 258 m.
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The CRLBs of x̂Ln and ŝLn , which represent the minimum achievable MSE, are n-th and ðN þ nÞ-th diagonal elements of
CRLBðHÞ. The detailed derivation can be found in Appendix B.
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Fig. 5 shows an example that plots Gðx; xL; xMÞ		 		 and @Gðx;xL ;xM Þ
@xL

			 			 as a function of normalized angular frequency x=xth at

xM ¼ 1980 m and the leak location is xL ¼ 300 m (the pipe length is l ¼ 2000 m). Both plots have higher amplitude at reso-
nant frequencies, implying that these frequencies bring more information and contribute more to leak detection precision
than others, according to Eqs. (29) and (30). However, using more frequencies, as well as more sensors, pushes down the
CRLB for both leak location and size estimators and is thus preferable.

In Fig. 6, another example is considered, wherein two leaks exist in a pipe. Fig. 6 plots the CRLBs for estimators of both
leak locations x̂L1 and x̂L2 with respect to various leak distances. More exactly, the leak locations are xL1 ¼ 400 m and
xL2 2 ½402;600�. The minimum wavelength of probing wave is 258 m. Note that when the two leaks are close to each other
meaning that jx̂L1 � x̂L2 j < kmin=2 (but greater than around 20 m), the CRLB stays at almost the same level (approximately 1
m), which implies that detecting reliably two very close leaks is inherent in the proposed ML method according to the con-
vergence property of ML. When the distance between the two leaks tends to zero, the CRLB dramatically increases, which
implies that two very close leaks cannot be localized accurately no matter which detection method is used. The reason is
that in this case the measurement does not bring enough information (e.g., too narrow bandwidth of probing wave) for
the desired parameter estimation. Note that the result in Fig. 6 is obtained with sample size T ¼ 1. When more data are avail-
able, the CRLB, as well as the minimum resolvable distance between leaks, can be further decreased, which can be justified
by Eq. (29). More detailed discussion and numerical analysis concerning the resolution (the capacity to separately estimate
two close leaks) of leak characterization methods is presented in Section 6.

5.2. Equivalence to matched-field and matched-filter approaches

In the following, the proposed ML method is proved to be equivalent to the MFP and the matched-filter method [39–42]
under the multi-leak model. This means that the proposed ML method equally maximizes the SNR and is thus robust with
respect to noise. Note that the MFP and the matched-filter method mentioned in this section are different with the ones in
Ref. [34] where a single leak is assumed in the model. More specifically, two parameters (location and size of the single leak)
are estimated in Ref. [34], while 2N parameters are considered in the present paper.

MFP uses a weighting vector w with unit norm (kwk ¼ 1) to match the measurement Dh by maximizing
jBj2 ¼ jwHDhj2 ¼ wHDhDhHw: ð31Þ

By replacing Dh by Eq. (19) and maximizing the expectation of Eq. (31), the optimal weight w is obtained by
ŵ ¼ argmax
w

EðjBj2Þ ¼ argmax
w

wHGsLðsLÞHGHwþ r2
� �

¼ argmax
w

wH GsL
� �			 			2 ¼ GsL

GsL



 


 : ð32Þ
The last equality holds due to the property of inner product. By inserting Eq. (32) into Eq. (31), the model parameters can be
estimated:
fx̂L; ŝLg ¼ argmax
xL ;sL

DhHGðxLÞsL
			 			2

GðxLÞsLk k2
: ð33Þ
Note that for any fixed xL, the right hand side of Eq. (33) can be seen as maximizing a ratio of two quadratic forms of sL, also
known as the generalized Rayleigh quotient, which has the solution
ŝL ¼ GHðxLÞGðxLÞ
� ��1

GHðxLÞDh: ð34Þ
The derivation of Eq. (34) can be found in Appendix C. Inserting Eq. (34) into Eq. (33) results in the estimate of xL:
x̂L ¼ argmax
xL

DhHGðxLÞ GHðxLÞGðxLÞ
� ��1

GHðxLÞDh
				

				
2

GðxLÞ GHðxLÞGðxLÞ
� ��1

GHðxLÞDh











2 ¼ argmax

xL
DhHGðxLÞ GHðxLÞGðxLÞ

� ��1
GHðxLÞDh: ð35Þ
Therefore, the equivalence between the MLE and the MFP is proved.
The matched-filter approach applies a filter w to the head difference
wHDh ¼ wHGsL þwHn; ð36Þ

such that the SNR reaches its maximum, i.e., to find the optimal filter
ŵ ¼ argmax
w

wHGsL
			 			2
E wHnj j2
� � ¼ argmax

w

wHGsL
			 			2
r2 wk k2

¼ argmax
w

wH

wk kGs
L

				
				
2

: ð37Þ
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To obtain a non-trivial solution, the filter is assumed to have a unit norm, i.e., kwk ¼ 1, thus
1 Her
ŵ ¼ GsL

GsL



 


 ; ð38Þ
which is identical to the optimal weight of MFP (Eq. (32)). The above presentation illustrates that the proposed ML approach
minimizes the influence of noise and is thus robust in a noisy environment.

6. Numerical simulations

In this section, numerical examples are introduced, where the performance of the ML method based on the model of mul-
tiple leaks is compared with the MFP method based on the single leak model introduced in Ref. [34]. Note that the MFP is
equivalent to the ML method with single-leak assumption. To avoid confusion in this section, MLE refers to the ML method
based on the model of multiple leaks and MFP(1) refers to the ML method with single-leak model. The numerical simulation
test system is shown in Fig. 1. The cases introduced in Fig. 2 are considered to illustrate the improvement of multiple-leak
detection by the proposed method (i.e., MLE) over the MFP(1). Note that the wave propagation simulation in the forward
problem is accomplished using the transfer matrix method while in the inverse problem the linearized model is used.

First, the case in Fig. 2(a) is considered, i.e., two leaks at xL1 ¼ 300 m and xL2 ¼ 700 m with sizes sL1 ¼ 1� 10�4 m2 and

sL2 ¼ 1:2� 10�4 m2 (the relative leak size CdAL1=A ¼ 0:5� 10�3 and CdAL2=A ¼ 0:6� 10�3). The boundary condition
hðxUÞ ¼ 0 is applied and qðxUÞ is calculated from Eq. (17) by measuring the head pressure at xM0 ¼ 50 m. The measurements
from the other two transducers at xM1 ¼ 1800 m and xM2 ¼ 1960 m are used in the leak estimation process. Gaussian white
noise with 0-mean is added to the head measurements from all three transducers (at xM0 ; xM1 and xM2 ). Here, the SNR is 10 dB,
which is defined by
SNR ¼ 20log10 EðDhÞj j=r
� �

¼ 20log10
sL

r
Gj j

� �
; ð39Þ
where EðDhÞj j stands for the average head difference and r is the standard deviation of the Gaussian white noise. It can be
seen from Eq. (39) that increasing SNR is equivalent to increasing the leak size sL or decreasing the noise standard deviation
r. Furthermore, the influence of the steady-state pressure head HLn

0 at n-th leak, which also affect the localization accuracy
[24,43], can be equivalently quantified by varying SNR, since its square root is proportional to the leak size sLn when zLn ¼ 0
(cf. Eqs. (13) and (15)). Therefore, although this section shows the simulation results with varying SNR and fixed sLn and HLn

0 ,
their influences are equivalently quantified. The frequencies x ¼ fð1þ aÞxth : a ¼ 0;0:02;0:04; . . . ;30g are used. In the
results obtained from MFP(1), the estimates of both leaks have slight errors (the two local maxima are at 295 m and 703
m in Fig. 2(a)). Fig. 7(a) displays the objective function of MLE (Eq. (27)) under the two-leak assumption, which reaches a
maximum corresponding to the estimated locations of the leaks. The estimate is very close to the actual location, which
is represented by the cross in the figure. The leak sizes are estimated via Eq. (28), being ŝL1 ¼ 1:025� 10�4 m2 (the actual
value is 1� 10�4 m2) and ŝL2 ¼ 1:188� 10�4 m2 (the actual value is 1:2� 10�4 m2). Fig. 7(b) shows the comparison between
the MLE (circles) and the actual values (lines) in terms of the leak location (x-axis) and size (y-axis). Since the results are
affected by random error, particularly for low SNR, each simulation (from data generation to leak estimation) is repeated
30 times. Fig. 8 shows the root mean square error (RMSE) of localization using both methods with respect to various SNR
(�3;0;3;6;9 dB), along with CRLB, which here is actually the square root of Eq. (29), i.e., the lower limit of RMSE. Here, RMSE
is defined by
RMSEðx̂LÞ ¼ e2ðx̂LÞ
� �1

2
; ð40Þ
in which the overline stands for the average and eðx̂LÞ is the L2-error between the actual and estimated locations of the leaks:
eðx̂LÞ ¼ kxL � x̂LkL2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxL1 � x̂L1 Þ2 þ ðxL2 � x̂L2 Þ2

q
: ð41Þ
Note that Eqs. (40) and (41) have the dimension of length, which is deliberate because it helps to define the errors in physical
units. It is clear that MFP(1) has a much larger error while MLE is very accurate with a RMSE less than 1 m for all SNRs and
very close to the CRLB.1 The reason is that, as previously stated, the error of MFP(1) comes from not only the noise but also the
imprecise (non-parameterized) model. It is remarkable that the RMSE of MLE can converge to the CRLB but it requires a large
sample size; here, however, only one experimental result (T ¼ 1) is used for leak detection, even so the RMSE is very close to the
CRLB.

Next, two close leaks are considered, i.e., the case in Fig. 2(b), whose locations are xL1 ¼ 400 m and xL2 ¼ 460 m. The fre-
quencies used for leak detection are the same as the previous case, implying that the minimum wavelength is kmin ¼ 258 m.
e, CRLB corresponds to the lower bound of Eq. (41) and is thus obtained from
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CRLBðxL1 Þ þ CRLBðxL2 Þ

p
.



Fig. 7. Double-leak detection using MLE. The leak positions are (a,b) 300 m and 700 m and (c,d) 400 m and 460 m. Subfigures (a) and (c) plot the 2D
objective function in Eq. (27). Subfigures (b) and (d) show the locations and sizes of actual (lines) and estimated (circles) leaks.

Fig. 8. Leak localization error using MFP(1) and MLE. The leak locations are xL1 ¼ 300 m and xL2 ¼ 700 m.
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Fig. 9. RMSEs of leak localization (a,b) and size estimation (c,d) with respect to SNR (�3;0;3;6;9 dB). Frequencies used are (a,c)
x ¼ fð1þ aÞxth : a ¼ 0;0:02;0:04; . . . ;30g and (b,d) x ¼ fð1þ aÞxth : a ¼ 0;2;4; . . . ;30g. The distance between the two leaks is
0:46kmin;0:23kmin;0:15kmin , and 0:08kmin .
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On the other hand, the leak distance is jxL1 � xL2 j ¼ 60m ¼ 0:23kmin. In this case, as indicated in Ref. [34] as well as the
Nyquist-Shannon sampling theorem, since the distance between the two leaks is less than the half minimum wavelength,
MFP(1) cannot separately identify the two leaks (cf. Fig. 2(b)). However, it is clear that the MLE is not limited by this min-
imum resolvable range and returns a super-resolution estimate: as is illustrated in Fig. 7(c) and (d), in this case
(jxL1 � xL2 j < kmin=4) both the locations and sizes of the two leaks are accurately estimated.

Fig. 9(a) shows the leak localization error with respect to various SNR and leak distances jxL1 � xL2 j ¼
0:08kmin;0:15kmin;0:23kmin;0:46kmin. Again, the RMSE is shown in the figures and is obtained from 30 simulation results.
The CRLB (corresponding to the lower bound of RMSE as in the previous example) for the case jxL1 � xL2 j ¼ 0:46kmin is also
shown; actually the CRLBs for all the four cases are very close, thus only one of them is shown. For any leak location, the
localization error increases as SNR decreases. Also, for a given SNR, decreasing the distance between the two leaks increases
the localization error, which implies that a shorter distance results in a more sensitive localization result with respect to
error. However, the error for the range jxL1 � xL2 j P 0:15kmin is acceptable: RMSE is less than 10 m even for a very low
SNR of �3 dB. A further advantage of the proposed method is that it is not limited to resonant frequencies but can use



Fig. 10. Two ML identification results of double leaks. The leak locations are xL1 ¼ 400 m and xL2 ¼ 420 m and the leak sizes are sL1 ¼ 1� 10�4 m2 and
sL2 ¼ 1:2� 10�4 m2. The lines and circles stand for the actual and estimated leaks, respectively.

Fig. 11. Leak localization error with respect to leak size CdAL . The distance between the two leaks are 0:46kmin (left) and 0:23kmin (right).
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any measured frequencies generated by the transient wave. Fig. 9(b) displays the localization error where only resonant fre-
quencies x ¼ fð1þ aÞxth : a ¼ 0;2;4; . . . ;30g are used. In this case, the localization error is obviously higher than the pre-
vious case since less information from the measurement is used, which can also be inferred from the higher CRLB. The RMSE
of leak size estimation is also shown in Fig. 9(c) and (d). Similar to the leak location estimation, in those cases having a leak
distance greater than 0:15kmin and for which frequencies x ¼ fð1þ aÞxth : a ¼ 0;0:02;0:04; . . . ;30g are used, the estimation
error is acceptable for all the SNRs. However, the estimation error using only resonant frequencies is larger than when using
more frequencies, since less information is used in the parameter estimation. Furthermore, the RMSE of the leak size esti-
mate is relatively further away from the corresponding CRLB than the leak location estimate. One possible reason is that
the proposed ML approach independently estimates the leak location first and then uses the result of the first step to decide
the leak size, therefore the error in the first step is possibly magnified in the second step.
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It is somewhat remarkable that a large error of leak localization or size estimation does not always mean a useless result.
Fig. 10 shows two leak identification results (with two specific realizations of random error) that plot leak location and size
estimates, wherein SNR = �3 dB and leak distance is 0:08kmin. In both cases, the L2-error of leak localization computed from
Eq. (41) is respectively 110 m and 526 m, the relative error (RE) of leak size estimation computed from
REðŝLÞ ¼ 1
60

X30
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝL1n � sL1

sL1

 !2

þ ŝL2n � sL2

sL2

 !2
2
4

3
5

vuuut ð42Þ
is respectively 82% and 100%. However, in both figures one leak estimate with high amplitude locates between the two
actual leaks (represented by the crosses) and the other leak estimate has a low amplitude and thus can be neglected. This
result implies that the two leaks are not separated (i.e., a poor resolution) but replaced by a large leak estimate (the esti-
mated size is approximately equal to the sum of the sizes of the two actual leaks) in between.

Finally, in order to justify the leak detection accuracy due to the model linearization Eq. (3), the localization error with
respect to various leak size is investigated. The result is shown in Fig. 11 for leak distance equal to 0:46kmin (xL1 ¼ 400 m
and xL2 ¼ 520 m) and 0:23kmin (xL1 ¼ 400 m and xL2 ¼ 460 m). The SNR is set to be relatively large, being 30 dB, to ignore
the influence of random error. For realistic leak sizes the localization error is always acceptable; even for a very large size

CdAL 6 2� 10�3 m2 (the relative leak size is CdAL1=A ¼ 1� 10�2) the L2-error is less than 5 m for both cases. It is interesting
that in the case of shorter distance (0:23kmin) between the two leaks, the localization error is larger, although the modeling
error due to linearization is smaller (cf. the dash line and the solid line in Fig. 4), which implies that a shorter leak range leads
to a more sensitive leak localization with respect to modeling error.
7. Conclusions

This paper proposes a maximum likelihood (ML) approach for identifying multiple leaks in a water-filled pipeline based
on inverse transient wave theory. The key findings are summarized below.

	 The analytical solution of the multi-leak problem involves nonlinear interaction terms between the various leaks. This
paper shows analytically and numerically that these nonlinear terms are of the order of the leak sizes to the power
two. Therefore, the leak-leak interaction terms are relatively small and thus negligible.

	 The fact that the leak-leak interaction terms are negligible is then exploited in the formulation of a ML scheme that iden-
tifies leak locations and leak sizes separately and sequentially.

	 It is found that the ML estimation scheme is highly efficient and robust with respect to noise. In addition, the ML method
is a super-resolution leak localization scheme because its resolvable leak distance (approximately 0:15kmin (kmin is the
minimum wavelength)) is below the Nyquist-Shannon sampling theorem limit (0:5kmin).

	 The Cramér-Rao lower bound (CRLB) is derived and used to show the efficiency of the ML estimates. The variance of the
ML estimator approximates the CRLB proving that the ML scheme belongs to class of best unbiased estimator of leak
localization methods.

	 The ML scheme maximizes the signal-to-noise ratio (SNR). In addition, it uses the full information in the measured signal
(i.e., it uses all available frequencies, not just resonant frequencies).

	 The fact that this class of schemes deals with noise and searches for leaks by maximizing the SNR is an important first step
to applying TBDM to real-world systems in the field where noise from various sources (traffic, turbulence, mechanical
devices, construction activities, etc) is ubiquitous.

Future work may be conducted in several directions. In real field application, the existence of uncertainties makes the leak
detection more difficult. The current work provides a systematic framework for handling uncertainties when their distribu-
tion is known. In practice, the distribution of uncertainties that originate from lack of knowledge of system’s topology and
behavior of its devices, numerical and modeling errors, noise from traffic and other sources, and imprecise measurement of
wave speed, friction factor and steady-state discharge is generally not known. Therefore, further progress requires efforts in
studying the various uncertainties that could affect the leak detection. Furthermore, in the numerical examples in this paper,
only the case of two-leak is considered, where the leak localization can be accomplished by plotting the two-dimensional
likelihood function. In the case of high leak number, optimization problem has to be solved and other techniques are desired
to decrease the computational complexity and cost. This issue is currently under development by the authors.
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Appendix A. Fisher information and Cramér-Rao lower bound

In the parameter estimation theory, Fisher information is a measure of information. More specifically, for a random vari-
able X with PDF pðxjhÞ, the information of a sample of data that can provide about the unknown parameter h is quantified by
its Fisher information, which is defined by
IðhÞ ¼ �E
d2 log pðxjhÞ

dh2

 !
¼ �

Z
d2 logpðxjhÞ

dh2
pðxjhÞdx: ðA:1Þ
Furthermore, this information determines the lower bound of the variance of an estimator of h. If ĥ is an unbiased estimator
of h, i.e., EðĥÞ ¼ h, then
VarðĥÞ P 1
TIðhÞ : ðA:2Þ
The right hand side of the above equation is known as CRLB.
For the case of multiple unknown parameters, denoted as H ¼ ðh1; . . . ; hNÞ, the sample information is described by the

Fisher information matrix (FIM):
IðHÞ ¼ �E
d2 logpðxjHÞ

dH2

 !
¼ �

Z
d2 logpðxjHÞ

dhn1dhn2
pðxjHÞdx

 !N;N

n1¼1;n2¼1

: ðA:3Þ
Similarly, CRLB for the covariance matrix is obtained from FIM:
CovðĤÞ P TIðHÞð Þ�1
: ðA:4Þ
Appendix B. Derivation of CRLB of leak location and size estimators

The log-likelihood function Eq. (24) is written as
log LðxL; sL;DhÞ ¼ �JM logðpr2Þ � 1
r2 Dh�

XN
n¼1

GnðxLn ÞsLn













2

¼ �JM logðpr2Þ � 1
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dðxLn Þ2
sL

 !

¼ � 1
r2 �ðGsLÞHG00

ns
Ln � ðG00

ns
Ln ÞHGsL þ sLnðG00

nÞ
HGsL þ ðsLÞHGHG00

ns
Ln þ 2jsLn j2kG0

nk2
� �

¼ � 2
r2 jsLn j

2kG0
nk2; ðB:3Þ
therefore
E
@2 log L

@ðxLÞ2
 !

¼ � 1
r2 diagðsLÞ ðG0ÞHG0 þ ðG0ÞHG0

� �>� �
diagðsLÞ; ðB:4Þ
in which G0 ¼ dG1ðxL1 Þ
dxL1

; . . . ; dGNðxLN Þ
dxL1

� �
and diagðsLÞ is a diagonal matrix with diagonal elements sL1 ; . . . ; sLN .

For any n1 and n2,
@2 log L
@sLn1 @sLn1

¼ � 1
r2 GH

n1
Gn2 þ GH

n2
Gn1

� �
; ðB:5Þ
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thus
E
@2 log L

@ðsLÞ2
 !

¼ � 1
r2 GHGþ GHG

� �>� �
; ðB:6Þ
If n1 – n2,
@2 log L
@xLn1 @sLn2

¼ � 1
r2 s

Ln1 ðG0
n1
ÞHGn2 þ GH

n2
G0

n1

� �
; ðB:7Þ
and
E
@2 logL
@xLn@sLn

 !
¼� 1

r2E �DhHG0
n�ðG0

nÞ
H
DhþðG0

nÞ
HGsLþ sLn ðG0

nÞ
HGnþ GsL

� �H
G0

nþ sLnGH
nG

0
n

� �

¼� 1
r2 s

Ln ðG0
nÞ

HGnþGH
nG

0
n

� �
; ðB:8Þ
therefore
E
@2 log L
@xL@sL

 !
¼ � 1

r2 diagðsLÞ ðG0ÞHGþ GHG0
� �>� �

ðB:9Þ
and
E
@2 log L
@sL@xL

 !
¼ � 1

r2 GHG0 þ ðG0ÞHG
� �>� �

diagðsLÞ: ðB:10Þ
Denote H ¼ fxL; sLg, by Eqs. (B.4), (B.6), (B.9), (B.10), the FIM is obtained:
IðHÞ ¼ �E

@2 log L
@ðxLÞ2

@2 log L
@xL@sL

@2 log L
@sL@xL

@2 log L
@ðsLÞ2

0
B@

1
CA ¼ 1

r2

diagðsLÞ 0
0 IN

� � ðG0ÞHG0 þ ðG0ÞHG0
� �>

ðG0ÞHGþ GHG0
� �>

GHG0 þ ðG0ÞHG
� �>

GHGþ GHG
� �>

0
B@

1
CA diagðsLÞ 0

0 IN

� �
:

ðB:11Þ

Thus, the CRLB of H estimator reduces to
CRLBðĤÞ ¼ TIðHÞð Þ�1
: ðB:12Þ
Here, G0
nðxLn Þ is obtained from the derivative of Eqs. (20) and (15). Assume that zLn0 ¼ 0, i.e., the pipe is in the same hor-

izontal plane, and HLn
0 ¼ HU þ ðHD � HUÞxLn=l, then each entry of G0

nðxLn Þ is
Gðxj; xLn ; xmÞ
dxLn

¼
ffiffiffi
g

p
Z2qðxUÞffiffiffiffiffiffiffiffiffiffi
2HLn

0

q sinh l xm � 2xLn
� �� � �lþ HD � HU

4lHLn
0

sinh lxLn
� � !

: ðB:13Þ
Appendix C. Derivation of leak size estimate of MFP

The proof of Eq. (34) is given here. Denote
v ¼ GðxLÞsL; ðC:1Þ

where G is an MJ � N matrix. Assuming that MJ > N, then the left pseudo inverse of G is
G�1
left ¼ ðGHGÞ�1

GH; ðC:2Þ

thus
sL ¼ G�1
leftv ¼ ðGHGÞ�1

GHv: ðC:3Þ

For any fixed xL, the optimal sL is obtained by inserting Eqs. (C.1) and (C.3) into the denominator and numerator of Eq. (33)
and maximizing it:
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ŝL ¼ argmax
sL

DhHGsL
			 			2

GsL



 


2 ¼ argmax

sL

DhHGðGHGÞ�1
GHv

			 			2
vk k2

¼ argmax
sL

GðGHGÞ�1
GHDh;

v
vk k


 �				
				
2

¼ argmax
sL

GðGHGÞ�1
GHDh;

GsL

GsL



 




* +						
						
2

¼ GHG
� ��1

GHDh: ðC:4Þ
The last equality holds due to Cauchy-Schwarz inequality and �; �h i stands for inner product.
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