
 

i 

Title page  

IN-DEPTH STUDY OF PLANE WAVE-BLOCKAGE INTERACTION AND ANALYSIS 

OF HIGH FREQUENCY WAVES BEHAVIOUR IN WATER-FILLED PIPE SYSTEMS 

 

 

 

 

 

by 

 

MOEZ  LOUATI 

 

 

 

 

 

A Thesis Submitted to 

The Hong Kong University of Science and Technology 

in Partial Fulfilment of the Requirements for 

the Degree of Doctor of Philosophy 

in Civil Engineering 

 

 

 

August 2016, Hong Kong 

 



 

ii 

Authorization page 

Authorization 

 

 

I hereby declare that I am the sole author of the thesis.  

I authorize the Hong Kong University of Science and Technology to lend this thesis to 

other institutions or individuals for the purpose of scholarly research.  

I further authorize the Hong Kong University of Science and Technology to reproduce 

the thesis by photocopying or by other means, in total or in part, at the request of 

other institutions or individuals for the purpose of scholarly research.  

 

 

___________________________________________  

MOEZ  LOUATI 

17 August 2016 

 

 



 

iii 

Signature page 

In-Depth Study of Plane Wave-Blockage Interaction and Analysis of High Frequency Waves 

Behaviour in Water-Filled Pipe Systems 

 

by  

MOEZ  LOUATI 

 

This is to certify that I have examined the above PhD thesis 

and have found that it is complete and satisfactory in all respects, 

and that any and all revisions required by 

the thesis examination committee have been made. 

 

_________________________________________ 

Prof. Mohamed S. GHIDAOUI (Supervisor) 

_________________________________________ 

Prof. Hong K. LO (Head department) 

Department of Civil and Environmental Engineering 

17 August 2016 

 



 

iv 

ACKNOWLEDGEMENTS 

I am grateful to God for the good health and wellbeing that were necessary to 

complete this thesis. 

Special thanks to my supervisor Prof. Mohamed S. GHIDAOUI for providing me his 

valuable advice and knowledge which led to the accomplishement of this work. I also would 

like to thank him for his immense patience in hearing sometimes inexhaustible questions, 

which stimulated and reinforced my philosophical logic and broadened my knowledge. With 

his challenges and support my confidence grew and stretched my own capabilities, allowing 

me to complete this work. 

I would also like to express my sincere gratitude to Prof. Bruno BRUNONE and Prof. 

Silvia MENICONI for their supervision and support in designing and carrying out difficult 

experimental tests for this work at the Water Engineering Laboratory, University of Perugia-

Italy. Thanks go also to their team members Prof. Marco FERRANTE, Enrico, Caterina, 

Elisa, Claudio and Emanuele for the warm and comfortable atmosphere they created around 

me during my stay in Perugia.  

My special appreciation to the members of the thesis examination committee, Prof. 

Hanif M. CHAUDHRY, Prof. Daniel P. PALOMAR, Prof. Joseph H.W. LEE, Prof. Ilias G. 

DIMITRAKOPOULOS and Prof. Ross D. MURCH for their valuable insights and 

comments.  

Prof. William G. GRAY and Dr. Duncan McInnis also contributed some invaluable 

advice during my PhD qualifying exam. 

Nothing I could say would be enough to express my love, gratefulness and thanks to 

my entire family and close friends and especially my dear parents and lovely wife for their 

continual support, encouragement and patience. Thank you enormously! 

This study is supported by the Hong Kong Research Grant Council (projects 612712 

& 612713 & T21-602/15R) and by the Postgraduate Studentship. 

Last, but not least, I particularly thank my high-school physics teacher Mr. Faiçal 

FRIKHA who implanted the love of physics in me and set me on this path. 



 

v 

 

TABLE OF CONTENTS 

 

Title page  ............................................................................................................................... i 

Authorization page ..................................................................................................................... ii 

Signature page ........................................................................................................................... iii 

ACKNOWLEDGEMENTS ...................................................................................................... iv 

TABLE OF CONTENTS ........................................................................................................... v 

LIST OF FIGURES ................................................................................................................. xiii 

LIST OF TABLES ................................................................................................................. xxv 

Abstract  ......................................................................................................................... xxvi 

LIST OF SYMBOLS .......................................................................................................... xxviii 

1. Chapter 1  Introduction and Literature review ....................................................................... 1 

1.1. Blockages in Water Supply systems ............................................................................ 1 

1.2. Acoustic waves for imaging the internal shape of vocal tracts and musical 

instruments ............................................................................................................................. 4 

1.3. Acoustic waves for imaging the internal shape of water pipes: Blockage detection in 

WSS  ..................................................................................................................................... 5 

1.4. Problem statement ....................................................................................................... 7 

1.4.1. Problem 1: solution of the blockage detection problem ....................................... 8 



 

vi 

1.4.2. Problem 2: resolution of blockage detection ...................................................... 11 

1.5. Thesis objective of the organization .......................................................................... 12 

1.6. Publication list ........................................................................................................... 14 

2. Chapter 2  Governing equations ........................................................................................... 17 

2.1. Introduction ............................................................................................................... 17 

2.2. One dimensional water hammer equations ................................................................ 18 

2.2.1. Water-Hammer wave ......................................................................................... 18 

2.2.2. Fundamental equation of water hammer: Joukowsky relation ........................... 19 

2.2.3. State Equations ................................................................................................... 22 

2.2.4. Importance of compressibility in rapid varying flow ......................................... 23 

2.2.5. 1D water hammer equation ................................................................................ 24 

2.2.5.1. Continuity Equation .................................................................................... 24 

2.2.5.2. Momentum Equation .................................................................................. 25 

2.2.5.3. Simplified Equations ................................................................................... 27 

2.3. Harmonic solution for 1D intact pipe flow ................................................................ 30 

2.4. Two dimensional axi-symetric Navier-Stokes equation for unsteady flow in 

cylindrical pipe ..................................................................................................................... 34 

2.5. Eenergy equation for the 2D inviscid Navier-Stokes equations in cylindrical 

coordinate system ................................................................................................................. 36 

2.6. 2D wave solution for the case of inviscid pipe flow ................................................. 40 



 

vii 

2.6.1. Wave equation .................................................................................................... 40 

2.6.2. Solution of the wave equation (Eq. (2.93)) ........................................................ 42 

2.6.3. Cut-off frequencies ............................................................................................. 46 

2.6.4. Dispersion curves, phase velocity and group velocity ....................................... 46 

2.6.5. Energy and Energy flux ...................................................................................... 50 

2.6.5.1. Kinetic energy ............................................................................................. 50 

2.6.5.2. Potential Energy .......................................................................................... 51 

2.6.5.3. Total energy ................................................................................................ 51 

2.6.5.4. Energy Flux ................................................................................................. 51 

2.7. Summary .................................................................................................................... 52 

3. Chapter 3  Numerical schemes ............................................................................................. 53 

3.1. Introduction ............................................................................................................... 53 

3.2. Numerical schemes .................................................................................................... 55 

3.2.1. Riemann solution at the cell interface ................................................................ 57 

3.2.2. 2nd order of accuracy: MUSCL-Hancock approach .......................................... 60 

3.2.3. Third order of accuracy: WENO reconstruction ................................................ 62 

3.2.3.1. Second order WENO scheme ..................................................................... 65 

3.2.4. Evolution stage of the numerical fluxes along the cell interface ....................... 65 

3.2.4.1. Linear scheme for linear flow applications ................................................. 66 

3.2.4.2. Nonlinear scheme for nonlinear flow applications ..................................... 67 



 

viii 

3.2.5. Time evolution ................................................................................................... 67 

3.2.6. Viscous terms ..................................................................................................... 68 

3.2.7. Boundary conditions .......................................................................................... 68 

3.2.7.1. Reflective boundary conditions .................................................................. 68 

3.2.7.2. Symmetric boundary condition ................................................................... 69 

3.2.7.3. Non-reflective boundary conditions ........................................................... 69 

3.2.7.4. Source boundary condition ......................................................................... 73 

3.2.7.5. Boundary conditions for Reservoir-pipe-valve system ............................... 76 

3.3. Study of the schemes features ................................................................................... 77 

3.3.1. Stability and accuracy order of the scheme ........................................................ 77 

3.3.2. Dissipation and computational time ................................................................... 80 

3.3.2.1. "Approximate" most efficient order of accuracy ........................................ 84 

3.3.3. Numerical dispersion (classical WH test case) .................................................. 88 

3.3.4. Numerical reflections at the boundaries ............................................................. 93 

3.3.5. WENO "calibration" parameter.......................................................................... 97 

3.4. Summary .................................................................................................................... 99 

4. Chapter 4  Wave scattering in unbounded pipe system ..................................................... 100 

4.1. Introduction ............................................................................................................. 100 

4.2. Bragg-type resonance effect in unbounded pipe system ......................................... 101 

4.3. Analytical Investigation ........................................................................................... 102 



 

ix 

4.4. One blockage case ................................................................................................... 104 

4.4.1. Numerical Investigation ................................................................................... 109 

4.5. Two blockages case ................................................................................................. 114 

4.5.1. Frequency content versus resolution ................................................................ 116 

4.5.2. Periodic blockages ............................................................................................ 123 

4.6. Summary .................................................................................................................. 126 

5. Chapter 5  Wave scattering in bounded pipe system: Study of the eigenfrequency shift due 

to a blockage at the boundary ................................................................................................. 129 

5.1. Introduction ............................................................................................................. 129 

5.2. Problem statement ................................................................................................... 129 

5.3. Harmonic solution for the case of blockage at the boundary .................................. 132 

5.4. Analysis and discussion of frequency-blockage interaction for blockage with small 

radial protrusion (i.e.   near 1) ......................................................................................... 134 

5.4.1. Relationship between eigenfrequency shift and change in energy .................. 134 

5.4.1.1. Short (discrete) blockage .......................................................................... 135 

5.4.1.2. Extended blockage .................................................................................... 138 

5.4.2. Work of the radiation pressure ......................................................................... 142 

5.4.3. Analysis and discussion of the zero eigenfrequency shift ................................ 144 

5.4.4. Analysis and discussion of the positive and negative eigenfrequency shift .... 148 

5.5. Analysis and discussion of frequency-blockage interaction for blockage with large 

radial protrusion (i.e.,   near 0) ........................................................................................ 151 



 

x 

5.6. Analysis and discussion of frequency-blockage interaction for blockage with 

moderate radial protrusion ................................................................................................. 156 

5.7. Symmetric pipe system with blockage at the boundary .......................................... 158 

5.8. Summary .................................................................................................................. 164 

6. Chapter 6  Wave scattering in bounded pipe system: Study of the eigenfrequency shift due 

to an interior blockage ............................................................................................................ 166 

6.1. Introduction ............................................................................................................. 166 

6.2. Problem statement ................................................................................................... 166 

6.3. Harmonic solution for the case of interior blockage ............................................... 170 

6.4. Analysis and discussion of eigenfrequency shift variation for interior blockage with 

small radial protrusion (i.e.,   near 1) .............................................................................. 172 

6.4.1. Analysis and discussion of the zero eigenfrequency shift ................................ 174 

6.4.2. Analysis and discussion of the positive and negative eigenfrequency shift .... 177 

6.5. Analysis and discussion of eigenfrequency shift variation for interior blockage with 

large and moderate radial protrusion .................................................................................. 183 

6.5.1. Asymptotic solutions ........................................................................................ 183 

6.5.2. Relation between eigenfrequency variation and Bragg-type resonance .......... 190 

6.5.3. Variation of zero shift locations with the radial protrusion of the blockage .... 197 

6.5.4. Variation of the maximum shift locations and magnitudes .............................. 201 

6.5.5. Low frequency approximation ......................................................................... 206 

6.6. Symmetric pipe system with interior blockage ....................................................... 208 



 

xi 

6.6.1. Blockage with small radial protrusion ............................................................. 212 

6.6.2. Blockage with severe and moderate radial protrusion ..................................... 215 

6.7. Application of Bragg resonance and eigenfrequency shift information for TBDDM218 

6.7.1. Implication to TBDDM .................................................................................... 218 

6.7.2. Experimental investigation ............................................................................... 219 

6.7.2.1. Description of the experimental setup ...................................................... 219 

6.7.2.2. Experimental results and discussion ......................................................... 223 

6.7.2.3. Potential of using of Bragg resonance and frequency shift mechanism 

information for blockage detection ............................................................................ 232 

6.8. Summary .................................................................................................................. 243 

7. Chapter 7  behaviour of high frequency acoustic waves in pressurized conduit ............... 246 

7.1. Introduction ............................................................................................................. 246 

7.2. Study of high frequency waves behaviour in unbounded pipe system .................... 248 

7.2.1. High frequency waves behaviour under resonating probing source ................ 248 

7.2.1.1. Dispersion and behaviour of high modes .................................................. 249 

7.2.1.2. Multi-path effect ....................................................................................... 254 

7.2.1.3. Effect of the transient source size ............................................................. 257 

7.2.2. High frequency waves behaviour under non-resonating probing source ......... 261 

7.2.2.1. Modes separations ..................................................................................... 262 

7.2.2.2. Energy propagation range of high modes ................................................. 269 



 

xii 

7.2.2.3. Effect of multi-path on dissipation ........................................................... 274 

7.2.2.4. Effect of energy radial distribution ........................................................... 278 

7.2.3. High frequency waves in blocked pipe system ................................................ 287 

7.3. Classical water-hammer test case: rapid valve closure in a RPV system ................ 302 

7.4. Summary .................................................................................................................. 307 

8. Chapter 8  Conclusions ...................................................................................................... 310 

8.1. Overall conclusions ................................................................................................. 310 

8.2. Future work.............................................................................................................. 314 

Bibliography and References ................................................................................................. 318 

Appendix A  Mode matching at discontinuity ....................................................................... 335 

Appendix B  Solution of cos(x) = y ..................................................................................... 340 

 

 

 



 

xiii 

 

LIST OF FIGURES 

Figure 1.1 Increased roughness in pipe ([115]) ..................................................................... 2 

Figure 1.2 Partially blocked pipe ([39]) ................................................................................ 3 

Figure 1.3 Severely blocked pipe ([127]) .............................................................................. 3 

Figure 1.4 A single blockage in a Reservoir-pipe-valve system (bounded system) .............. 9 

Figure 1.5 A single blockage in a Reservoir-pipe-valve system ......................................... 10 

Figure 1.6 Objective function in Eq. (1.2) variation with length l2 and l3 for a fixed area 

ratio  = 0.2 using the first 10 eigenfrequencies. .................................................................... 10 

Figure 2.1 Sudden gate closure ............................................................................................ 19 

Figure 2.2 Sudden valve closure .......................................................................................... 19 

Figure 2.3 Control volume moving with the wave front a pipe flow system ...................... 20 

Figure 2.4 Control volume for mass conservation ............................................................... 24 

Figure 2.5 Control volume for momentum conservation .................................................... 26 

Figure 2.6 Valve-pipe-valve (VPV) system ........................................................................ 32 

Figure 2.7 Reservoir-pipe-valve (RPV) system ................................................................... 32 

Figure 2.8 Pressure head and velocity harmonics of an intact RPV system at the 2nd mode 

(m = 2).  ............................................................................................................................ 33 

Figure 2.9 Sketch of a pipe showing the coordinate system ................................................ 35 

Figure 2.10 Bessel functions .................................................................................................. 44 



 

xiv 

Figure 2.11 Dimensionless group velocity variation with frequency for the first four modes 

(a=1000 m/s). ........................................................................................................................... 48 

Figure 2.12 Descriptive sketch of multipath effect (Zigzag-type of path) in axi-symetric 

pipe flow  ............................................................................................................................ 49 

Figure 2.13 Variation of the propagation angle (Eq. (2.122)) with frequency for the first 

four modes  ............................................................................................................................ 49 

Figure  3.1 Discretized space: numerical mesh .................................................................... 56 

Figure  3.2 Riemann problem at the cell interface ................................................................ 57 

Figure  3.3 Riemann solution ................................................................................................ 59 

Figure  3.4 Linear cell reconstruction along r-direction ....................................................... 62 

Figure  3.5 Sketch example of flux function at cell interface for a three dimensional 

application showing the need for integration along the cell interface. ..................................... 66 

Figure  3.6 Characteristic boundary conditions: to the left is the upstream boundary and the 

right is the downstream boundary. ........................................................................................... 73 

Figure  3.7 Sketch of unbounded pipe system ...................................................................... 74 

Figure  3.8 Probing wave from ( 16  ). .......................................................................... 75 

Figure 3.9 Probing wave from ( 80  ). .......................................................................... 75 

Figure  3.10 Characteristic boundary conditions .................................................................... 76 

Figure  3.11 Comparison of the dissipation rate and the CPU time between the second and 

third order schemes for the case of fc=500Hz .......................................................................... 81 

Figure  3.12 Comparison of the dissipation rate and the CPU time between the second, third 

and fifth order schemes for the case of fc=1000Hz .................................................................. 83 



 

xv 

Figure  3.13 Comparison of the dissipation rate and the CPU time between the second, third 

and fifth order schemes for the case of fc=4000Hz .................................................................. 84 

Figure  3.14 Comparison of the dissipation rate with change of number of discretized FV 

per wavelength between the second, third and fifth order schemes. ........................................ 85 

Figure  3.15 Approximated most efficient order of accuracy (Eq. ( 3.56)) variation with the 

central frequency (fc). ............................................................................................................... 88 

Figure  3.16 Dimensionless pressure variation with time for the case of inviscid flow. A 

comparison between 2nd and 5th order schemes. ...................................................................... 90 

Figure  3.17 Dimensionless pressure variation with time for the case of viscous. A 

comparison between 2nd and 5th order schemes. ...................................................................... 91 

Figure  3.18 Enlarged figure of dimensionless pressure variation with time for the case of 

viscous flow. A comparison between 2nd and 5th order schemes. (at the pipe centreline) ....... 92 

Figure  3.19 Dimensionless pressure variation with time for the case of linear valve closure 

using the 5th order WENO schemes. ........................................................................................ 93 

Figure  3.20 Pressure measurement with time at the pipe centreline showing the M0 and M1 

numerical reflection from CBC for the case of fc = 3715Hz. ................................................... 94 

Figure  3.21 Pressure measurement with time at the pipe centreline showing the M0, M1 

and M2 numerical reflection from CBC for the case of fc = 6800Hz. ..................................... 95 

Figure  3.22 Pressure variation with time at the pipe centreline for different   values (fifth 

order scheme; fc = 1000Hz; Ds=D). .......................................................................................... 98 

Figure  4.1 sketch of a pipe system with three blockages (non-uniformities) .................... 103 

Figure  4.2 Pipe system with one blockage ........................................................................ 107 

Figure  4.3 Transmission amplitude variation with frequency ........................................... 108 



 

xvi 

Figure  4.4 Reflection amplitude variation with frequency ................................................ 109 

Figure  4.5  Input signal as transient source for numerical investigation ............................ 110 

Figure  4.6  Pressure measurement in region 1 (upstream) and region 3 (downstream) of the 

blocked pipe system (Figure 4.2) when 
1

R

cw w  (Eq. ( 4.10)) .............................................. 112 

Figure  4.7  Pressure measurement in region 1 (upstream) and region 3 (downstream) of 

the blocked pipe system (Figure 4.2) when 
2

T

cw w  (Eq. ( 4.11)) ........................................ 113 

Figure  4.8 Pipe system with one blockage ........................................................................ 115 

Figure  4.9 Comparison of the transmitted wave amplitude for at different central 

frequencies with the exact 1D analytical solution .................................................................. 118 

Figure  4.10 Comparison of transmitted amplitude for tests 2a, 2b and 2c .......................... 120 

Figure  4.11 Transmitted amplitude at different bandwidth for tests 3a, 3b and 3c ............. 122 

Figure  4.12 Transmission amplitude variation with frequency: comparison between one 

blockage and two periodic blockages cases. .......................................................................... 126 

Figure  5.1 Reservoir-pipe-valve system with change in cross-sectional area. .................. 131 

Figure  5.2 Dimensionless eigenfrequency variation with dimensionless length 2  for the 

first four modes with different   values. .............................................................................. 132 

Figure  5.3 Pressure head and flow harmonics variations for shallow blockage ( 0.8  ) 141 

Figure  5.4 Normalized eigenfrequency variation with length 2  for m = 2: comparison 

between exact solution (Eq. ( 5.3)) and approximate solution (Eq. ( 5.32)) (Energy 

approach).  .......................................................................................................................... 142 

Figure  5.5 Variation with 2  of total change in potential and kinetic energy in the pipe 

with blockage along with the eigenfrequency shift at mode m = 2 and 0.8  . .................. 146 



 

xvii 

Figure  5.6 Eigenfrequency shift variation at mode m = 2 for different   values along with 

the intact pressure harmonic. .................................................................................................. 147 

Figure  5.7 Sketch depicting how the harmonic at mode m = 2 is subdivided into single 

subharmonics. Case (a) and case (b) correspond to the zero shift cases where 2 1 3   and 

2 2 3  , respectively. ............................................................................................................ 148 

Figure  5.8 Sketches of the junction system for two shift cases: Case (a) gives leads to 

positive shift ( 2 1 6  ) and case (d) leads to negative shift ( 2 5 12  ). ............................. 150 

Figure  5.9 Dimensionless pressure and velocity harmonics when m = 2 and 0.4  . The 

black squared boxes are sketchs of the blockage. .................................................................. 151 

Figure  5.10 Schematic figure of the decoupling of the junction system into two intact 

uncoupled RPV subsystems when   tends to 0 .................................................................... 153 

Figure  5.11 Dimensionless eigenfrequency variation with length 2  of the first four modes 

for different   along with the asymptotic solution from Eqs. ( 5.47) and ( 5.48). ............... 155 

Figure  5.12 Symmetric pipe systems with change in cross-sectional area. ......................... 159 

Figure  5.13 Dimensionless eigenfrequency variation with 2  for the case of RPR system: 

first four modes with different   values. .............................................................................. 162 

Figure  5.14 Schematic figure of the decoupling of the junction system into two intact 

uncoupled RPV subsystems when   tends to 0 .................................................................... 163 

Figure  5.15 Dimensionless eigenfrequency variation with 2  for the case of RPR system 

along with the asymptotic solutions: first four modes with different   values. ................... 164 

Figure  6.1 A single blockage in a reservoir-pipe-valve (RPV) system ............................. 168 

Figure  6.2 Normalized eigenfrequency variation with length 3 20.5b     of the first 5 

modes for different   values when 2 0.15   ...................................................................... 169 



 

xviii 

Figure  6.3 Normalized eigenfrequency variation with length 3 20.5b     of the first 5 

modes for different   values when 2 0.027   .................................................................... 170 

Figure  6.4 Normalized eigenfrequency shift variation with length 3 2 2   for m = 2 and 

2 0.15  : comparison between exact solution (Eq. ( 6.1)) and approximate solution 

(Eq. ( 6.10)).  .......................................................................................................................... 173 

Figure  6.5 Normalized eigenfrequency variation with length 3 2 2   for the first eight 

modes with =0.64 and 2 0.15  : comparison between exact solution (Eq. ( 6.1)) and 

approximate solution (Eq. ( 6.10)). ........................................................................................ 174 

Figure  6.6 Dimensionless pressure head and flow harmonics variation along the pipe 

where different blockage location cases are shown to discuss the zero shift equations 

(Eq. ( 6.12))  .......................................................................................................................... 176 

Figure  6.7 Dimensionless pressure head and flow harmonics of the 4th mode where 

different blockage location cases are shown to discuss the maximum shift equations 

(Eq. ( 6.16))  .......................................................................................................................... 179 

Figure  6.8 Dimensionless pressure head and flow harmonics of the 2ndmode where 

different blockage location cases are shown to discuss the maximum shift equations at given 

mode m (Eqs. ( 6.23) and ( 6.25)) .......................................................................................... 183 

Figure  6.9 Schematic figures of uncoupled subsystems for severe blockage case. ........... 186 

Figure  6.10 Normalized eigenfrequency variation with length 3 20.5b     of the first 5 

modes for different   values when 2 0.15   along with the eigenfrequencies of the 

uncoupled subsystems ............................................................................................................ 187 

Figure  6.11 Normalized eigenfrequency variation with length 3 20.5b     of the first 5 

modes for different   values when 2 0.027   along with the eigenfrequencies of the 

uncoupled subsystems ............................................................................................................ 188 



 

xix 

Figure  6.12  Normalized eigenfrequency variation with length 3 20.5b     of the first 15 

modes when 0.16   and 2 0.15   along with the asymptotic solutions .......................... 189 

Figure  6.13  Normalized eigenfrequency variation with length 3 20.5b     when 

0.16   and 2 0.027   along with the asymptotic solutions ............................................. 190 

Figure  6.14 Relation between Bragg-type resonance and eigenfrequency variation by 

comparison between the eigenfrequency shift in bounded system and the reflected amplitude 

variation with frequency in unbounded system (frequency bands of Bragg-type resonance) 

when 2 0.15   and 0.16   ................................................................................................ 194 

Figure  6.15 Relation between Bragg-type resonance and eigenfrequency variation by 

comparison between the eigenfrequency shift in bounded system and the reflected amplitude 

variation with frequency in unbounded system (frequency bands of Bragg-type resonance) 

when 2 0.027   and 0.16   (up to mode 20) ................................................................... 194 

Figure  6.16 Relation between Bragg-type resonance and eigenfrequency variation by 

comparison between the eigenfrequency shift in bounded system and the reflected amplitude 

variation with frequency in unbounded system (frequency bands of Bragg-type resonance) 

when 2 0.027   and 0.16   (from mode 20 to 40) .......................................................... 196 

Figure  6.17  Equivalent pipe system with length (l1+l3) containing a blockage at the 

boundary with dimensionless blocked area 
2  corresponding to the dispersion relation in Eq. 

( 6.37)  .......................................................................................................................... 197 

Figure  6.18 Severely blocked RPV system. ........................................................................ 208 

Figure  6.19 Symmetric pipe systems with interior blockage. ............................................. 209 

Figure  6.20 Dimensionless eigenfrequency variation with 3 2 2   for the case of RPR 

system with interior blockage ( 2 0.15  ) ............................................................................. 211 



 

xx 

Figure  6.21 Dimensionless eigenfrequency variation with 3 2 2   for the case of VPV 

system with interior blockage ( 2 0.15  ) ............................................................................. 212 

Figure  6.22 Dimensionless eigenfrequency variation along with the asymptotic solutions 

for RPR system ( 2 0.15  ). .................................................................................................. 217 

Figure  6.23 Dimensionless eigenfrequency variation along with the asymptotic solutions 

for VPV system ( 2 0.15  ). .................................................................................................. 218 

Figure  6.24 Schematic description of the intact pipe system setup used for the experimental 

tests  .......................................................................................................................... 221 

Figure  6.25 part of the real pipe setup ................................................................................. 222 

Figure  6.26 PPWM and its connection to the pipe .............................................................. 222 

Figure  6.27 Pressure signal in the time domain at T1 and T2 transducers (Test 1). ........... 223 

Figure  6.28 Frequency response function (FRF) of the pressure signal measured at T1 for 

the test case with blockage length 2 0.156   (test 1 in Table 6.1 with a = 355 m/s): 

Comparison between experimental and numerical results. .................................................... 225 

Figure  6.29 Frequency response function (FRF) of the pressure signal measured at T1 for 

the test case with blockage length 2 0.156   (test 1 in Table 6.1 with a = 355 m/s) where 

the Bragg resonance frequencies and the uncoupled subsystems eigenfrequencies are 

included.  .......................................................................................................................... 229 

Figure  6.30 Frequency response function (FRF) of the pressure signal measured at T1 for 

the test case with blockage length 2 0.027   (test 2 in Table 6.1 with a = 370 m/s) .......... 232 

Figure  6.31 Eigenfrequency shift variation with mode number and its DFT corresponding 

to test 1 in Table 6.1. .............................................................................................................. 238 

Figure 6.32 DFT of eigenfrequency shift corresponding to the test cases in Table 6.2. ..... 240 



 

xxi 

Figure 6.33 DFT of eigenfrequency shift corresponding to test 1 in Table 6.1 using only the 

first seven modes. A comparison between experimental and exact results. .......................... 241 

Figure 6.34 DFT of eigenfrequency shift corresponding to test 2 in Table 6.1 using only the 

first seven modes. A comparison between experimental and exact results. .......................... 242 

Figure  7.1 Sketch of unbounded pipe system .................................................................... 248 

Figure  7.2 Dimensionless pressure variation with time measured near the source and at 7m 

away from the source and at the pipe centreline. For all cases Ds=0.1D and L=10m. ........... 250 

Figure  7.3 Amplitude in the frequency domains corresponding to the pressure signals in 

Figure  7.2 measured near the source and at 7m away from the source and at the pipe 

centreline. For all cases Ds=0.1D and L=10m. ....................................................................... 251 

Figure  7.4 Surface plot of the pressure in the r-x surface plane when different central 

frequencies are used showing the behaviour of the excited high modes. For all cases Ds=0.1D 

and L=50m.  .......................................................................................................................... 253 

Figure  7.5 An enlarged figure of Figure  7.4i which gives the case of pressure distribution 

in the r-x space plane when fc=5000Hz, Ds=0.1D and t=0.9L/a to show in more details the 

pressure nodes and the mode forms. ...................................................................................... 254 

Figure  7.6 Energy flux computed numerically for the case of fc=3000Hz and Ds = 0.1D 

showing how energy spreads with distance from the source. For all cases L=10m. .............. 256 

Figure  7.7 Dimensionless pressure variation with time measured near the source and at 7m 

away from the source and at the pipe centreline. For all cases fc=3000Hz, r ≈ 0 and L=10m.258 

Figure  7.8 Amplitude in the frequency domains corresponding to the pressure signals in 

Figure 7.7 measured near the source and at 7m away from the source and at the pipe 

centreline. For all cases fc=3000Hz, r ≈ 0 and L=10m. .......................................................... 259 

Figure  7.9 Dimensionless energy distribution along the pipe axis for different source. For 

all cases fc=3000Hz and L=10m. ............................................................................................ 260 



 

xxii 

Figure  7.10 Magnified versions of Figures  7.7b and  7.7c showing the separation of the 

plane mode (fundamental mode M0) from the higher mode at about 7m away from the 

source.  .......................................................................................................................... 261 

Figure  7.11 Variation of the pressure signal at the centreline with time for the case 

fc=6800Hz where M0, M1 and M2 are excited. ..................................................................... 265 

Figure  7.12 Distribution of the area-averaged energy along the pipe and the variation of 

energy flux with time for the case fc=6800Hz. ....................................................................... 266 

Figure  7.13 Group velocity variation with the non-dimensional frequency (f / fc; where 

fc=6800Hz) showing how the M2 group velocity variation is steeper to the left side of the 

central frequency than to the right side, whereas the variation slope is almost the same for 

M1.  .......................................................................................................................... 267 

Figure  7.14 Variation of the pressure signal at the centreline with time for the case 

fc=4000Hz where only M0 and M1 are excited. .................................................................... 268 

Figure  7.15 Energy flux variation with time for the case of fc = 6800Hz ........................... 270 

Figure  7.16 Total energy (integrated with respect to the cross sectional area) distribution 

along pipe axis at the time when M0 and M2 have the same MEA. ...................................... 272 

Figure  7.17 Energy flux variation with time for the case of fc = 4000Hz and L=180m. ..... 273 

Figure  7.18 Comparison between the true spreading behaviour and the linear spreading 

assumed in Eq. ( 7.4). ............................................................................................................. 274 

Figure  7.19 Energy flux variation with time for the case of viscous flow with kinematic 

viscosity  3 210 m s  , fc = 4000Hz, L=180m................................................................... 277 

Figure  7.20 Energy flux variation with time for the case of viscous flow with kinematic 

viscosity 
210  (m2/s), fc = 4000Hz, L=180m. ................................................................... 278 



 

xxiii 

Figure  7.21 Dimensionless pressure distribution in the r-x space plane for the case 

fc=6800Hz at time t/(L/a) ≈ 0.7. ............................................................................................. 283 

Figure  7.22 Vector velocity field (VVF) distribution in the r-x space plane for the case 

fc=6800Hz at time t/(L/a) ≈ 0.7. ............................................................................................. 283 

Figure  7.23 Energy distribution in the r-x space plane for the case of inviscid flow and 

fc = 6800Hz at time t/(L/a) ≈ 0.7. ........................................................................................... 284 

Figure  7.24 Energy and pressure distributions along the pipe axis for the case of inviscid 

flow and fc = 6800Hz at time t/(L/a) ≈ 0.7 ............................................................................. 285 

Figure  7.25 Dimensionless energy and energy flux variations along the pipe radius and 

comparison with the numerical result for the case of inviscid flow and fc = 6800Hz at time 

t/(L/a) ≈ 0.7.  .......................................................................................................................... 286 

Figure  7.26 Pressure variation with time for the case of viscous flow ( 210  (m2/s)), 

fc=4000Hz and L=180m. ........................................................................................................ 287 

Figure  7.27 Sketch of blocked pipe system in unbounded pipe. ......................................... 288 

Figure  7.28 Dimensionless pressure distribution in the r-x space plane for shallow blockage 

case where only M0 is injected. (fc=4000Hz and L=200m; l2=100m and l3=50m). .............. 289 

Figure  7.29 Dimensionless pressure distribution in the r-x space plane for severe blockage 

case where only M0 is injected. (fc=4000Hz and L=200m; l2=100m and l3=50m). .............. 290 

Figure  7.30 Enlarged plot of dimensionless pressure distribution in the r-x space plane for 

severe blockage case where only M0 is injected showing the presence of evanescent modes. 

(fc=4000Hz and L=200m; l2=100m and l3=50m). .................................................................. 291 

Figure  7.31 Dimensionless pressure distribution in the r-x space plane for shallow blockage 

case where M0 and M1 are injected. (fc=4000Hz and L=200m; l2=100m and l3=50m). ....... 292 



 

xxiv 

Figure  7.32 Dimensionless pressure distribution in the r-x space plane for severe blockage 

case where M0 and M1 are injected. (fc=4000Hz and L=200m; l2=100m and l3=50m). ....... 293 

Figure  7.33 Vector velocity field (VVF) distribution in the r-x space plane at time 

t ≈ 0.5L/a for shallow blockage case where M0 and M1 are injected. (fc=4000Hz and 

L=200m; l2=100m and l3=50m). ............................................................................................ 294 

Figure  7.34 Vector velocity field (VVF) distribution in the r-x space plane at time 

t ≈ 0.5L/a for severe blockage case where M0 and M1 are injected. (fc=4000Hz and L=200m; 

l2=100m and l3=50m). ............................................................................................................ 295 

Figure  7.35 Dimensionless area-averaged energy variation along the pipe at time t ≈ 0.5L/a 

where M0 and M1 are injected. (fc=4000Hz and L=200m; l2=100m and l3=50m). ............... 296 

Figure  7.36 Dimensionless pressure distribution in the r-x space plane for shallow blockage 

case where only M0 is injected. (fc=4000Hz and L=200m; l2=100m and l1=50m). .............. 297 

Figure  7.37 Dimensionless pressure distribution in the r-x space plane for severe blockage 

case where only M0 is injected. (fc=4000Hz and L=200m; l2=100m and l1=50m). .............. 298 

Figure  7.38 Dimensionless pressure distribution in the r-x space plane for shallow blockage 

case where M0 and M1 are injected. (fc=4000Hz and L=205m; l2=5.1m and l1=99.9m). ..... 300 

Figure  7.39 Dimensionless pressure distribution in the r-x space plane for severe blockage 

case where M0 and M1 are injected. (fc=4000Hz and L=205m; l2=5m and l1=99.9m). ........ 301 

Figure  7.40 Dimensionless area-averaged energy variation along the pipe at t ≈ 0.97L/a 

where M0 and M1 are injected. (fc=4000Hz and L=205m; l2=5.1m and l1=99.9m). ............. 302 

Figure  7.41 Dimensionless pressure variation at the valve with time ................................. 304 

Figure  7.42 Dimensionless pressure variation at the valve and at the pipe wall for a period 

of L/a and its frequency domain transformation .................................................................... 305 

Figure  7.43 Dimensionless pressure distribution in the r-x space plane for the case of 

sudden valve closure in a RPV system with initial Poiseuille flow at different times. .......... 306 



 

xxv 

 

LIST OF TABLES 

Table  3.1. Mesh refinement convergence tests for the second order scheme (fc=1000Hz) .... 78 

Table  3.2. Mesh refinement convergence tests for 3rd order scheme (fc=500Hz) ................... 78 

Table  3.3. Mesh refinement convergence tests for 5th order scheme (fc=1000Hz) ................. 78 

Table  3.4. Mesh refinement convergence tests for the second order scheme based on energy 

flux (fc=1000Hz). ...................................................................................................................... 79 

Table  3.5. Mesh refinement convergence tests for 3rd order scheme based on energy flux 

(fc=1000Hz).  ............................................................................................................................ 80 

Table  3.6. Mesh refinement convergence tests for 5th order scheme based on energy flux 

(fc=4000Hz).  ............................................................................................................................ 80 

Table  3.7. Case 0: Plane mode wave reflection (Ds = D) ........................................................ 96 

Table  3.8. M1 and M2 wave reflection (Ds = 0.2D) ............................................................... 97 

Table  4.1  Test cases with 2 blockages in unbounded pipe system ...................................... 116 

Table  6.1. Characteristics of the experimental tests .............................................................. 221 

Table  6.2. Sets of lengths and area ratio for the test examples in Figure 6.32 ...................... 240 

 

 



 

xxvi 

In-Depth Study of Plane Wave-Blockage Interaction and Analysis of High Frequency Waves 

Behaviour in Water-Filled Pipe Systems 

by MOEZ  LOUATI 

Department of Civil and Environmental Engineering 

The Hong Kong University of Science and Technology 

 

Abstract 

Water supply systems (WSS) experience blockages during their life time due to physical 

and/or chemical processes (e.g. material deposition, tubercles (rust), scales, plaque, bio-

fouling and inadvertently throttled inline valves, and air intrusion). Such blockages result in 

wastage of energy and financial resources, reduction in carrying capacity, and increased 

potential for contamination. This research investigates the physics of wave-blockage 

interaction in WSS by analytical, numerical and experimental means. Both shallow 

blockages (i.e., blockages with small radial protrusion) and severe blockages (i.e., blockages 

with large radial protrusion) are studied. The principle of action invariance shows that wm Em 

is conserved for small blockages implying ∆wm / wm = ∆Em / Em , where wm and Em are the 

eigenfrequency and total energy of the mth mode and ∆wm and ∆Em its eigenfrequency and 

energy shift due to the blockage. The change in energy is shown to be equal to the work of 

the radiation pressure during the formation of the blockage. In addition, it is found that a 

small blockage reduces the potential energy, but increases the kinetic energy of all modes. 

For a severe blockage, the pipe system is decoupled into two independent subsystems: a 

subsystem that involves the blockage and another that involves the intact pipe section. The 

decoupling is lost when the blockage length is such that the fundamental frequencies of the 

two subsystems are close or equal, resulting in resonance which means that waves within the 

subsystem involving the blockage are able to penetrate (transmit) to the second subsystem 

and vice-versa. It is shown that the assumption of small blockage is applicable when the 
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blockage occupies 30% of the crossectional area. The assumption of severe blockage is 

applicable when the blockage occupies 30% of the crossectional area or larger provided that 

the decoupling assumption is valid. When the blockage and the remainder of the pipe system 

are coupled, perturbation theory is successfully used to derive a simple frequency relation for 

the case of a blockage with large radial extent. This study also reveals that Bragg’s resonance 

plays a key role where the wave-blockage interaction is minimal for certain frequencies and 

maximal for others. The spacing between consecutive Bragg’s resonance frequencies, where 

maximal interaction occurs, scales as the wavespeed divided by the blockage length. 

Therefore, a wideband frequency of the transient generator is required to capture the 

signature of a short blockage. However, the use of high frequency waves (HFW) excites 

radial and azimuthal waves and renders the classical one-dimensional water-hammer (WH) 

theory invalid. Unlike classical WH theory, the resulting wave field is highly dispersive. 

Therefore, this thesis examines and reviews the behaviour of HFW in water-filled pipes and 

how they interact with blockages. As a result, a high-order numerical scheme has been 

developed and tested. The results show the strong effects of multi-paths on the propagation 

of high HFW in WSS and highlight that such waves, althgouh provide the required resolution, 

have a low range of detectability. Thus, a double pronged approach, where low frequency 

waves are used for reconnaissance and HFW are used for the localization is desirable in the 

future. 
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LIST OF SYMBOLS 

 

There are too many variables in this thesis for it to be possible to give each one a unique 

notation. Whereas some variable notations are used throughout the thesis, others are 

duplicated and have different meanings in different Chapters. For this reason, the notion list 

below is be given for each chapter alone. The duplicated variables are redefined within the 

text to avoid any confusion. 

 

Chapter 1 
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A0 cross sectional area of intact pipe (m2) 
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A2 cross sectional area of pipe 2 (m2) 

A3 cross sectional area of pipe 3 (m2) 
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l2 length of pipe 2 (m) 
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mw  eigenfrequency of the mth fundamental (resonant) mode (rad Hz) 

mes

mw  mth measured eigenfrequency (rad Hz) 
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  area ratio between blocked and intact cross sectional areas (-) 
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Chapter 2 

a wave speed in water-filled pipe (m s-1) 

ac wave speed in the open channel (ms-1) 
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T
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nE  total energy per unit wavelength of the nth mode (J) 
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f the frequency (Hz)  

nf  cut-off frequency of the n-th mode (Hz) 

f  Darcy-Weisbach friction factor (-) 

F  vector flux along x-direction (-) 

Fext external forces (J) 

shearF  shear force (J) 

pF  pressure force (J)  

gF  gravity force (J) 

side

pF  pressure force on converging or diverging pipe walls (J) 

g standard gravitational acceleration 

G  vector flux along r-direction (-) 

h unsteady pressure head (m) 
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0

mh  mth pressure harmonic (m) 

amp

mh  amplitude of pressure head harmonic (m) 

H instantaneous pressure head (m) 

H  mean pressure head (m) 

J0 and Y0 zeroth order Bessel's function of first and second kind, respectively 

(-) 

 1J r  first order Bessel's function of first kind (-) 

k wavenumber (rad m-1) 

0

mk  mth wavenumber of intact pipe (rad m-1) 

krn radial wavenumber of the nth mode (rad m-1) 

kxn axial wavenumber of the nth mode (rad m-1) 

kxn axial wavenumber of the nth mode (rad m-1) 

Ke equivalent bulk modulus  (Pa) 

Kf bulk modulus of the fluid (Pa) 

Ks bulk modulus of the pipe walls elasticity (Pa) 

*l  characteristic length scales (m) 

L pipe length (m) 

Mch Mach number (-) 

inM  the rate of mass entering the control volume (kg s-1) 

outM   the rate of mass exiting the control volume (kg s-1) 

n radial mode number (-) 

nr reflected mode number (-) 

nt transmitted modes number (-) 

n  unit normal vector to the control volume area (-) 

P pressure (Pa).  

inP  incident pressure wave x = ∞ (Pa) 

refP   reflected pressure wave from discontinity (Pa) 

trP   transmitted pressure wave (Pa) 
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q unsteady discharge (m3 s-1) 

0

mq  mth flow discharge harmonic (m3 s-1) 

amp

mq  amplitudes = flow discharge harmonic (m3 s-1) 

Q instantaneous flow discharge (m3 s-1) 

0Q  initial steady state flow rate (m3s-1) 

Q  mean discharge (m3 s-1) 

R pipe radius (m) 

eR  Reynolds number (-) 

S vecotor of source terms (-) 

t time (s)  

pt  one (or multiple) wave period(s) (s) 

wt  characteristic time scales (s) 

T kinetic energy (J) 

Tnm transmission matrice (-) 

rnT  radial kinetic energy of the nth mode (J) 

nT  kinetic energy of the nth mode (J) 

xnT  axial kinetic energy of the nth mode (J) 

U potential energy (J) 

cU  vector of conservative variables (-) 

nU  potential energy of the nth mode (J) 

0V  initial steady state velocity (ms-1) 

Vr velocity component in r-directions (m s-1) 

Vrn radial velocity of the nth mode (m s-1) 

Vx velocity component in x- direction (m s-1) 

Vxn axial velocity of the nth mode (m s-1) 

gnV  group velocity of the nth mode (m s-1) 

*V  characteristic velocity scales (m s-1) 
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0

mV  mth flow velocity harmonic (m s-1) 

w angular frequency (rad Hz) 

0

mw  mth eigenfrequency (rad Hz) 

Wr work done at lateral boundaries are, the and the (J s-1) 

Wx work done at the axial boundaries (J s-1) 

x axial coordinate (m) 

Greek letters 

rn  nth zero of the first order Bessel's function of first kind (-) 

  averaging cofficient (-) 

n  n-th pressure amplitude of the right going wave (Pa) 

nj  Kronecker delta function (-) 

ΔV change in velocity induced by the wave (m s-1) 

P  change in pressure (Pa) 

cA  change in area after transient in the channel (m2)  

A  change in pipe area (m2) 

ΔQ change in flow rate induced by the wave (m3 s-1) 

t  change in time (s) 

  change in water density (kg m-3) 

kn  propagation angle of the n-th mode 

n  wavelength of the nth mode (m) 

,     dynamic viscosity second viscosity the fluid (Pa s) 

  kinematic viscosity (m2 s-1) 

  water density (kg m-3) 

*  characteristic density scales (kg m-3) 

τ shear stress between the fluid and the conduit walls (Pa) 

τrr , τxx , τθθ and 

τrx 

components of the stress tensor (Pa) 

n  phase velocity of the nth mode (m s-1) 
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nm  reflection matrice (-) 

n  n-th pressure amplitude of the left going wave (Pa) 

  control volume (m3)  

 

Chapter 3 

b scheme order of accuracy (-) 

b0 reference scheme order of accuracy (-) 

C 
, C   Riemann Invariants (-) 

FnE  energy flux of the nth mode (J s-1) 

f frequency (Hz) 

fc central frequency (Hz) 

F radial flux (-) 

1D
F  one dimensional splitted flux along the radial direction (-) 

G  axial flux (-) 

1D
G  one dimensional splitted flux along the axial direction (-) 

i radial coordinate in the numerical domain (-) 

j axial coordinate in the numerical domain(-) 

FJ  Jacobian matrix with respect to F (-) 

GJ  Jacobian matrix with respect to G (-) 

L length of the pipe (m) 

,G FL L  left eigenvectors matrices (-) 

Nbc   number of fictitious cells added for boundary conditions (-) 

NR number of discrete finite volumes along the axial direction (-) 

NS number of discretized FV per central wavelength (-) 

NX number of discrete finite volumes along the axial direction (-) 

P pressure (Pa) 

PJou Joukowsky pressure (Pa) 

Pn pressure of the nth radial mode (Pa) 
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Pres pressure at the reservoir (P)  

Ps pressure induced by the generated source (Pa) 

R pipe radius (m) 

r radial coordinate (m) 

S vecotor of source terms (-) 

t time (s) 

twave duration of the generated transient wave (s) 

CPUTb  fitted CPU time function (s) 

cU  vector of conservative variables (-) 

FU  1st updat of U along the radial direction(-) 

1D

rU  one dimensional splitted vector of conservative variables along the 

radial direction (-) 

1D

xU  one dimensional splitted vector of conservative variables along the 

axial direction (-) 

U  second splitting update of U (-) 

U  vector of averaged conservative variables in a cell (-) 

x axial coordinate (m) 

Greek letters 

b  constant defining the CPU time at very low NR (s) 

t  numerical time step (s) 

x  axial length of the discrete finite volume (m) 

r  radial length of the discrete finite volume (m) 

  forward jump (-) 

  backward jump (-) 

  a very small number to avoid singularity (-) 

*  Riemann solution for density (kg m-3) 

 *xV  Riemann solution for axial momentum (kg s-1 m-2) 

 *rV  Riemann solution for radial momentum (kg s-1 m-2) 

b  rate at which the CPU time increases (-) 
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  norm function used to obtain the numerical scheme accuracy (-) 

1 1

,
D D

x r   characteristic variables (-) 

  vector variable of reconstructed data (-) 

,i j  volume of the discrete finite volume at i,j (m2) 

i

 

slope limiter along the radial direction (-) 

j

 

slope limiter along the axial direction (-) 

 

Chapter 4 

a acoustic wave speed (m s-1) 

A0 cross sectional area of intact pipe (m2) 

jA  the area of the jth pipe (m2) 

A(x) cross sectional area function of the conduit (m2) 

k wavenumber (rad m-1) 

km wavenumber of the mth mode (rad m-1) 

bl  length of the blockage (m) 

jl  length of the jth pipe (m) 

0p  the amplitude of the incident wave (Pa) 

tr

jp  and ref

jp  transmitted and reflected wave amplitude in pipe number j (Pa) 

p(x,w) pressure wave function in the frequency domain (Pa) 

P1 transmitted pressure wave in region 1 (Pa) 

3

IP  and 3

RP  incident and reflected pressure wave in pipe region 3 (Pa) 

w angular frequency (rad Hz) 

wc central frequency (rad s-1) 

R

m
w  m th Bragg resonance frequency of maximum reflections (rad s-1) 

T

m
w  m th Bragg resonance frequency of total transmission (rad s-1) 

x axial coordinate (m) 
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Greek letters 

  area ratio between blocked and intact cross sectional areas (-) 

1b  area ratio for single blockage case (-) 

  coefficient that controls the frequency bandwidth (rad) 

  wavelength (m) 

 

Chapters 5 & 6 

a acoustic wave speed in water (ms-1) 

A0 cross sectional area of intact pipe (m2) 

A0 cross sectional area of intact pipe (m2) 

A1 cross sectional area of pipe 1 (m2) 

A2 cross sectional area of pipe 2 (m2) 

A3 cross sectional area of pipe 3 (m2) 

1D  diameter of pipe 1 (m) 

2D  diameter of pipe 2 (m) 

3D  diameter of pipe 3 (m) 

HD  determinant of the Hessian matrix (-) 

vD  diameter of the electro-valve (m) 

E otal energy per unit length (J m-1) 

 err m  dimensiolness error in zero shift position at mode m (-) 

 2 3, , ,dis mF w l l   dispersion function (-) 

g acceleration due to gravity (m s-2)  

H instantaneous pressure head (m) 

H  mean pressure head (m) 

h unsteady pressure head induced by the wave (m) 

0

mh  mth pressure head harmonic of intact pipe system (m) 

mh  mth dimensionless pressure head harmonic (m) 
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amp

mh  mth maximum complex amplitude of pressure head (m) 

k wavenumber (rad m-1) 

max

mk  mth wavenumber at maximum shift (rad m-1) 

s

mk  mth wavenumber when 0   (rad m-1) 

L whole pipe length (m) 

l1 length of pipe 1 (m) 

l2 length of pipe 2 (m) 

l3 length of pipe 2 (m) 

m mode number for pipe system of length L (-) 

m1 mode number for subsystem 1 (-) 

m2 mode number for subsystem 2 (-) 

N number of blockages (-) 

P pressure (Pa) 

cP  characteristic pressure difference scale (Pa) 

Q instantaneous flow discharge (m3 s-1) 

Q  mean discharge (m3 s-1) 

q unsteady discharge due to wave (m3 s-1) 

m
q  mth dimensionless discharge (-) 

amp

mq  mth maximum complex amplitude of flow discharge (m3 s-1) 

0

mq  mth flow discharge harmonic of intact pipe system (m3 s-1) 

T kinetic energy per unit length (J m-1) 

T  normalized kinetic energy (-) 

t time (s)  

U  normalized potential energy (-) 

U potential energy per unit length (J m-1) 

V unsteady flow velocity induced by the wave (m s-1) 

w angular frequency (rad s-1) 

wm mth resonant frequencies in the blocked pipe case (rad s-1) 
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1s
mw  mth eigenfrequency of uncoupled subsystem 1 ( 0  ) (rad s-1) 

2s

mw  mth eigenfrequency of uncoupled subsystem 2 ( 0  ) (rad s-1) 

s

mw  mth eigenfrequency when 0   (rad s-1) 

mes

mw  mth measured eigenfrequency (rad Hz) 

0

mw  mth resonant frequencies in the intact pipe case (rad s-1) 

Hw  natural frequency of Helmholtz resonator (rad s-1) 

R

m
w  m th Bragg resonance frequency of maximum reflections (rad s-1) 

T

m
w  m th Bragg resonance frequency of total transmission (rad s-1) 

x axial coordinate (m) 

Z impedance (Pa m-3 s-1) 

Greek letters 

  area ratio between blocked and intact areas (-) 

E  energy change due to cross sectional area variation (J m-1) 

E  integrated energy change over the pipe domain (J) 

mT  change in kinetic energy at the mth mode due to the blockage (J m-

3) 

mU  change in potebtial energy at the mth mode due to the blockage (J 

m-3) 

mw  mth eigenfrequency shift (rad s-1) 

max

mw  maximum mth eigenfrequency shift (rad s-1) 

mw  mth integrated eigenfrequency shift over the pipe domain (rad s-1) 

k  small perturbation in wave number (rad m-1) 

w  small perturbation in eigenfrequency (rad s-1) 

1  l1 / L dimensionless length (-) 

2  l2 / L dimensionless length (-) 

3  l3 / L dimensionless length (-) 

  defined function (-) 
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  probing wavelength (m) 

   th zero shift position at a given m mode(-) 

 

Chapter 7 

a acoustic wave speed in water (ms-1)  

B integration constant (Pa) 

D pipe diameter (m) 

Ds source diameter (m)  

FnE  energy flux of the nth mode (J s-1) 

E

 

total energy dissipation (J m-1) 

nE  total energy per unit wavelength of the nth mode (J m-1) 

ET the total injected energy from the source (J m-1) 

f frequency (Hz) 

f1 cut-off frequency of the first mode (Hz) 

f2 cut-off frequency of the second mode (Hz) 

fc central frequency (Hz) 

fv friction factor (-) 

J0 Bessel function of order 0 (-) 

k wavenumber (rad m-1) 

krn radial wavenumber of the nth mode (rad m-1) 

kxn axial wavenumber of the nth mode (rad m-1) 

L length of the pipe (m) 

n mode number (-) 

nh the highest excited radial mode number (m) 

P pressure (Pa) 

P0 initial pressure in the pipe (Pa) 

PF transient pressure at the source (Pa) 

Pn pressure of the nth mode (Pa) 

Ps pressure amplitude of the generated source (Pa) 
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R radius of the pipe (m) 

r radial coordinate (m) 

t time (s) 

tp time period (s) 

twave duration of the generated transient wave (s) 

mest  measurement time (s) 

s

nt  spreading time of the energy flux of the n-th high mode at s

nx , (s) 

E

nt  time at which the n-th mode energy reaches a measurement 

location mes

nx  (s) 

V average water speed along the pipe (m s-1) 

Vn phase velocity of the nth mode (m s-1) 

Vr radial velocity (m s-1) 

Vrn radial velocity of the nth mode (m s-1) 

Vx axial velocity (m s-1) 

Vxn axial velocity of the nth mode (m s-1) 

gnV  group velocity of the nth mode (m s-1) 

max

gnV  maximum group velocity of the n-th excited high mode (m s-1) 

min

gnV  minimum group velocity of the n-th excited high mode (m s-1) 

w andgular frequency (rad s-1) 

x axial coordinate (m) 

r

nx  Propagation range of the n-th high mode with repect to the plane 

mode (m) 

mesx

 

measurement location away from the source and (m) 

s

nx  position at which the n-th mode is separated from all other excited 

modes (m) 

c

nx

 

Propagation range of the n-th high mode with repect to the plane 

mode (m) at the pipe centreline (m) 

Greek letters 
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1. CHAPTER 1 

 

INTRODUCTION AND LITERATURE REVIEW 

 

"So startling would his results appear to the uninitiated that until they 

learned the process by which he had arrived at them they might well 

consider him as a necromancer" 

Dr. Watson, speaking about Sherlock Holmes 

A Study in Scarlet 

1.1. Blockages in Water Supply systems 

Current water supply systems (WSS) around the world are wasteful with numerous 

malfunctioning devices and undetected faults including blockages, leakages, etc, all leading 

to poorly performing systems and increased risk of water contamination. Worldwide, the 

water losses are estimated around at 40% and the associated percentage of energy wasted in 

them is even higher ([18], [17]). A critical need for massive and costly WSS upgrades has 

been reported by many countries in the world. For example, Hong Kong has committed to a 

HK$ 22 billion program of WSS rehabilitation and replacement with the aim of curbing the 

water losses from about 30% to just below 20%. Since 2009, the US has planned to spend 

more than US$ 300 billion on WSS over 20 years ([3], [4], and [20]). 

One of the major factors of inefficiency in WSS is that they often experience blockages 

during their life time due to physical and/or chemical processes (e.g. material deposition, 

tubercles (rust), scales, plaque, bio-fouling and inadvertently throttled inline valves, and air 

intrusion). The build-up of blockages on the inside of a pipe wall often begins in the form of 

increased roughness (see Figure 1.1) with small amplitude, growing with time, and 
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eventually block a sizeable portion of the pipe’s cross sectional area (see 

Figures 1.2 and 1.3). Such blockages result in wastage of energy and financial resources, 

reduction in carrying capacity, and increased potential for contamination. In addition, the 

flows in severely blocked pipes can become throttled to large degree resulting in flow 

redistribution, and reduction of the overall system’s redundancy (reliability), and 

overpressure of some pipes in the system, thereby, leading to increased leaks. Whether for 

engineered or natural conduits, it is of paramount importance to detect blockages so that they 

are dealt with in a timely manner. Clearly, it would be highly desirable if blockages could be 

detected at an early enough stage so that problems, damage and waste incurred by large 

blockages can be minimized. 

 

Figure 1.1 Increased roughness in pipe ([116]) 
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Figure 1.2 Partially blocked pipe ([40]) 

 

Figure 1.3 Severely blocked pipe ([128]) 
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1.2. Acoustic waves for imaging the internal shape of vocal tracts and musical 

instruments 

The approach of using a measured pressure trace to infer the internal shape of a conduit is a 

mainstay of the field of acoustic phonetics (e.g. [112], [41], [89], [91], [92] and [120]). In 

particular, it is found that the eigenfrequencies of a bounded pipe system vary with the cross 

sectional area of the conduit, where this dependence is used to formulate algorithms for the 

reconstruction of the cross sectional area function of human vocal tract system. Similar 

approach is also used to acoustically image and study the properties of musical instruments 

(e.g. [53], [26] and [114]). More recently, this approach is being used for blockage detection 

in WSS (e.g. [32], [119], [10], [134], [73] [88], [85], [97] and [111]). 

Schroeder ([112]) shows that the Ehrenfest theorem ([37]) can be used to formulate an 

algorithm for determining the geometry of the vocal tract from measured values of the 

eigenfrequencies of the acoustic pressure wave. Essentially, the Ehrenfest theorem states that 

the change in the eigenfrequencies is related to the change in energy such that wm Em 

remaines constant for small variations in the cross sectional area, where wm and Em are the 

eigenfrequency and total energy of the mth resonant mode. The derivation of this approach is 

given in the work by Fant ([41]) for vocal tract application and it is used in Chapter 5 for 

shallow blockages (i.e. blockages with small radial protrusion) in water-filled pipe systems. 

Schroeder's approach formed the basis for other works (e.g. [56] and [98] ).  

Based on Webster's horn equation ([136]) and perturbation theory, Mermelstein ([89]) 

showed that the eigenfrequency shift of the mth pressure mode is directly linked to the 

amplitude of the mth term in the Fourier series expansion of the cross sectional area function 

of the conduit with respect to longitudinal distance.  

Sondhi and Gopinath ([117]) used the impulse response measured at the human lips to 

determine the vocal-tract shape. In a later work, Sondhi and Resnick ([118]) provide the 

measurement techniques and numerical procedures used for continuous speech synthesized 

from direct measurements of the area functions. A comprehensive review of vocal tract 

reconstruction techniques can be found in Milenkovic ([91]) and ([92]). In addition, the 

textbook by Stevens ([120]) provides an excellent overview of acoustic phonetics.  
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The impulse response method is also used to study the sound propagation in musical 

instruments. Some of the early works on this topic are by Goodwin ([53]) and Deane ([26]) 

where they discussed the relations between the geometry and acoustics of brass instruments 

using acoustic pulse reflectometry. Recent advances in the use of pulse reflectometry for 

bore reconstruction of brass instruments can be found in Sharp et al. ([114]). 

Domis ([27]) found that the presence of a blockage in a pipe shifts the eigenfrequencies of 

the pipe system, and used this knowledge to detect an early forming blockage in a cooling 

system wrapper of sodium-cooled fast nuclear reactors. In a follow-up paper ([28]), Domis 

showed through experimental investigation that the position and size of the blockage could 

be determined from the eigenfrequency shift using the transfer function.  

Qunli and Frick ([105]) considered the case of a shallow blockage located at the boundary of 

a pipe system and determined a simple harmonic equation for the eigenfrequency shift. They 

show that the blockage location is related to the periodicity pattern of the shift and its size is 

related the shift amplitude. Following the works by Schroeder ([112]) and Mermelstein 

([89]) for vocal tract area reconstruction, Qunli and Frick ([106]) used perturbation theory 

and Fourier decomposition for the case of interior blockages in pipe systems. They obtained 

an area function that depends on the eigenfrequency shift at the odd and even resonant 

modes. This requires the use of two different boundary condition setups: one being 

symmetric (e.g. Valve-pipe-valve (VPV) system) and the other asymmetric (e.g. Reservoir-

pipe-valve (RPV) system).  

De Salis and Oldham ([25]) showed that it is suficient to study a symmetric or asymmetric 

pipe system making use of the anti-resonant frequencies shifts which were identified using 

maximum length sequence (MLS) techniques.  

1.3. Acoustic waves for imaging the internal shape of water pipes: Blockage 

detection in WSS 

Commercially available techniques for diagnosis of WSS are predominantly targeted at 

leakage detection. For example, noise correlation techniques ([62]), Sahara system ([129]), 
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smart ball ([48]) etc ([104]) are all leakage detection technologies. One exception is the 

closed-circuit television (CCTV) which can be used for both leakage and blockage detection. 

However, CCTV is expensive, time consuming and intrusive and best suited for newly 

installed pipes.    

TBDDM is a promising general approach for blockage detection and overall pipe wall 

condition assessment. 

Duan et al. ([32]) developed a blockage detection methodology that does not require 

knowledge of the eigenfrequencies of the intact pipe system.  Their technique uses inverse 

optimization methods (e.g. genetic algorithm) to find the blockage geometry and location 

that best satisfies the dispersion relation of the blocked pipe system. Duan et al. ([32]) 

generalized their technique for multi-blockages. This approach is discussed in more details in 

the next section. It is noted that the technique of using inverse transient methods for 

condition assessment of WSS dates back to the work of Liggett and Chen ([77]). This 

technique is often referred to as Transient-Based Defect Detection Method (TBDDM).  

Similar to the work by Qunli and Frick ([105]), Duan et al. ([35]) applied Taylor expansion 

to the dispersion relation of the blocked pipe system for shallow blockages and found a 

simple frequency-shift equation. This simplified blockage detection model is limited to cases 

where blockages occupy about 30% of the pipe area or less. This simple frequency-shift 

formula is further investigated in Chapter 6 of this thesis.  

Brunone et al. ([10]) show that discrete and extended blockages have significantly different 

impact on the system’s response. While Mohapatra et al. ([97]) found that extended 

blockages shift the eigenfrequencies of the system, Sattar et al. ([111]) and Lee et al. ([73]) 

found that discrete blockages (short blockages along the axial extent) damp the amplitude of 

pressure frequency response signals and impose an oscillatory pattern of resonant pressure 

frequency peaks. They showed that this pattern could be related to the location and size of 

the blockage.  
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Wang et al. ([134]) show that a discrete blockage in a pipe system introduces damping to the 

transient signal and developed a technique for locating and sizing discrete blockages based 

on this damping.  

Meniconi et al. ([88]) use wavelet analysis techniques to indentify the blockage reflection 

signature in a pressure signal and determined the blockage location with prior knowledge of 

the wave speed information. A hybrid wavelet-frequency shift aproach is used by Meniconi 

et al. ([88]) for blockage detection, where wavelet analysis is used to locate the blockage 

while the frequency shift is used to identify the radial and longitidunal dimensions of the 

blockage. The hybrid approach is found to be superior than the individual approaches. The 

effect of visco-elasticity of a pipe on extended blockage detection is investigated in Duan et 

al. ([30]) and Meniconi et al. ([85]). Massari et. al ([83]) applied a stochastic successive 

linear estimator algorithm on the time domain response signal to provide statistically the best 

unbiased estimations of the diameter distribution due to partial blockages in a pipe system 

and to quantify the uncertainty associated with these estimations. 

Recently Tolstoy ([125]) applied acoustic waves monitoring for blockage detection in  pipe 

and used the match field processing (MFP) technique to detect and locate the blockage. She 

concluded that “(1) near blockages show stronger effects than far ones, (2) bigger blockages 

show stronger effects than weaker ones, and (3) multiple blockages appear to be dominated 

by the nearest effects leaving far blockages still unseen. Additional work such as other, non-

linear processors and additional receivers may improve this last situation.’’ 

 

1.4. Problem statement 

It is clear from the above literature survey that  that the focus of past research in WSS is on 

the inverse problem where mathematical relations that link the measured transient wave to 

the cross sectional area of the pipe were formulated and algorithms for how these 

relationships could be used to infer blockages were proposed. While this research direction is 

promising and has led to proof of concept under idealized laboratory settings, there are a 
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number of unresolved issues. For example, there is neither a proof that the inverse problem, 

which relates the unknown blockage properties to the measured eigenfrequencies, has a 

unique solution nor is there a technique to find it, if it even exists. In fact, current solutions of 

this inverse problem require that the number of blockages is known a priori which is 

unrealistic in practice. In addition, the computational time needed to solve the inverse 

problem grows exponentially with the number of blockages. Moreover, the physics of why 

blockages shift eigenfrequrencies, why some eigenfrequencies are shifted more than another 

and why some eigenfrequencies experience positive shift while others experience negative 

shift is not yet clear, and has only been partially discussed in the past (e.g. [39] and [120]). 

The two problems addressed in this thesis are introduced below.  

1.4.1. Problem 1: solution of the blockage detection problem  

Consider a reservoir-pipe-valve (RPV) system as shown in Figure 1.4, the blocked pipe 

system is modelled as the junction of three pipes in series with different diameters (see 

Figure 1.4). The three pipes are defined as pipe 1 with length l1 and cross sectional area 

A1 = A0, pipe 2 with length l2 and cross sectional area A2 < A0 and pipe 3 with length l3 and 

cross sectional area A3 = A0 where A0 is the intact cross sectional area. The frequency 

response function (FRF) of the RPV system could be measured by generating a transient 

signal at the valve (e.g. opening and closing the valve rapidly). Figure 1.5 compares the FRF 

of the blocked RPV system (Figure 1.4) and the FRF of an intact RPV system (i.e. with no 

blockage). Figure 1.5 shows the eigenfrequency shifting effect due to the presence of a 

blockage in the pipe system.  

The dispersion relation of the blocked RPV (Figure 1.4) that governs the eigenfrequency 

variation is given by El-Rahed and Wagner ([39]) and Duan et al. ([32]) as : 
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where 2 0/A A   is the cross sectional area ratio between blocked area and the intact area, 

mw  is the eigenfrequency of the mth fundamental (resonant) mode, and a is the acoustic wave 

speed in water. Duan et al. ([32]) has generalized the dispersion relation (Eq. (1.1)) for 

general multi-blockage cases in bounded pipe system. For blockage localization, Duan et al. 

([32]) used inverse optimization techniques, such as the genetic algorithm, to minimize the 

following equation  

  2 3, , , minmes

dis m

m

F w l l     (1.2) 

where mes

mw  is the mth measured eigenfrequency (see Figure 1.5). Such techniques require a 

search on all possible combinations of { 2 3, ,l l  } which gives a very large search domain. 

Figure 1.5 gives a 3D plot of the objective function in Eq. (1.2) variation with length l2 and l3 

for a fixed area ratio  = 0.2. Figure 1.5 shows that the eigenfrequency function admits many 

minima and is very complex for optimization problems. One objective of this thesis is to gain 

an understanding of the eigenfrequency shift mechanism induced by wave-blockage 

interaction that would help in reducing the search domain for the inverse optimization 

techniques. This is necessary if the dispersion relation (e.g. Eq. (1.1)) is to become a viable 

approach for identifying blockages in fluid lines.  

Figure 1.4 A single blockage in a Reservoir-pipe-valve system (bounded system) 
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Figure 1.5 A single blockage in a Reservoir-pipe-valve system  
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Figure 1.6 Objective function in Eq. (1.2) variation with length l2 and l3 for a fixed 

area ratio  = 0.2 using the first 10 eigenfrequencies. 
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1.4.2. Problem 2: resolution of blockage detection  

Although not well analyzed, there is an implicit recognition in the literature (e.g. [71] and 

[32], [79]) that signals with wide frequency bandwidth (FBW) are most suitable for defect 

detection. Lee et al. ([71]) recently demonstrated the importance of input signal FBW on 

pipe condition assessment through analytical, numerical and experimental means. The 

majority of transient wave generator technologies used in TBDDM are based on rapid valve 

closures (e.g. [88], [73], and [119]) or pump operation (e.g. [87]). The signals induced by 

valve-type generators induce significant loss of water, their signals are too crude, the 

reflections cannot be distinguished from normal system noise and their resolution is too low 

for localized defects. For example, the so-called rapid valve closure often takes about 0.05s 

to complete. As a result, the wave front is spread over a physical length of about 20 m along 

the pipe and cannot emphasize the effects of leaks and discrete blockages since their length 

scale is generally smaller than this wave front ([140]). 

Wave theory is widely used to probe and characterize various media and to convey 

information in various applications (e.g., non-destructive material testing, medical 

diagnostics, and underwater communications), where it is well known that the higher 

frequency of the waves the better is the resolution. Unsurprisingly, similar conclusions are 

found for TBDDM ([71], [79]). In fact, transient waves used for TBDDM cannot resolve 

scales that are smaller than a/f, where a is the wave speed and f is the frequency. For 

example, Allen et al. ([2]) simulated a sudden burst and reported that it could only be located 

to within ± 45m (i.e. 90m range) even though the sensor was only 20 m away from the fault. 

The wave resolution in this case was a/f ~ 900/10 ~ 90 m. Similarly, a simulated burst in 

Hong Kong could only be located to within ± 42 m ([60]), and the wave resolution in this 

case was a/f ~ 1200/10 ~ 90m. In addition, Meniconi et al. ([87]) conducted field 

investigation in the city of Milan (Italy) and reported that leaks could only be located to 

within 800m ([87]). Their wave resolution in this case was a/f ~ 900/1~900m. 

Moreover, Duan et al. ([32]) reported that the more measured eigenfrequencies included into 

the objective function (Eq. (1.2)), the better is the accuracy given by the inverse optimization 

technique. This is natural given that higher frequencies (i.e., shorter wavelengths) provide 
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higher resolution in defect detection and are better at localizing multi-defects with multi-

scales.  

However, the use of high frequency waves (HFW) excites radial and azimuthal waves and 

renders the classical one-dimensional water-hammer (WH) theory invalid. This work studies 

the behaviour of HFW in water-filled pipes and how they interact with blockage.  

 

1.5. Objectives and organization of the thesis 

The objective of this thesis is to shed greater light on the forward problem of wave-blockage 

interaction in WSS under a wide range of frequencies. In particular, 

(i) The eigenfrequency shift mechanism induced by wave-blockage interaction is 

investigated theoretically, numerically and experimentally. The underlying physics 

of the eigenfrequency shift is clarified. 

(ii) HFW in water-filled pipe and how they interact with blockages is investigated 

This research is motivated by the fact that only if this forward problem is understood can one 

hope to address the issues that arise in connection with its inversion.  

This thesis consists of eight chapters which are organized as follows. Following this 

introduction, 

Chapter 2 introduces the governing equations relevant to this thesis. The phenemona of 

water-hammer is elucidated by drawing an analogy between surge waves in open channels 

and surge waves in pipes. The Joukowsky equation and the full one dimensional water-

hammer equations are introduced. Then, the harmonic solution for 1D water-hammer in an 

intact pipe is derived. The two dimensional water-hammer wave equations are then 

introduced and their analytical solution for an inviscid fluid is given.  
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Chapter 3 gives details of the two-dimensional (2D) Riemann solver (RS)-based finite 

volume (FV) numerical schemes developed and used in this work. The Riemann problem 

and solution are illustrated. In addition, the MUSCL-Hancock approach used to obtain 

second-order accuracy in space and time is described, and details of the WENO 

reconstruction method for higher-order accuracy are given. Moreover, the numerical test 

cases and the boundary conditions are introduced. Then, the schemes’ accuracy, stability, 

convergence and robustness are analyzed and discussed.  

Chapter 4 uses analytical and numerical methods to study the processes of transmission and 

reflection of a pressure wave in a one dimensional unbounded pipe system. The existence of 

Bragg-type resonance in conduits where wave reflections are enhanced at certain frequency 

bands and wave transmissions are enhanced at other frequency bands are established. The 

Bragg resonce conditions are derived. The effect of Bragg resonance for the case of multi-

blockages is discussed.  

Chapter 5 studies the eigenfrequency shift mechanism caused by the presence of a blockage 

at the boundary of a bounded pipe system (e.g. reservoir-pipe-valve system). First, the 

chapter discusses the case of shallow blockages (i.e., blockages with small radial protrusion) 

where it is shown that the eigenfrequency shift is governed by Ehrenfest theorem. The 

relation between the work of the radiation pressure and eigenfrequency shift for shallow 

blockages is derived. Second, the case of severe blockages (i.e., blockages with large radial 

protrusion) is analyzed where it is shown that the pipe system decouples into independent 

subsystems: a subsystem that involves the blockage and another that involves the intact pipe 

sections. Third, the case of moderate blockage is dicussed.  

Chapter 6 studies the eigenfrequency shift mechanism for the case of interior blockage and 

shows how this mechanism is related to (i) the Bragg-type resonance introduced in Chapter 4 

and (ii) the simple blocked pipe system in Chapter 5. The mechanisms causing zero, positive 

and negative eigenfrequency shifst are described for shallow as well as severe and moderate 

blockage cases. Moreover, experimental tests are conducted to validate the eigenfrequency 

shift mechanism and the Bragg resonance effect.  
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Chapter 7 studies numerically the behaviour of HFW (non-plane and dispersive waves) in 

water-filled pipe. The dispersion behaviour of HFW under resonating probing source (i.e. the 

injected FBW contains the cut-off frequencies of high modes) and non-resonating probing 

source (i.e. the injected FBW does not contain any cut-off frequency) are discussed. 

Particularly, the effect of multi-path on the energy propagation and dissipation is analyzed, 

and the effect of the energy radial distribution and mode separation is emphasized. 

Furthermore, the scattering behaviour of HFW due to the presence of a blockage in a conduit 

is investigated.  

Chapter 8 gives an overall summary of the work done in this research and recommends 

possible future work. 
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2. CHAPTER 2 

 

GOVERNING EQUATIONS 

 

2.1. Introduction 

The aim of this chapter is to introduce the low frequency and high frequency water-hammer 

models and their key analytical solutions. The study of water hammer (WH) (or transient) 

waves in pipe flow has been undertaken since the middle of the nineteenth century ([13]). 

WH arises in a wide range of application such as water distribution systems, the oil industry, 

power-plants, defect detections, etc. The majority of existing WH models are one-

dimensional (1D) and assume that the pressure does not vary with radius and that the radial 

velocity is negligible compared to the axial velocity ([50]). Such models are the mainstays of 

WH analysis and pipe-network design. In the last two decades, quasi-2D models were 

developed with the aim of examining the validity of existing unsteady friction expressions 

and guiding the development of new ones (e.g. [38], [102], [103], [115], [130] and [141]). 

Again, these models assume that the pressure is not a function of radius.  

Theoretically, the assumption that the pressure is not a function of radius is valid provided 

that the frequency of the WH is of the order of a/D or smaller, where a is the wave speed and 

D is the pipe diameter ([108]). Taking typical values of a (~1000 m/s) and D (~0.1 to 0.5 m) 

shows that the classical WH models are valid if the frequency, f, is of the order of 2 to 10 

kHz or smaller. In the past, this condition and, by implication, the classical WH theory has 

never been challenged because WH waves are generated by mechanical devices such valves 

and pumps whose frequency is far below 1 kHz.  
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2.2. One dimensional water hammer equations 

2.2.1. Water-Hammer wave 

An analogy between a transient flow in an open channel and a transient flow in a pipe is 

useful for water-hammer wave behaviour ([50]). Figure 2.1 shows a transient in an open 

channel generated by a sudden and complete closure at a downstream gate, while Figure 2.2 

shows a transient in a pipe generated by a sudden and complete closure of a valve of the 

downstream end. The initial steady state flow rate ( 0Q ) and velocity ( 0V ) are assumed to be 

the same in both the channel and the pipe. Therefore, the initial cross sectional area of the 

flow in the channel (A) is the same as that of the pipe. 

Applying mass balance for the case of sudden gate closure, gives: 

 c cQ t A a t           or       c

c c

Q V
a

A A A

 
 
 

 (2.1) 

where ac is the wave speed in the open channel,   is the density, t is time; t  is the change 

in time; and cA  is the change in area after transient in the channel, Q  and V  are the 

change in flow and velocity within the transient time t . For the case of sudden valve 

closure in pressurized pipe, the mass balance dictates 

 ( )( ) ( )Q t A A a t Aa t A A a t                     (2.2) 

where a is the wave speed in the pipe,   is the change in density; and A  is the change in 

pipe area. Equation (2.2) leads to 
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  (2.3) 

Clearly, the mass stored due to a change in pipe area, ΔA, and water density, Δρ, is much 

smaller than the mass stored in a channel due to a change in water depth. That is 

 cAA
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     or    ca a  (2.4) 
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Figure 2.1 Sudden gate closure 

 

Figure 2.2 Sudden valve closure 

 

 

2.2.2. Fundamental equation of water hammer: Joukowsky relation 

The first fundamental relation for estimating the magnitude of these so-called water-hammer 

pressures was formulated by Joukowsky in 1898 ([50]). In his formulation, Joukowsky 

applied the mass and momentum principles to one-dimensional flow in a pipe and assumed 

that the fluid and pipe are homogenous and that the effects of friction are negligible. 

Adopting Joukowsky's assumptions and assuming that the control volumes in Figure 2.3 is 
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moving with the wave front, the equations governing the unsteady flow problem can be 

formulated using steady state theory. 

Figure 2.3 Control volume moving with the wave front a pipe flow system 

 

 

Applying the steady mass conservation equation gives 

 ( ) ( )( )( )in outM M A V a A A V V a           (2.5) 

where inM  is the rate of mass influx in the control volume; outM  is the rate of mass outflow 

from the control volume; ρ = density; A=cross-sectional area; a=acoustic wave speed; 

V=cross-sectional average velocity; ΔV, Δρ and ΔA= wave-induced change in velocity, 

density and area, respectively. The above continuity Eq. (2.5) can be rewritten as follows: 

 
A A V

A A V V a

 

 

    
   

 
 (2.6) 

Applying the momentum principle to the control volume in Figure 2.3 and neglecting the 

shear force, gravity force and the pressure force on converging or diverging side, gives 

        Fx PA P P A A M V V a V a M V            (2.7) 

Using the continuity Eq. (2.5), Eq. (2.7) becomes 
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     PA P P A A A V a V       (2.8) 

where P is the pressure and P  is the pressure difference. In typical water hammer 

applications, the fluid (water) is only slightly compressible and the pipe is only slightly 

deformable. That is ΔAΔρ / Aρ << ΔA / A << 1 and ΔAΔρ / Aρ << Δρ / ρ << 1. In addition 

and as it will be shown later, for most water hammer application the Mach number is very 

low (a >> V); thus, Eqs. (2.8) and (2.6) become 

 P a V      (2.9) 

In general, the momentum Eq. (2.9) is called the fundamental equation of water hammer or 

the Joukowsky equation (relation), in honour to the person who was the first to derive it. The 

Joukowsky relation and its formulation constitute the ideal starting point for introducing and 

elucidating water-hammer phenomena to the novice. In addition, this relation is useful for 

obtaining a first approximation of the transient response of a pipe system. Essentially, the 

Joukowsky equation is used to estimate the head rise in a pipe for a given change in velocity. 

However, this equation can neither resolve the dynamics of transient waves in pipe systems 

and how these waves interact with the various hydraulic and control devices nor estimate the 

effects of wall shear on water-hammer waves. 

Inserting Eq. (2.9) into Eq. (2.3) gives  

 
 

2 P
a

A A

A


 






  
  (2.10) 

Although Δρ / ρ and ΔA / A are small, their presence in Eq. (2.10) is essential and provides 

the essence to the wave nature of water-hammer flows; in particular, these terms provide the 

mechanism of mass storage by fluid compressibility and pipe elasticity. Therefore, 

neglecting these terms by assuming incompressible fluid and rigid pipe walls, result in rigid 

water hammer theory and an infinite wave speed. Indeed, although Δρ / ρ and ΔA / A are 

small they must be maintained in the continuity equation to balance the equally small but 

physically important term of ΔV/a. 
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2.2.3. State Equations 

Taking the limit of infinitesimal change, Eq. (2.10) leads to the following state equation 

 
 

2 dP dP
a

dA dd A

AA






 



  (2.11) 

which could be expressed in terms of bulk modulus of the fluid (Kf) and the bulk modulus of 

the pipe walls elasticity (Ks) as follows ([50]): 

 
2

1 1 1 1

e f s

d dA

A

a K dP K K









     (2.12) 

where  

   ;  
f s

K KdP AdP

d dA   
   (2.13) 

and eK  is an equivalent bulk modulus corresponding to an equivalent bulk strain 

( d dA A   ) of the fluid-pipe system induced by a change in pressure dP . From 

Eq. (2.12), it is clear that the state equation at the two limits: (i) rigid pipe and compressible 

flow and (ii) flexible pipe and incompressible flow, becomes 

 2 2 and 
f s

K KdP AdP
a a

d dA   
     (2.14) 

respectively. If the change in cross sectional area is neglected (i.e. rigid pipe), Eq. (2.12) 

becomes 

 2dP
a

d
  (2.15) 
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2.2.4. Importance of compressibility in rapid varying flow 

In reality, all fluids are compressible. However, since some fluids are only slightly 

compressible, they are usually assumed incompressible. Water is a slightly compressible-

type of fluid that is usually assumed incompressible in most hydraulic application except few 

but very important cases. For instance, in most ocean, and shallow water application, water is 

assumed incompressible. But in pipe flow, compressibility becomes very important for water 

hammer (transient) assessment. To understand the assumption limits, Newton' second law is 

used to illustrate a simple example as follows 

 
V

Force Mass
t


 


 (2.16) 

where V is velocity and t is time. Taking the force to be the pressure difference force 

between two distinct points, Eq. (2.16) becomes 

 
V

A P Mass
t


  


 (2.17) 

When t  goes to zero (i.e. very rapid change), the left hand side of Eq (2.17) becomes very 

large. Since P  is fixed and the area A, even if it is variable, cannot take very large value, 

then the only way to get around this singularity is to take into account the compressibility of 

the fluid for which the Mass can be written as follows 

 Mass Aa t   (2.18) 

Inserting Eq. (2.18) into Eq. (2.17) gives 

 P a V    (2.19) 

which corresponds to the Joukowsky relation (Eq. ( (2.9))). 
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2.2.5. 1D water hammer equation 

2.2.5.1. Continuity Equation 

Considering the pipe flow system given in Figure 2.4, the continuity equation is given by 

 ( ) ( )

in outA A

d V n dA V n dA
t

  



     

     (2.20) 

where   is the control volume; n  is unit normal vector to the control volume area; Ain and 

Aout are the inward and outward areas of the control volume, respectively. Equation (2.20) 

gives 

         xxx AVAVxA
t

xA
t










  (2.21) 

Figure 2.4 Control volume for mass conservation 

 

 

Dividing Eq. (2.21) by Δx and taking the limit when Δx goes to zero, yields 

     0








AV

x
A

t
  (2.22) 

In non-conservative form, Eq. (2.22) becomes 
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 0
A V A

A A V A
t t x x x

 
  
     

          
 (2.23) 

Using the total derivative, Eq. (2.23) gives 

 0
11







x

V

dt

dA

Adt

d


 (2.24) 

Equation (2.24) can be written in term of pressure as follows 

 
1 1

0
d dP dA dP V

dP dt A dP dt x






  


 (2.25) 

Using the state equations (Eq. (2.14)), Eq. (2.25) becomes 

 
1 1 1

0
f s e

dP V dP V

K K dt x K dt x

   
         

 (2.26) 

where Ke is the equivalent bulk modulus of the fluid-pipe system. 

2.2.5.2. Momentum Equation 

Considering the control volume given in Figure 2.5, the momentum equation is given by 

    
in out

ext
A A

Vd F V V n dA V V n dA
t

  



      

     (2.27) 

where Fext are the external forces. For a fix control volume, Eq. (2.27) becomes 

      2 2

ext x x x
VA x F A V A V

t
    




    


 (2.28) 

Where   is defined as 

 
2

2

1

A
V dA

V A
 


   (2.29) 
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  is usually assumed to be equal to 1 for water hammer models. This assumption could fail 

for certain unsteady flows where   can be very large ([50]). The one dimensional water 

hammer model in this work assumes   = 1.  

Figure 2.5 Control volume for momentum conservation 

 

 

The external forces to the control volume are (see Figure 2.5): 

i. Pressure forces at the sections x and x+Δx: 

 
p x x x

F PA PA


   (2.30) 

ii. Pressure force on converging or diverging side: 

 
side

p

A
F P x

x


 


 (2.31) 

iii. Gravity force: 

  sing gF gA x    (2.32) 

where g is the standard gravitational acceleration. 
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iv. Shear force: 

 

2

0

x x

shear

x

F Rd dx D x



  


     (2.33) 

where τ is the shear stress between the fluid and the conduit walls which can be 

approximated by Darcy-Weisbach equation 

 2

28 8

f V V f
Q

A

 
    (2.34) 

where f  is the Darcy-Weisbach friction factor; V and Q are the flow velocity and discharge, 

respectively. Using the Eqs. (2.30)-(2.33) and dividing Eq. (2.28) by Δx and taking the limit 

when Δx goes to zero, give 

      2 sin g

P
VA AV A gA D

t x x
    

  
    

  
 (2.35) 

In non-conservative form and using the continuity equation (Eq. (2.22)), Eq. (2.35) becomes 

  
1 4

sin g

dV P
g

dt x D




 


   


 (2.36) 

The slope term is usually either small and can be dropped or combined with the pressure 

term. Recalling the continuity Eq. (2.26) with Eq. (2.36) gives the 1D water hammer 

equations 

 

0

1 4

e

P P V
V K

t x x

V V P
V

t x x D



 

  
     


  

    
  

 (2.37) 

2.2.5.3. Simplified Equations 

Applying dimensional analysis to each term in Eq. (2.37) gives 
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*

* *

*2

* *2 *

* * * *

* * * *
* 2

* *
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   ;   
1 1

4

w

w

e

V V

p aV t t

t t V V
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P aV x l
V

x l P aV aV

V V x l l
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x l V
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 (2.38) 

where *  , *V  , *l , *

wt l a  are the characteristic density, velocity, length and time scales, 

respectively. Therefore, Eq. (2.84) is equivalent to 

 

* * * *2 *
* 2

* * *

* *2 * *

* * * *2

0 1 1 0

1 1

ch

ch
ch

e

aV aV V
a M

l a l l
M

MV V aV V
R

l a l l l

 





     

 
 

        

 (2.39) 

where Mch =V*/a is the mach number and it is usually of the order of 10-3 in water hammer 

flows; and * *

eR l V   is the Reynolds number which usually about 106 in water supply 

pipe flow except at the boundary layer where the flow becomes laminar. Thus, the 

convective terms can be neglected and the system of Eq. (2.37) becomes 

 

2 0

1 4

P V
a

t x

V P

t x D





 

 
   


 

   
 

 (2.40) 

These equations are called the classical 1D water hammer equation. 

Moreover, the slope term is usually either small and can be dropped or combined with the 

pressure term. Neglecting the slope term and using the Darcy-Weisbach equation (Eq. (2.34)) 

to approximate the shear stress, Eq. (2.40) becomes 
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2 0

1

2

P V
a

t x

f V VV P

t x D





 
   


    

  

 (2.41) 

It is common practice in hydraulic engineering to compute pressures in the pipeline in terms 

of the piezometric head H above a specified datum and use the discharge, Q, as the second 

variable instead of the velocity V. The pressure P and the discharge Q maybe written as 

    ;   P gH Q AV   (2.42) 

Assuming that the fluid is slightly compressible and that the conduit walls are slightly 

deformable, the variations of ρ and A due to the change of the inside pressure could be 

neglected. However, these variations of ρ and A are taken indirectly into account by 

considering the wave speed to have finite speed (see Eq. (2.10)). Consequently, substituting 

Eq. (2.42) into Eq. (2.41) gives 

 

2

0

2

H a Q

t gA x

f Q QQ H
gA

t x DA

 
 

 

 

    

 (2.43) 

and for frictionless system, becomes 

 

2

0

0

H a Q

t gA x

Q H
gA

t x

 
 

  

   

  

 (2.44) 

To obtain the steady state equations, the time derivatives in Eq. (2.43) are taken to zero. This 

gives 

 2

2

0

2

Q

f xQ
H

gDA

 



 


 (2.45) 
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2.3. Harmonic solution for 1D intact pipe flow 

The one dimensional water-hammer equations for inviscid flow in a single intact pipe case 

are given by (Eq. (2.44)) ([13]) 

 

2

0

0

0

0

H a Q

t gA x

Q H
gA

t x

 
 

  

   

  

 (2.46) 

where Q is the instantaneous flow discharge, H is the instantaneous pressure head, g is the 

acceleration due to gravity, A0 is the cross-sectional area of the intact pipe, a is the acoustic 

wave speed, x is the distance along the pipe line and t is the time. In steady-oscillatory flow, 

Q and H could be divided into steady and unsteady parts as follow 

 
Q Q q

H H h

  


 

 (2.47) 

where Q  and H  are the mean discharge and pressure head, respectively, and q and h are the 

unsteady discharge and pressure head parts. In what follows, q and h will be referred simply 

as discharge (flow rate) and pressure head, respectively. Substituting Eq. (2.47) into Eq. 

(2.46) gives 

 

2

0

0

0

0

h a q

t gA x

q h
gA

t x

 
 

  

   

  

 (2.48) 

Differentiating the continuity equation with t and the momentum equation with x, Eq. (2.48) 

leads to the following wave equation 

 
2 2

2

2 2
0

h h
a

t x

 
 

 
 (2.49) 

Assuming that q and h are harmonics in time, the solution to Eq. (2.49) is 
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      1 2exp exp exph C ikx C ikx iwt      (2.50) 

where k = w/a is the wavenumber with w being the angular frequency and a is the acoustic 

wave speed in water, C1 and C2 are complex constants that depend on the boundary 

conditions (BCs), and 1i   . The pressure head and discharge solution for an intact 

symmetric pipe system such as Valve-Pipe-Valve (VPV) system (see Figure 2.6) and for an 

anti-symmetric pipe system such as reservoir-pipe-valve (RPV) system (see Figure 2.7) are 

governed by ([13]) 

 

     

     

0 0 0 amp 0

0 0 0 amp 0

0

, 2 cos cos

, 2 sin cos

m m m m m

m m m m m

h x k C k x h k x

g
q x k i A C k x q k x

a

  



  


 (2.51) 

and 

 

     

     

0 0 0 amp 0

0 0 0 amp 0

0

, 2 sin sin

, 2 cos cos

m m m m m

m m m m m

h x k iC k x h k x

g
q x k A C k x q k x

a

  



  


 (2.52) 

where m is the mode number of the natural resonant frequencies (eigenfrequencies); 0

mk  is 

the mth wavenumber; 
0

mh  and 
0 0

0m mq A V  are the mth pressure head and flow discharge 

harmonics, respectively, with 
0

mV  the mth flow velocity harmonic; 
amp

mh  and 
amp

mq  are the 

amplitudes of maximum pressure head and flow discharge harmonics, respectively; C  is a 

complex constant of integration; The dispersion relationships that govern the natural resonant 

frequencies (eigenfrequencies) for intact VPV system and RPV system can be obtained by 

imposing the velocity to be zero at x=L (at the valve) as follow  

VPV system:     0 0sin 0      2 2   ;   1,2,3...
4

m m

a
kL w ak m m

L

 

     
 

 (2.53) 

and 

RPV system:     0 0cos 0      2 2 1   ;   1,2,3...
4

m m

a
kL w ak m m

L

 

      
 

 (2.54) 
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respectively. Where 0

mw  is the mth eigenfrequency; with the superscript "0" refers to intact 

pipe; L is the total length of an intact pipe. Inserting the mth eigenfrequency in the pressure 

head and flow velocity solution gives the mth mode solution. In linear wave theory, the 

summation of all the mode solutions gives the overall solution of the pressure and flow 

velocity as follows 

 

0

0

m

m

m

m

h h

q q

 









 (2.55) 

 

 

Figure 2.6 Valve-pipe-valve (VPV) system 

 

 

 

Figure 2.7 Reservoir-pipe-valve (RPV) system 
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The mode solution in pipe system depends on the boundary conditions where for example 

Eq. (2.53) gives the even modes and Eq. (2.54) gives the odd modes. These modes solution 

are also often referred as standing waves or harmonics. Figure 2.8 gives the pressure head 

and the velocity harmonic along x/L of the 2nd mode (m=2) for an intact Reservoir-Pipe-

Valve system (Eq. (2.52)). 

 

Figure 2.8 Pressure head and velocity harmonics of an intact RPV system at the 2nd 

mode (m = 2).                               
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2.4. Two dimensional axi-symetric Navier-Stokes equation for unsteady flow in 

cylindrical pipe 

Let x and r denote the axial and radial coordinates; t is the time; Vx and Vr denote the velocity 

components in x- and r-directions (Figure 2.9), respectively; and ρ, and P denote the fluid 

density and the pressure, respectively. The 2D axi-symmetric Navier-Stokes equations for a 

compressible Newtonian fluid in cylindrical coordinate are ([50]): 

 cU F G
S

t r x

  
  

  
 (2.56) 

where 
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 (2.57) 
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 (2.58) 

In Eq. (2.58), τrr , τxx , τθθ and τrx denote the components of the stress tensor given by 
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 (2.59) 
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where 2 3    with   denotes the dynamic viscosity of the fluid. In each line of the 

right hand side of Eq. (2.58), the last terms represent the extra terms due to the cylindrical 

coordinate formulation. 

Notice that in the Eqs. (2.56) and (2.57), the energy equation is not included. This is because 

the fluid considered in this work (water) is not sensitive to temperature change because of its 

high heat capacity. Although the process of water-filled pipe flow is adiabatic, it is usually 

assumed that the process is isothermal. For this reason, the energy equation is not solved and 

the pressure is related to the density using the isentropic and isothermal state equation for an 

infinitely rigid conduit given by ([50]). 

 2P
a







 (2.60) 

where a is the acoustic wave speed. Equation (2.60) is for rigid pipe and in this case a is 

about 1440m/s. However, for simplicity in this work, a is taken equal to1000m/s although 

Eq. (2.60) is used. 

Figure 2.9 Sketch of a pipe showing the coordinate system 

 

 



 

36 

 

2.5. Eenergy equation for the 2D inviscid Navier-Stokes equations in cylindrical 

coordinate system 

Assuming the viscous terms are negligible, Eq. (2.56) becomes: 
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 (2.61) 
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 (2.63) 

Multiplying Eq. (2.61) by P   gives : 
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 (2.64) 

Using the following state equation for rigid pipe (Eq. (2.60)): 

 2 fKdP
a

d 
   (2.65) 

Equation (2.64) and Eq. (2.65) give 

 
 2 21 xr r

f

d P VV PV
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K dt r x r


   

 
 (2.66) 

Multiplying Eq. (2.62) by rV  gives : 
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 (2.67) 

Using the Eq. (2.61), Eq. (2.67) becomes 
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 (2.68) 

Similarly, multiplying Eq. (2.63) by xV  gives: 
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d V PV V
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. (2.69) 

The sum of Eqs. (2.66), (2.68) and (2.69) gives the energy equation as follows 
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 (2.70) 

The three terms on the left hand side of the Eq. (2.70) can be written as 
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 (2.71) 

Since P  ~
2a and for most water hammer application a >> Vr , and a >> Vx , therefore, 

P  >>
2 2rV  and P  >>

2 2xV . Hence, Eq. (2.70) becomes 
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 (2.72) 

Although Vr is usually very small in water hammer application, the last term in Eq. (2.70) is 

not neglected because, near the vicinity of a blockage in a pipe, the radial velocity could be 

significant. 

Multiplying Eq. (2.72) by 2πrdrdx and integrating over the volume and with respect to time 

give 
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where E, Wx and Wr are the total energy of the fluid in the pipe system, the work done at the 

axial boundaries and the work done at lateral boundaries, respectively. These terms are 

defined as 

 
222

0 0

2
2 2 2

R L

xr

f

VVP
E rdrdx

K




 
    

 
  , (2.76) 

 
 

0 0

2

R L

x

x

PV
W rdrdx

x





   (2.77) 

and 
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respectively. Equation (2.76) could be split into two parts: kinetic energy T and potential 

energy U as follows 
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If viscous terms are included, there will be energy losses (Es) due to the viscosity, and the 

general form of Eq. (2.75) becomes 
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2.6. 2D wave solution for the case of inviscid pipe flow  

In this section, the classical axi-symmetric wave solutions in a pipe, widely studied in duct 

acoustics, are briefly reviewed.  

2.6.1. Wave equation 

Consider the pipe system shown in Figure 2.9. The continuity equation (Eq. (2.61)) in a 

general compact form is given by 

   0V
t





 


 (2.82) 

where  ,
tr

x rV V V  is the velocity vector and   is the nabla operator. Using the state 

equation (Eq. (2.60)), the first term on the left hand side of Eq. (2.82) becomes 
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Therefore, Eq. (2.82) becomes 
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Applying dimensional analysis to each term in Eq. (2.84) gives 
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where *  , *V  , *l , *

wt l a  are the characteristic density, velocity, length and time scales, 

respectively. Therefore, Eq. (2.84) is equivalent to 

 
* * * * * *

* * *
0   1 1 0ch

V V V V
M

l l l a

  
        (2.86) 

where Mch =V*/a is the mach number and it is usually of the order of 10-3 in water hammer 

flows. This shows that the convective term could be neglected and Eq. (2.84) becomes 
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a t



   


 (2.87) 

The momentum equations (Eqs. (2.62) and (2.63)) in a simplified compact form are  
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 (2.88) 

where   is the kinematic viscosity. Applying dimensional analysis to each term in Eq. (2.88) 

gives 
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 (2.89) 

Therefore, Eq. (2.88) is equivalent to 
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1 1
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ch
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M l
M F
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where 
* *

eR l V   is the Reynolds number. Neglecting the effect of gravity, Eq. (2.90) 

becomes 
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1 1
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ch
ch

M
M     (2.91) 

Pipe flow are usually turbulent flows (e.g. 0.5 1m/sV    ; 0.01m to 1mL D  ; 

6 210 m /s   6

eR 5000  to  10  ) except near the boundaries where the flow is laminar 

(e.g. non slip condition at the pipe wall leading to very low velocity). If one is not resolving 

the flow at the boundary layer scale, Eq. (2.91) shows that the viscous terms and the 

convective term could be neglected. Finally, neglecting: 

i. Nonlinear terms:  V V   

ii. Body Forces: gF   

iii. Viscous effect:  2 V   

Equation (2.88) becomes 

 
1V

P
t 


  


 (2.92) 

The wave equation could be obtained in terms of pressure by differentiating Eq. (2.87) with 

time and differentiating Eq. (2.92) with space which give  
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 (2.93) 

2.6.2. Solution of the wave equation (Eq. (2.93)) 

Assuming separable solution (method of separation of variable) and that the wave is 

harmonic in time, the pressure is given by 

      exp x rP iwt f x f r   (2.94) 

where fr and fx are pressure functions depending only on r and only on x, respectively; 

2w f is the angular frequency with f is the frequency; 1i   . Inserting Eq. (2.94) into 

Eq. (2.93) gives 
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where k w a  is the wavenumber. First, solving for fr, Eq. (2.98) gives 
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 (2.99) 

 
2

2 2 2

2
0r r

r r

f f
r r r k f

r r

 
   

 
 (2.100) 

Using the following change of variable 
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Equation (2.100) becomes 
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 (2.103) 

Equation (2.103) is the Bessel's equation and its solution is 

      1 0 2 0,r r r rf r k C J rk C Y rk   (2.104) 
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where J0 and Y0 are the zeroth order Bessel's function of first and second kind, respectively 

(Figure 2.10); and 
1C  and 

2C  are constants. The constant 
2C  must be equal to zero (

2C  = 0) 

so that the solution remains finite (i.e. physical) at r*= 0. Therefore, Eq. (2.104) becomes 

    1 0,r r rf r k C J rk  (2.105) 

Figure 2.10 Bessel functions 
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(b) Bottom Bessel's functions of second kind 

 

Since normal wall velocity is zero, then 
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where  1 0J r J r    is first order Bessel's function of first kind; R is the pipe radius. J1 

has multiple zeros which are 

 0 ; 3.8317 ; 7.01559 ; 10.17347 ;...rn rnRk    (2.107) 

where th n n  zero of J1. Therefore, the solution in Eq. (2.105) becomes 

    1 0,rn rn n rnf r k C J rk  (2.108) 

 

Solving for fx , Eq. (2.98) gives 

 
2

2 2

2
0x

rn x

d f
k k f

dx
      (2.109) 

which has the following solution  

    2 2 2 2exp  exp  x rn rnf i k k x i k k x       (2.110) 

where   and   are complex constants. Combining Eq. (2.108) and Eq. (2.110) leads to the 

solution of the pressure for a single mode n 

         2 2 2 2

0exp  exp  expn n rn n rn rnP i k k x i k k x iwt J rk        (2.111) 

and the total pressure is given by 

 n

n

P P  (2.112) 

The zeroth mode wave (n = 0 and 0r  = 0) is:  

    0 0 0exp expP ikx iwt ikx iwt       (2.113) 
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which is the classical one-dimensional (1D) WH solution and will be referred to as M0 

hereafter. Further detailed 2D solution and three dimensional (3D) solution could be found in 

[108]. 

2.6.3. Cut-off frequencies 

Considering only one direction of the wave, then Eq. (2.111) gives 

      2 2

0exp  expn n rn rnP i k k x iwt J rk    (2.114) 

Equation (2.114) shows that if 2 2  rnk k  then 2 2

rnk k  is real, and therefore, the waves are 

propagating. However, if 2 2  rnk k  then 2 2

rnk k  is imaginary, and therefore, the waves are 

evanescent. This specifies the condition on the frequency (cut-off frequency) for which a 

high mode is either propagating or not. For example, the first high mode (n = 1), hereafter 

referred to as M1, is excited and propagating under the following condition 
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        (2.115) 

where 1
1

r a
f

D




  is the cut-off frequency of the first high mode; and 1 3.83r   is the second 

zero of J1. The cut-off frequency of the second (n = 2) high mode, hereafter referred to as M2, 

is 

 2
2

7.01
 r a a
f f

D D



 
    (2.116) 

The cut-off frequency of the nth high mode is 

  rn
n

a
f f

D




   (2.117) 

2.6.4. Dispersion curves, phase velocity and group velocity 

The dispersion relation is given by 
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2 2

xn rnk w a k   (2.118) 

From Eq. (2.114), the phase velocity (obtained from the phase of the solution) is 
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 (2.119) 

and the group velocity, at which the energy propagates, is(using Eq. (2.118)) 
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          (2.120) 

The group velocity (Eq. (2.120)) variation with frequency for the first four modes is given in 

Figure 2.11. For n > 0, Eq. (2.120) and Figure 2.11 reveals that the group velocity is smaller 

than the WH wave speed a. The fact that the energy propagates at a speed slower than a is 

due to the fact that modes with n > 0 do not travel parallel to the pipe axis; instead, they take 

a zigzag-type path ([108]). Figure 2.12 provides a sketch of the path of different wave modes 

where the direction of the waves are dictated by the following wavenumber vector relation  

 rn xnk k i k j  . (2.121) 

where i  and j  are unit vectors along r and x directions, respectively. The speed along each 

path is given by the phase velocity (Eq. (2.119)) which shows that higher wave modes travel 

faster, but take longer path. The zigzag-type of path is dictated from Eq. (2.121) where the 

direction of the wave is normal to the wave front (see Figure 2.12). High frequency waves 

will propagate along a diagonal direction with a certain angle ( kn ) from the pipe centreline 

when 0rnk   in Eq. (2.121). Only M0 waves travels in straight path along the pipe for which 

0 0rk   in Eq. (2.121). The fact that different wave modes acquire different paths is referred 

to as multipath process and is the reason why high frequency waves are dispersive. The angle 

of propagation kn  is defined as follows 
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1 1

2 2

tan tanrn rn
kn

xn
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k k

k w a k

  

 
          

. (2.122) 

and its variation with frequency for the first three high modes is given in Figure 2.13. 

Figure 2.13 shows that at the cut-off frequencies, kn  becomes 90 degrees. Therefore waves 

at cut-off frequencies are standing waves and do not propagate along the pipe. Waves 

propagating at frequencies near (but not at) the cut-off frequencies, their angle of 

propagation is slightly less than 90 degrees , hence, they propagate along the pipe but take 

very long path. On the other hand, Figure 2.13 shows that the farther away the wave 

frequency is from the cut-off, the smaller is its angle of propagation, and therefore, the 

shorter is its path. The high mode behaviour and multi-path effect will be discussed further in 

Chapter 7. 

Figure 2.11 Dimensionless group velocity variation with frequency for the first four 

modes (a=1000 m/s). 
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Figure 2.12 Descriptive sketch of multipath effect (Zigzag-type of path) in axi-

symetric pipe flow                                  

 

Figure 2.13 Variation of the propagation angle (Eq. (2.122)) with frequency for the 

first four modes                                
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2.6.5. Energy and Energy flux 

Considering only the incident wave (Eq. (2.114)) and using the momentum equation (Eq. 

(2.93)), the pressure and velocities at the nth mode are 

    0cos  n n xn rnP k x wt J rk   (2.123) 

    0cosxn
xn n xn rn

k
V k x wt J rk

w



   (2.124) 
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k
V k x wt J rk

w



   (2.125) 

where the following formulas ([63]) are used 
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 (2.126) 

2.6.5.1. Kinetic energy 

The kinetic energy of the nth mode could be obtained as follows 
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where 
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and 
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Therefore (using Eq. (2.118)), 
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2.6.5.2.  Potential Energy 

The potential energy of the nth mode is 
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2.6.5.3. Total energy 

Using Eqs. (2.132) and (2.134), the total energy of the nth mode is 
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and the total energy per unit wavelength of the nth mode is 

    
2 2 2

2 2

0 02 22 2

T

n n n
n rn rn

n

E R A
E J J

a a

 
 

  
    (2.136) 

2.6.5.4.  Energy Flux 

The energy flux (i.e. power) is obtained as follow 
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Fn n gnE E V    (2.139) 

where, in this case, 2pt w . 

2.7. Summary 

This chapter introduces the governing equations relevant to this thesis. The phenemona of 

water-hammer is elucidated by drawing an analogy between surge waves in open channels 

and surge waves in pipes. The harmonic solution for 1D water-hammer in an intact pipe is 

derived. The 2D water-hammer wave equations are introduced and their analytical solution 

for an inviscid fluid is given. 
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3. CHAPTER 3 

 

NUMERICAL SCHEMES 

 

3.1. Introduction 

In this thesis, the behaviour of high frequency waves (HFW) in water pipe system is studied 

numerically in Chapter 7. This chapter gives details of the numerical schemes used for 

modeling HFW in water pipe system.  

To the authors’ best knowledge, the only numerical work that used a complete 2D model for 

pressurized water pipe system, where the radial variation of pressure is included, is by Mitra 

and Rouleau ([96]) where they employed an implicit numerical scheme based on matrix 

factorization. They used the finite difference method (FDM) for space discretization and a 

three backward point approach for time marching. A predictor-corrector technique was used 

to sweep along the axial and radial direction simultaneously. They reported that radial waves 

are only important in the vicinity of devices (e.g., valves) and singularities. However, their 

test cases were limited to relatively low frequencies because their scheme was very 

dissipative and dispersive. Moreover, their scheme was very time consuming and therefore, 

their study was limited to very short pipe lengths (a multiple of few diameter length). 

HFW are dispersive and their physical dispersion must be accurately modelled; therefore, 

numerical dispersion must be minimized. For this reason, finite difference methods (FDM) 

(such as Lax-Wendroff schemes) should be avoided due to their dispersive behaviour ([58]). 

Even though point-wise schemes such as the finite element method (FEM) ([57]) could be 

used and they have an advantage in handling boundary conditions, the finite volume (FV) 

method is usually preferred for the great advantage provided by its conservation ability.  



 

54 

The two main families of FV methods are the Godunov-type schemes (GTS) ([127]) and Gas 

Kinetic schemes (GKS) ([139], [15]). The GTS are based on the Riemann solver (RS) 

solution to evaluate the numerical fluxes at the cell interface, while GKS are based on the 

solution of the Boltzmann equation. A comparison between the two FV families ([76]) 

showed that the main advantages of GKS over the GTS are (i) its ability in evaluating the 

inviscid and viscous parts together in a single flux evaluation (no splitting operator needed) 

(ii) and a straightforward and robust technique for upgrading the scheme for a high order of 

accuracy in multi-dimensional cases, based on simple Taylor expansions (no flux evaluation 

at Gaussian quadrature points are needed) ([139], [82]). However, these advantages are 

beneficial only when solving nonlinear system and shock-capturing problems. This is not the 

case for water-hammer problems because they are weakly nonlinear and only involve jump 

discontinuities. Moreover, GKS are about three times slower than GTS based on the 

approximate Riemann solver ([76]). For these reasons, GTS are preferred in this work.  

Although many GTS have been developed, showing great accuracy and robustness ([127]), 

most of those schemes are usually tested and applied in gas dynamic applications ([127]). 

Therefore in this work, a two-dimensional (2D) FV numerical scheme based on the Riemann 

solver ([127]) is developed for water-hammer flow application and its robustness and 

accuracy is tested for modelling HFW in water-filled pipe flow.  

In a finite volume (FV) discretized numerical domain, these high frequency waves leads to 

severe jumps at the cell interface. Despite the absence of shock waves in water-filled 

unsteady flow, such severe jumps still require delicate techniques to conserve the physical 

characteristics of the propagating waves and to avoid numerical anomalies ([100]). An 

appropriate dissipation mechanism is important since it controls the stability of the scheme 

versus the clarity of the results. The dissipation mechanism in FV GTS is complex and 

depends on the grid resolution, flux evolution and the projection stage ([138]).  

In the last few decades, the need for high-order (>2) numerical schemes (e.g. [101], [82], 

[75], [132], [126], [16], [64], [54] and [135]) has been extensively recognized in many 

engineering applications, such as vortex-dominated flows, acoustic and aeroacoustic noise 

predictions and LES/DNS computations for complex configurations. Since the current work 
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considers simple and not very complex flow (e.g. no turbulent flow, single pipe), only 

second and third orders of accuracy are considered. The second order accuracy in space and 

time is achieved by using the Monotone Upstream-centred Scheme for Conservation Laws 

(MUSCL) Hancock approach ([127]), for its good accuracy and robustness. Whereas the 

third order scheme is achieved using the weighted essentially non-oscillatory (WENO) 

reconstruction ([64]). The viscous terms, when included, are discretized using a second order 

finite difference central scheme ([58]), and the classical third order Runge-Kutta (RK) 

method is used for time marching ([58]). 

 

3.2. Numerical schemes 

The developed numerical scheme solves the two dimensional axi-symmetric Navier stokes 

equations (Eqs. (2.56)-(2.60)) for unsteady and compressible flow in water-filled pipe 

(Figure 2.9). The physical domain is discretized into a numerical domain (Figure 3.1) 

containing NR and NX (NR×NX) finite volumes along the radial and axial directions, 

respectively. Given that the pipe system is assumed axi-symmetric, only half domain of the 

pipe is considered ( 0 r R  ) where R = D/2 is the pipe radius and D is the pipe diameter. 

Since the numerical scheme used is based on FV formulation, it is instructive to illustrate the 

FV discretization (Figure  3.1) of Eq. (2.56) by integrating it over time and space. The S term 

on the right hand side of Eq. (2.56) will be evaluated using operator splitting, and therefore, 

the integration here only covers the inviscid part as follows 
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where 
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 ; ( 3.2) 

r , x  and t  are the radial, axial and time discretization step sizes, respectively. 

Equation ( 3.1) shows that at each time level t t , at least four fluxes need to be computed 

namely 1/2iF  , 1/2iF  , 
1/2jG 

 and 
1/2jG 

 at the corresponding cell interfaces  1
2

,ir r x  , 

 1
2

,ir r x  ,  1
2

, jr x x   and  1
2

, jr x x  , respectively. The solution of Riemann 

problem is used to evaluate those fluxes (see Figure 3.2) at the cell interfaces.  

Figure  3.1 Discretized space: numerical mesh  
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Figure  3.2 Riemann problem at the cell interface  

 

 

3.2.1. Riemann solution at the cell interface 

The Riemann solution is splitted along each direction according to the following procedure 
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      along the radial direction ( 3.3) 

and 
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      along the axial direction ( 3.4) 
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The Jacobian matrix from Eqs. ( 3.3) and ( 3.4) are 



 

58 

 

1

2 21

1

2 21

0 1

2

0 1

2

D

F D

r rr

D

G D

x xx

F
J

a V VU

G
J

a V VU

  
   

  




        

 ( 3.6) 

and their corresponding eigenvalues and right-eigenvectors are 
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and 
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. ( 3.8) 

Approximate Riemann solution is obtained by assuming frozen Jacobian matrices at each 

time step where explicit variables are used for the Jacobian matrix entries. Therefore, the 

system is linearized at each time step. Using the Generalized Riemann Invariant ([127]) 

across the characteristic lines (see Figure 3.3), gives 

  

1

1

  ;  across 
1

     along the radial direction

  ;  across 
1

r

r

r
r

V a

r
r

V a

d Vd dx
V a

dt

d Vd dx
V a

dt










  



   



  ( 3.9) 

and  
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which leads to the Riemann solution at the radial and axial cell interfaces respectively as 

follows (see Figure 3.3) 
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and  
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where the "*" indicates variables at the cell interface and the superscripts "l" and "r" indicate 

the variables at the left and right of the cell interface, respectively (see Figure 3.3). 

Figure  3.3 Riemann solution 

 

 



 

60 

3.2.2. 2nd order of accuracy: MUSCL-Hancock approach  

To achieve second (2nd) order accuracy in space, linear reconstruction within each cell is 

required (Figure 3.4). Since directional splitting operator is used for the Riemann solution 

(Eqs. 3.3 and  3.4), the sub-cell reconstruction is also splitted along the radial and axial 

direction. Knowing the cell-averaged data at time level t , the linear reconstruction is realized 

by considering the following linear cell-distribution  
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where   are the linear reconstructed data. The i  and j  are the slopes along the r and x 

direction, respectively. A VanLeer slope limiter ([127]) is used to compute those slopes to 

eliminate spurious oscillations given by 
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where  
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; ( 3.15) 

2  is a very small number to avoid singularity; and "sgn" is the sign function. j  could be 

evaluated in a similar way. Notice that U  in Eq. ( 3.15) could be any primitive or 

conservative variable. In this work, the pressure P is chosen to compute the jumps 
  and 

 . Other slope limiter such as MINMOD ([127]) is also used and showed almost similar 

results as VanLeer slope limiter. 
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Notice from Figures 3.2 and 3.4 that what is important from the reconstruction is to obtain 

the values at the cell interface which will be considered as left/right states for the Riemann 

problem. Therefore, assuming a rectangular mesh and evaluating Eq. ( 3.13) at the cell 

interfaces i+1/2 and j+1/2, respectively, gives the left and right states for the Riemann 

problem as follows 

along the radial direction: 
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along the axial direction 
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where the superscript 'l' and 'r' indicates left and right states for a Riemann problem at a cell 

interface (i.e. at 1
2

i
r
  and 1

2
j

x


), respectively.  

To achieve 2nd order accuracy in space and time, the Hancock approach ([127] is used where 

the left and right states in Eqs.( 3.16) and ( 3.17) are evolved in time by half time step (at 

2t t ), then the Riemann problem is considered using the new updated states. The 

procedure of Hancock approach is summarized in the following steps: 

i. From the linear reconstruction (Eq. ( 3.13)), the left and right states for a Riemann 

problem are obtained (Eqs. ( 3.16) and ( 3.17)). 

ii. Evolution of the left and right states (Eqs. ( 3.16) and ( 3.17)) by half time step as 

follows 
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along x-direction: 
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 ( 3.19) 

iii) The Riemann problem is considered using the new states in Eqs. ( 3.18) and ( 3.19) 

where the Riemann solution (Eqs. ( 3.11) and ( 3.12)) is used to compute the fluxes 

in Eq. ( 3.1) at the cell interfaces. 

 

Figure  3.4 Linear cell reconstruction along r-direction 

 

 

3.2.3. Third order of accuracy: WENO reconstruction 

Similarly to the previous linear reconstruction, directional splitting will be used. In this case, 

to achieve third order of accuracy, one dimensional quadrature reconstruction is required 

within each control volume as follows 

along the x-direction    
2

,( , ) j ji i j j jr x U x x x x       ( 3.20) 
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For consistency and conservation within a finite volume ( ,i j ), the following three 

conditions must be fulfilled  
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which result in 
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. ( 3.22) 

Similar solutions could be obtained for the case along the r-direction. It is important to notice 

that in Eq. ( 3.21) the indexes "l" and "r" are used to indicate the left and right states of either 

the control volume or the cell interface based on whether the variable U is given at the cell 

centre (e.g. ,i jU ) or at the a cell interface (e.g. , 1 2i jU  ), respectively.  

As stated in the previous section, what is important from a reconstruction is to obtain the 

values at both sides of the cell interfaces (see Figure 3.2 and Figure 3.4). Essentially, the 

Weighted Essentially Non-Oscillatory (WENO) reconstruction ([64]) is a Total Variation 

Diminishing (TVD) technique which determines those left and right states while avoiding 

spurious oscillation and maintaining the desired order of accuracy of the scheme. 

Considering the axial direction, the left and right states of the cell centered at j from a 

WENO reconstruction are given as follow ([64]) 
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where 
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 0 2 1 1 2 0

3 3 1
   ;       ;    
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r l r l r l

d d d d d d      . ( 3.28) 
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In Eq. ( 3.26),   is a "calibration" parameter to avoid singularities. The effect of such 

parameter on the numerical results is discussed later. Similar procedure (Eqs. ( 3.23)( 3.28)) 

is applied for the radial direction.  

As seen from the above procedure, the WENO method uses smoothness parameters (  and 

) over five consecutive cells (finite volumes) which, under smooth flow, will achieve 5th 

order of accuracy ([64], [82]). However, in non-smooth flow, the scheme achieves only 3rd 

order accuracy. Such scheme is usually referred as third-fifth order scheme. However, since 

this work considers only smooth flows, this scheme will be referred as fifth (5th) order 

scheme and its accuracy is tested in later discussion. 

 

3.2.3.1.  Second order WENO scheme 

The above WENO procedure (Eqs. ( 3.23)  ( 3.28)) could be, similarly, applied to obtain a 

second order WENO scheme ([64]) with linear reconstruction. In this case, the WENO 

method uses smoothness parameters over three consecutive cells (finite volumes) which, 

under smooth flow, achieves third order of accuracy. However, in non-smooth flow, the 

scheme achieves only second order of accuracy. Such scheme is usually referred as second-

third order scheme. However since this work considers only smooth flows, it will be referred 

as third (3rd) order scheme and its accuracy is tested in later discussion. 

3.2.4. Evolution stage of the numerical fluxes along the cell interface 

This section discusses the evolution stage of the numerical flux along the cell interface. As 

shown from Eq. ( 3.1), to update the variables to the next time level t t , two integrals (for 

an explicit scheme) must be evaluated which describes the distribution of the fluxes along 

the cell interface (Figure 3.5). Two cases are discussed below depending on whether the 

system (Eq. (2.56)) is linear or not. 
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Figure  3.5 Sketch example of flux function at cell interface for a three dimensional 

application showing the need for integration along the cell interface. 

 

 

3.2.4.1. Linear scheme for linear flow applications 

Water hammer flows are weakly nonlinear. In fact for most WH application, the convective 

terms, from which most instability rises, are usually neglected. This is because WH flow has 

very low Mach number (Mch = V*/a) where a is the wave speed and V* is a characteristic flow 

velocity (Vx or Vr). The typical wave speed in water- filled conduits is about 1000m/s whilst 

the flow velocity is usually around 1m/s which results in a Mach number of the order of 10-3. 

Therefore, this work considers the case of linear system for which the space integrals in 

Eq. ( 3.1) are easily evaluated at the central point and Eq. ( 3.1) becomes 
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3.2.4.2. Nonlinear scheme for nonlinear flow applications 

For nonlinear systems, exact Riemann solution should be used, but since it is 

computationally very expensive, approximate Riemann solvers ([127]) are used  where the 

Jacobian matrices (Eq. ( 3.6)) are evaluated explicitly at time t. This renders the system 

quasi-linear. On the other hand, nonlinear flows require special techniques to evaluate the 

spatial integrals in Eq. ( 3.1). The widely used technique is the Gaussian quadrature which 

evaluate the integrals at different Gaussian points ([64]). To achieve third order of accuracy 

for a two dimensional flow, at least two Gaussian points are required ([64]). The 

disadvantage of this integrations is the computational (CPU) time added. In fact, the WENO 

reconstruction procedure would need to be repeated twice along each direction where two 

fluxes in one cell interface are evaluated (one flux at each Gaussian point). A good 

discussion about implementation and computational power of ENO and WENO for general 

system of equations are given in ([11], [12]). Although only weakly nonlinear flows are 

considered, a nonlinear scheme based on two Gaussian points is developed in this work to 

check the accuracy of the linear scheme and could be used for future work where 

nonlinearity becomes important. Through numerical tests, both linear and nonlinear schemes 

showed similar results for modelling high frequency waves in water hammer flows. 

However, the CPU time of the nonlinear scheme is twice the CPU time of linear scheme 

which is due to the double fluxes computation at the Gaussian points.  

 

3.2.5. Time evolution 

MUSCL-Hancock approach is used for the 2nd order scheme which provides 2nd order 

accuracy in space and time. However, for 3rd and 5th order schemes, Runge-Kutta (RK) 

method is used for time evolution. Jiang and Shu ([64]) emphasized that high order scheme 

should use TVD RK methods to ensure stability of the scheme. However, it is found that the 

third order TVD RK scheme produces strong spurious oscillations. Although, the second 

order TVD RK scheme gave stable results, in this work the classical RK is used because it is 

generally used in the literature and produces stable results at second, third and forth order. 
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Moreover, for all the numerical test cases studied in this work, comparison between the 

classical third and second order RK schemes, showed similar results. Since, the third order 

scheme is computationally more time consuming, the second order scheme is generally used 

throughout this work. Details of the two and three stages TVD RK method are discussed in 

Jiang and Shu ([64]), and the details of the classical RK method could be found in Hirsch 

([58]).  

3.2.6. Viscous terms 

When viscous flow is considered, the viscous terms (see Eq. (2.58)) are discretized using a 

2nd order central finite difference scheme. Then, operator splitting is used to compute the 

following equation 

 
dU

S
dt

  ( 3.30) 

where U  is given by Eq. ( 3.4). The classical RK method ([58]) is used to solve Eq. ( 3.30).  

 

3.2.7. Boundary conditions 

The boundary conditions are imposed at four different locations namely: at the pipe wall 

(r = R), at the pipe centreline (r = 0), at upstream boundary of the pipe (x = 0) and at 

downstream boundary of the pipe (x = L), where R and L are the pipe radius and length, 

respectively. The details of the different boundary conditions used are listed below. 

3.2.7.1. Reflective boundary conditions 

The reflective boundaries are imposed at the pipe wall and they are given by 
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where bcN  is the number of fictitious cells added (which is equal to 2 for linear 

reconstruction and 3 for quadratic reconstruction); ng = {1, 2…Nbc} is a counter; and nv=0 or 

1 depending on whether the flow is inviscid or viscous, respectively. 

3.2.7.2. Symmetric boundary condition 

This type of boundary condition is applied at the pipe centreline to satisfy the axi-symmetric 

behaviour of the flow and they are defined as follows 
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. ( 3.32) 

3.2.7.3. Non-reflective boundary conditions 

To study solely the behaviour of high frequency waves in pressurized water-filled pipe, it is 

required to consider unbounded pipe system. Infinite (long) pipe is computationally very 

expensive to model, and instead, non-reflective boundary conditions at the upstream and 

downstream pipe boundaries are considered. Different non-reflective boundary conditions 

have been developed in the literature such as the characteristic boundary condition (CBC) 

([58], [59] [122], and [123]), buffer zone techniques and perfectly matched layer (PML) 

([107]). All non-reflective boundary conditions induce numerical reflections, and depending 
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on the flow application, some methods perform better than the others ([107], [19]). In 

general, all non-reflective boundaries are affected by the following two major factors  

(i) Angle of propagation: waves propagating in the normal direction towards the 

boundary induce the least numerical reflection. As the propagation angle deviates 

from the normal direction, numerical reflections increase. This is the most severe 

factor affecting non-reflecting boundary conditions ([107]). 

(ii) Wave frequency: Higher frequencies induce less numerical reflections ([52]).  

Although not necessary the most efficient, CBC is the most widely used method in flow 

dynamic application. This method is based on using the Riemann invariant (or characteristic 

lines) to eliminate waves propagating from the boundary into the numerical domain, and it is 

very easy to implement. This work uses the CBC method and this section gives details of its 

implementation in the developed schemes. The performance of CBC interaction with high 

frequency waves is studied in later section and the major factors in (i) and (ii) above are 

discussed. 

The CBC method is implemented at the upstream (x=0) and downstream boundaries (x=L) of 

the pipe, and therefore only the axial direction is considered. The splitted system of 

equations along the axial direction (Eq. ( 3.4)) is rewritten using the characteristic variables 

(
1D

x ) as follow ([127]) 
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and GL  is the left eigenvector of GJ  which is 
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and its inverse is 
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The characteristic lines are given by Toro, et al. ([127]) 
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which after simplification gives 
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Integrating Eq. ( 3.38), yields 
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where C 
 and C 

 are two constants called the Riemann invariants. 

Equation ( 3.39) is applied at the upstream and downstream pipe boundaries (see Figure  3.6) 

to obtain the unknown variables at the ghost cells as follows 
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 Non-reflective boundary conditions at the upstream boundary 
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 ( 3.40) 

where the subscript " " refers to values at infinity (i.e. values at the boundary if the pipe was 

infinitely long). 

 Non-reflective boundary conditions at the downstream boundary 

 

 

 

 

    
 

NX

NX

NX

NX 1 NX 1

,

, exp
2

,

, log ,
with 

log

bc g

bc g

bc g

bc g bc g

r i N n r

i N n

x i N n

x i N n i N n

x

V r x V

C C
r x

a

V r x C C

C V r x a r x

C V a







  

 

 

 

 



     



 

 

  

  
 


 

  

  


 ( 3.41) 



 

73 

Figure  3.6 Characteristic boundary conditions: to the left is the upstream boundary 

and the right is the downstream boundary. 

 

 

3.2.7.4. Source boundary condition 

The test rig that will be used in this work is depicted in Figure 3.7, where a wave is generated 

from a source located at x=L and only the left going waves are considered. The wave form at 

the source is given in Figure 3.8. This form is chosen because it is smooth and allows the 

modeller to select the desired frequency bandwidth (FBW). Its mathematical form is 
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 ( 3.42) 

where wc =2fc is the angular central frequency (in rad/s) with fc the central frequency (in 

Hz); PF is the pressure at the source; Ps=0.1P0 is the maximum pressure induced by the wave 

at the source with P0 the initial pressure in the pipe; twave is the duration of the wave 
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generated at the source; and   is a coefficient that controls the FBW and its effect is shown 

from Figures 3.8 and 3.9 which show the cases for 16   and 80  , respectively. The 

source is considered to be circular in shape with a given diameter Ds and located at the pipe 

centreline (Figure 3.7). Initially at time t = 0s, the fluid is at rest. The boundary conditions at 

the source are given by 
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 ( 3.43) 

Figure  3.7 Sketch of unbounded pipe system 
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Figure  3.8 Probing wave from ( 16  ). 
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(a) Left Time domain 

(b) Right Frequency domain 

Figure 3.9 Probing wave from ( 80  ). 
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3.2.7.5. Boundary conditions for Reservoir-pipe-valve system 

A reservoir-pipe-valve (RPV) system (Figure 3.10) is considered in Chapter 7 to study the 

generation of radial waves due to an ideal rapid valve closure. The boundary conditions for a 

reservoir located at the upstream boundary are given by  
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 ( 3.44) 

where Pres is the fixed pressure at the reservoir. The boundary conditions for a valve located 

at the downstream boundary are given by 

 0  ;   0  ;   0r xx L x L
x L

P
V V

x  



  


 ( 3.45) 

The RPV system is considered in Chapter 7 to study the special case of ideal suddend valve 

closure. 

Notice that in this case, the third-fifth order WENO scheme (Section 3.2.3) achieves at most 

3rd order accuracy. The robusteness and accuracy of this scheme for simulating sharp (non-

smooth) waves are discussed in Section 3.3.3. 

Figure  3.10 Characteristic boundary conditions 
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3.3. Study of the schemes features  

In this section, the test cases consider the pipe setup in Figure 3.7 where the flow is initially 

at rest. A smooth transient wave is generated at the source (x = L) with waveform as shown 

in Figure 3.9. Only inviscid flow is considered to study solely the performance of Riemann 

solver schemes. In all test cases, the radial and axial step sizes are equal ( r x   , where 

NRr R  ; NXx L  ; and R = D/2 and L are the pipe radius and length, respectively) to 

obtain the same dissipation along the different flow directions.  

3.3.1. Stability and accuracy order of the scheme 

Prior to using the developed schemes to conduct numerical experiments, it is imperative that 

their accuracy is tested using mesh refinement technique. The schemes showed stability for 

Courant-Friedrich-Lewy (CFL) number at about 0.1 to 0.3. For consistency in this work, 

CFL= a t x  =0.1 is used for all test cases. The L2 and L1 norms (e.g. [14], [110]) are used 

to compute the accuracy of the scheme. The results are summarized in Tables  3.1,  3.2 

and  3.3 for the second, third and fifth order schemes, respectively. Tables 3.1,  3.2 and  3.3 

show that the orders of accuracy of these three schemes are about 1.8, 2.9 and 4.5, 

respectively. The procedure of computing the order of accuracy is as follows 
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where the subscript "ref" and "exact" refer respectively for reference and exact case which 

are shown in Tables  3.1,  3.2 and  3.3. 
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Table  3.1. Mesh refinement convergence tests for the second order scheme (fc=1000Hz) 

# Order (L2 norm) Order (L1 norm) 

NR =5  - Ref. - - Ref. - 

NR =10  1.2016 1.1663 

NR =20 1.3529 1.3813 

NR =30  1.5010 1.5307 

NR =40  1.7836 1.8050 

NR =50 exact exact 

Table  3.2. Mesh refinement convergence tests for 3rd order scheme (fc=500Hz) 

# Order (L2 norm) Order (L1 norm) 

NR =3 1.9438 1.9369 

NR =5 2.0686 2.0395 

NR =10 2.3198 2.2771 

NR =15 2.5913 2.5605 

NR =20 2.9467 2.9284 

NR =30 - Ref - - Ref - 

NR =40 exact exact 

Table  3.3. Mesh refinement convergence tests for 5th order scheme (fc=1000Hz) 

# Order (L2 norm) Order (L1 norm) 

NR =25 - Ref. - - Ref. - 

NR =50 2.9599 3.3352 

NR =100 5.5955 5.8355 

NR =200 4.5717 4.8484 

NR =400 exact exact 
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A different approach based on computing the energy flux instead of the L1 and L2 norms 

could be used to determine the order of accuracy of a given scheme. For this purpose, the 

dissipation rate is defined by the rate of decay of the energy flux (see Eq. (2.137)) measured 

at 10m away from the source location. The period over which the energy flux is integrated is 

chosen such that the total injected energy passes through the cross sectional area at 10m 

away from the source. The dissipation rate is defined as follow 

 
 

 

10
%Dissipation per 10m 1 100

F

F

E x L m

E x L

  
   

  
 ( 3.48) 

Using the Dissipation rate defined in Eq. ( 3.48) as the norm   in Eq. ( 3.46), the accuracy 

of the second, third and fifth order schemes given in Tables 3.4, 3.5 and 3.6 show that the 

order of these schemes are 1.84, 2.9 and 4.8, respectively, which is consistent with the results 

from L1 and L2 norms. 

Table  3.4. Mesh refinement convergence tests for the second order scheme based on 

energy flux (fc=1000Hz). 

# Order ( FE  ) 

NR =5  - Ref. - 

NR =10  1.0126 

NR =20 1.5730 

NR =30  1.7741 

NR =40  1.8284 

NR =50 1.8484 
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Table  3.5. Mesh refinement convergence tests for 3rd order scheme based on energy 

flux (fc=1000Hz).   

# Order ( FE  ) 

NR =5 - Ref. - 

NR =10 2.4007 

NR =15 2.8725 

NR =20 2.9305 

Table  3.6. Mesh refinement convergence tests for 5th order scheme based on energy 

flux (fc=4000Hz).  

# Order ( FE  ) 

NR =10 - Ref. - 

NR =20 4.4993 

NR =30 4.8227 

 

3.3.2. Dissipation and computational time 

In this section the dissipation rate is defined as given in Eq. ( 3.48). It is observed that for 

energy dissipation below 2%, the measured pressure decay at a given location becomes very 

low. Therefore, 2% energy dissipation is set as a minimum convergence target for the 

different schemes. 

The computational (CPU) time is computed based on a non-parallel and non-optimized 

algorithm. For consistency, all test cases are run under the same algorithm structure. 

Therefore the CPU time computed here is for worse scenario and could be improved using 

optimized/parallelized algorithm structures. In this study, the CPU time unit is chosen to be 

in minutes (min). 
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Figure 3.11 compares the dissipation rate and the CPU time variation with NR between the 

second and third order schemes for the case of fc=500Hz. Figure 3.11a shows that the rate of 

dissipation is almost similar for these two schemes at frequencies within 500Hz. For NR=10 

and NR =15, the dissipation rate of the third order scheme is slightly less than the second 

order, but both are less than 2%. However, Figure 3.11b shows that the CPU time is twice 

higher for the third order scheme than for the second order scheme. This makes the second 

order scheme more efficient for simulating very low frequency (f < 500Hz) waves. 

Figure  3.11 Comparison of the dissipation rate and the CPU time between the second 

and third order schemes for the case of fc=500Hz 
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Figure 3.12 compares the dissipation rate and the CPU time variation with NR between the 

second, third and fifth order schemes for the case of fc=1000Hz. Figure 3.12a shows that the 

second, third and fifth order schemes achieve dissipation rate less than 2% for NR = 40, 

NR = 20 and NR = 5, respectively. In comparison with fc=500Hz case (Figure 3.11), 

Figure 3.12b shows that the third order scheme becomes much more efficient than the second 

order scheme for simulating waves at frequencies within 1kHz. Figure 3.12 shows that, for 

fc=1000Hz, the fifth order scheme gives slightly better efficiency in comparison to the third 

order scheme. On the other hand, Figure 3.13 gives the case for higher frequency where 

fc=4000Hz and shows that the efficiency of fifth order scheme increases whereas the second 

and third order schemes become computationally no longer practical. In fact, Figure 3.13 

shows that the fifth order scheme converges to 2% dissipation for NR=20, while the third 

order scheme converges to 50% for five times higher CPU time (Figure 3.13b) at NR = 40; 

and the second order scheme has even much lower efficiency than the third order. This 

shows that the second and third order schemes becomes computationally very expensive and 

unsuitable for simulating wave propagation at frequencies higher than 1 kHz.  

Figures 3.11,  3.12 and  3.13 illustrate the need for higher order schemes as the wave 

frequency increases. It is therefore very important to know which most efficient order of 

accuracy required for simulating wave propagation at a given frequency. The rest of this 

section determines an empirical equation that gives an "approximate" most efficient order of 

accuracy for a given frequency and desired CPU time based on the current RS (Riemann 

solver) schemes. 
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Figure  3.12 Comparison of the dissipation rate and the CPU time between the second, 

third and fifth order schemes for the case of fc=1000Hz 
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Figure  3.13 Comparison of the dissipation rate and the CPU time between the second, 

third and fifth order schemes for the case of fc=4000Hz 
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3.3.2.1. "Approximate" most efficient order of accuracy 

Denoting by NS the number of discretized FV per central wavelength (a/fc) which is given as 

follows 

 R X
S

c c c

N Na a a
N

f r f R f L
  


 ( 3.49) 
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Figure  3.14 Comparison of the dissipation rate with change of number of discretized 

FV per wavelength between the second, third and fifth order schemes. 
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Figure 3.14 compares the dissipation rate with respect to NS between the second, third and 

fifth order schemes for different central frequencies (fc). Figure 3.14 shows that each scheme 

converges for specific NS value for different frequencies. For example, the second, third and 

fifth order schemes converges respectively for an averaged 
b

SN  close to 
2

SN  = 250, 

3

SN  = 130 and 
5

SN  = 25 where the superscript "b" denotes the scheme order. Throughout 

different numerical tests and fitting, it is found that the following empirical equation holds 
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where b0 is a reference scheme order of accuracy. For example, if b0 = 2 and b = 5, Eq. ( 3.49) 

gives 2 5 10S SN N   which is close to the 
SN  ratio (~250/25) between the fifth and second 

order schemes observed in Figure 3.14. 

 

Moreover at convergence (Dissipation rate <2%), Eq. ( 3.49) gives 

 b b

R S c

R
N N f

a
  ( 3.51) 

where b

RN  is the NR used for the scheme of order b at convergence. On the other hand, the 

CPU time variation with NR for different schemes is fitted exponentilally as follows 

  CPUT exp   bb b RN   ( 3.52) 

where CPUTb  is the fitted CPU time function for a given scheme of order b; b  is a constant 

defining the CPU time at very low NR; and b  is the rate at which the CPU time increases. At 

convergence, Eq. ( 3.52) gives 
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. ( 3.53) 

Combining Eq. ( 3.51) and Eq. ( 3.53), yields 
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Inserting Eq. ( 3.54) into Eq. ( 3.50), yields 
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It is found that the rate 
b  is relatively similar for the three different schemes which is about 

0.084, 0.089 and 0.092 for the second, third and fifth order schemes, respectively. For the 

purpose of approximation, 
b  is assumed to be fixed at 0.1. Moreover, for simplicity, b  is 

also fixed to an average value of 1 min per 10m wave propagation for all schemes when 

using very small NR, and that b  increases linearly with the propagation length. For example, 

for 20m propagation, b  becomes 2min, etc. Choosing the second order as reference scheme 

order (b0 = 2) and assuming that 2

SN  is known, Eq. ( 3.55) for 10m wave propagation 

becomes 
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b c
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f
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 ( 3.56) 

Applying Eq. ( 3.56) for the case of R = 0.2m, a = 1000m/s, 2

SN  = 250 and desiring CPUTb  to 

be 15 min, the variation of the scheme order with fc could be obtained as shown in 

Figure 3.15. Figure 3.15 shows that for frequency ranging from 5kHz to 100kHz, the 

required order of accuracy increases from 5 to 8.  
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Figure  3.15 Approximated most efficient order of accuracy (Eq. ( 3.56)) variation with 

the central frequency (fc). 
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3.3.3. Numerical dispersion (classical WH test case) 

The schemes developed in this work are used in Chapter 7 to study the behaviour of high 

frequency (dispersive) waves in water-filled pipe system. Throughout different test cases and 

results in Chapter 7, it is shown that the proposed schemes have little numerical dispersion 

when modelling smooth HFW (see Eq. ( 3.42)) since they were able to capture the physical 

dispersive characteristics of HFW (see Chapter 7). This section investigates the robustness of 

the proposed scheme in simulating sharp (non-smooth) waves. 

The test case for non-smooth wave consists of a rapid valve closure in a RPV system (see 

Section 3.2.7.5) with initial flow. This is a typical test case for water-hammer application 

([137]). Inviscid and viscous-laminar flows are considered. The initial conditions for the 

inviscid flow case are uniform radial velocity distribution and constant initial pressure along 

the pipe given as follows 
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 ( 3.57) 

where   = kinematic viscosity in water ( 610  m2/s); eR  = Reynolds number (fixed at 

eR 500 ); D  = pipe diameter ( 0.4D  m); 0

xV  = constant initial velocity; 0  = initial 

density ( 0 1000  kg/m3); 0H  = initial pressure head ( 0 10H  m); 0P  = constant initial 

gauge pressure in the pipe. The viscous-laminar flow case is a Poiseuille flow with details as 

follows 
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 ( 3.58) 

For both cases, the length of the pipe is chosen to be L = 10m. For the case of inviscid flow, 

the method of characteristics (MOC) gives an exact solution for a sudden valve closure in a 

RPV system. Figure 3.16 gives the dimensionless pressure variation with time measured at 

the valve where the pressure magnitude is normalized by the Joukowsky pressure 

(PJou =
0

0 xV a ). The exact solution is compared with the results from the 2nd order MUSCL-

Hancock and the 5th order WENO schemes in Figures 3.16a and 3.16b, respectively. The 

results show that both schemes give accurate results except that the 5th order WENO scheme 

induces localized spurious oscillations near severe pressure jumps (Figures 3.16b).  
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Figure  3.16 Dimensionless pressure variation with time for the case of inviscid flow. A 

comparison between 2nd and 5th order schemes. 
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(a) Top 2nd order MUSCL-Hancock scheme 

(b) Bottom 5th order WENO scheme 

 

Figures 3.17a and 3.17b gives the dimensionless pressure variation with time for the case of 

viscous-Poiseuille flow using the 2nd order MUSCL-Hancock and the 5th order WENO 

schemes, respectively. In this case, radial waves are excited at the valve and therefore the 

oscillations observed in Figures 3.17 should not be thought of as spurious oscillations. The 

fact that the increase in pressure at the valve is twice as large as the Joukowsky pressure is 

because the maximum velocity at the centerline is twice the average velocity for a steady 

state pipe Poiseuille flow (Eq. ( 3.58)). These radial waves will be discussed later in 
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Chapter 7. The 2nd order MUSCL-Hancock and the 5th order WENO schemes are compared 

in Figures 3.18 and the results show that both schemes agree well except at the sudden jump 

where local pre/post-jump spurious oscillations are generated by the 5th order WENO scheme. 

These spurious oscillations are small and they are eliminated if the jump (i.e. valve closure) 

is slightly less severe. In fact, Figure 3.19 gives the case of linear valve closure with time 

closure tclosure = 1/a = 103 (s) and shows that the spurious oscillations are no longer 

generated although the time closure is vary small.  

Figure  3.17 Dimensionless pressure variation with time for the case of viscous. A 

comparison between 2nd and 5th order schemes. 
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In conclusion, the WENO scheme is quite robust for modelling both smooth and non-smooth 

flows. It is more efficient than the 2nd order MUSCL-Hancock scheme because it requires 

much less computational time. Indeed for this test case, the 5th order WENO scheme uses a 

mesh with NR =10 and NX=500 while the 2nd order MUSCL-Hancock scheme uses NR=50 and 

NX=2500, and yet the 2nd order scheme has much more dissipation as shown in Figures 3.17a 

where the radial waves after t = 4L/a become undetectable. 

Figure  3.18 Enlarged figure of dimensionless pressure variation with time for the case 

of viscous flow. A comparison between 2nd and 5th order schemes. (at the pipe centreline) 
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Figure  3.19 Dimensionless pressure variation with time for the case of linear valve 

closure using the 5th order WENO schemes.  
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3.3.4. Numerical reflections at the boundaries 

In Chapter 7, the behaviour of high frequency waves is investigated where non-reflective 

boundary are used to model infinite pipe length. The characteristic boundary condition (CBC) 

([19], [107], and [58]) is used to model the non-reflective boundary condition. Numerical 

reflections are difficult to eliminate and they depend severely on the propagation angle of the 

wave ([52]). As discussed in Chapter 2 (Section 2.6.4), waves at high modes propagate at 
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different angles and these angles vary with frequency (see Figure 2.13). This section studies 

the performance of CBC for high frequency wave's simulation. The numerical reflections are 

studied in terms of energy using the fifth order scheme. Denote by TE  the total injected wave, 

nE  the energy content in a given mode n and r

nE  the reflected energy from a given mode n. 

The energy quantities are computed using the numerical data and the energy equation 

derived in Chapter 2 section 2.5. The plane mode reflections are studied by considering a 

source diameter (see Figure 3.7) Ds = D such that no radial modes are generated. This case is 

referred as case 0. When studying the high mode cases, the source diameter is Ds = 0.2D. 

The frequency ranges used are [0.9 fc to 1.1 fc] where fc=3720Hz and fc=6800Hz cases are 

used. The fc=3720Hz case excites only the plane mode M0 and the first high mode M1. This 

case is referred as case 1. The fc=6800Hz case excites M0, M1 and the second high mode M2. 

This case is referred as case 2. The numerical reflections in different cases are shown in 

Figures 3.20 and 3.21.  

 

Figure  3.20 Pressure measurement with time at the pipe centreline showing the M0 

and M1 numerical reflection from CBC for the case of fc = 3715Hz. 
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Figure  3.21 Pressure measurement with time at the pipe centreline showing the M0, 

M1 and M2 numerical reflection from CBC for the case of fc = 6800Hz. 
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Table 3.7 gives the energy reflection for case 0 for the two different central frequencies 

(fc=3720Hz and fc=6800Hz). For case 0, the propagation angle is zero, and therefore, the 

difference in the reflected energy is only due to the change in frequency. Table  3.7 shows 

that numerical refection decreases as the frequency increases. Such feature is usually 

observed in other acoustic applications ([107], [52]). For case 0, the ratio between the energy 

reflections for fc=3720Hz and fc=6800Hz is about 1.56. Such ratio is set as reference of 

change in energy reflection due solely to change in frequency. 

Table 3.8 gives the energy reflection for case 1 and case 2. Table 3.8 shows that the M1 

energy reflection is much higher for case 1 (fc=3720Hz) than for case 2 (fc=6800Hz). The 

ratio between the M1 energy reflections in case 1 and 2 is about 26. Although the frequency 

is higher for case 2, the reflection ratio is too large (26   1.56) to be only due to frequency 

change. Such huge difference is, in fact, due to the change in propagation angle. As seen 

from Table  3.8, the M1 propagation angle for case 1 is twice higher than for the case 2. This 

illustrates that variation in the propagation angle affect severely the numerical reflection. 

Such effect is also observed in other acoustic application using CBC and other non-reflective 

boundary condition methods ([107], [52]). 
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From Table  3.8, the range of propagation angle is the same for M2 in case 2 and M1 in case 

1. Therefore, their energy reflection could be compared based on the change in frequency 

and mode number only. Table 3.8 shows that the ratio of energy reflection between M1 and 

M2 is about 1.4 (< 1.56) which is only slightly lower than the energy reflection ratio due 

solely to change in frequency. This shows that high modes have almost similar reflection 

rates at the same propagation angle. The slight difference in reflection ratio between M1 and 

M2 could be due to the radial wave form of high modes (see Chapter 7).  

In all the test cases investigating the behaviour of high frequency waves in unbounded pipe 

system, the pipe length is chosen such that the numerical reflections do not affect the domain 

of study. 

 

Table  3.7. Case 0: Plane mode wave reflection (Ds = D) 

Mode Frequency range 
Angle range 

(in degrees) 

0

r

T

E

E
 

M0 
[3350 4100] 

fc=3720Hz 
0 0.089% 

M0 
[6120 7480] 

fc=6800Hz 
0 0.057% 
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Table  3.8. M1 and M2 wave reflection (Ds = 0.2D) 

Case # Mode 
Frequency range 

(in Hz) 

Angle range 

(in degrees) 

r

n

n

E

E
 

1 M1 
[3350 to 4100] 

fc = 3715 

[48 to 65] 

1k (fc) = 55 
10.57% 

2 M1 
[6120 to 7480] 

fc = 6800 

[24 to 30] 

1k (fc) = 26.6 
0.3% 

2 M2 
[6120 to 7480] 

fc = 6800 

[48 to 65] 

2k (fc) = 55 
7.54% 

 

3.3.5. WENO "calibration" parameter 

In the WENO reconstruction procedure (see Section 3.2.3), a calibration parameter (  ) 

(Eq. ( 3.26)) is introduced in the weighting functions to avoid singularities. This section 

studies the effect of   on the numerical results. Figure 3.22 gives the pressure variation with 

time for different   values. Figure 3.22a shows that for  =1010 the signal has spurious 

oscillations. However, for  =106 (Figure 3.22b), the spurious oscillations are eliminated. 

When  is further decreased to 105 (Figure 3.22c), the numerical reflection is reduced and 

gets almost eliminated at  =104 (Figure 3.22d). However, when comparing the case of 

 =104 (Figure 3.22d) and  =106 (Figure 3.22b), it is found that the pressure amplitude is 

slightly reduced for  =104 case. It is therefore assumed that the nearly elimination of the 

M0 reflection is probably due to slightly extra numerical dissipation as   get reduced. In this 

work,  =106 is used. 
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Figure  3.22 Pressure variation with time at the pipe centreline for different   values 

(fifth order scheme; fc = 1000Hz; Ds=D). 
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3.4. Summary 

This chapter gives details of the 2D RS-based FV numerical scheme developed and used in 

this work. Its robustness and accuracy are tested for modelling dispersive high frequency 

waves in pipe flows. This chapter also gives details of the boundary conditions and test cases 

setups used. The 5th order scheme for smooth waves is used in Chapter 7 to study the 

behaviour of HFW. 
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4. CHAPTER 4 

 

WAVE SCATTERING IN UNBOUNDED PIPE SYSTEM 

 

4.1. Introduction 

Previous research showed that variation in the cross sectional area of a pipe induces a shift in 

the eigenfrequencies (natural resonant frequencies) with respect to the intact pipe case (e.g., 

[32], [106], [28], [27], [41], [117], [56], [89], and [112]). Such eigenfrequency shift is used 

as key input information for TBDDM ([32], [35], [106], [89], and [112]). These methods are 

still limited in terms of accuracy, convergence rate and pipe system complexity. One way to 

improve these methods is to understand the wave-blockage interaction mechanism causing 

the shift in eigenfrequencies. In this chapter, analytical and numerical methods are used to 

study the processes of transmission and reflection of a pressure wave in a one dimensional 

unbounded pipe system with non-uniformities in the cross sectional area. This choice allows 

(i) the examination of the direct interaction between waves and blockage without 

interference from other effects and (ii) to establish the existence of frequency bands where 

the signal reflection is enhanced (i.e., Bragg-type reflection or resonance) and others bands 

where total transmission is possible. Knowledge of which waves transmit and which do not, 

provides information on the coupling mechanism between the upstream and downstream 

regions of the blockage as well as the design of probing signals in TBDDM. 
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4.2. Bragg-type resonance effect in unbounded pipe system 

Prior to embarking on the analytical and numerical details, it is instructive to gain an 

appreciation of the complex interaction between waves and conduit non-uniformities. 

Consider a wave train generated by a sensor, a hydraulic device, or a transmitter of an 

acoustic communication system which propagates toward the conduit non-uniformity. 

Suppose that this incident wave train has a wave-number, k, and an angular frequency, w, 

and of the form exp(ikx-iwt) with 1i   . When this wave arrives to the non-uniformity in 

conduit's area, it is reflected and transmitted so that the wave field within the non-uniform 

region of the conduit is pref exp(ikx-iwt) + ptr exp(-ikx-iwt), where pref and ptr are the 

amplitude of the reflected and transmitted pressure wave (P), respectively. For the purpose of 

elucidation, the classical water-hammer equation in a frictionless pipe that results from the 

coupling of continuity and momentum ([13], [137], and [50]) and realizing that water supply 

systems are low Mach number flows is considered and has the following form ([50]): 
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 ( 4.1) 

where a is the acoustic wave speed; and A(x) and A0 are the area of the conduit in the non-

uniform region and the uniform region, respectively. Using a Fourier series expansion, one 

can write   0log mik x

m

m

A x A C e  where km and Cm are the wave-number and amplitude 

of the mth mode. Therefore, 
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which clearly shows that the right hand side resonates with the reflected wave when km  k = 

k and with the transmitted wave when km + k = k. That is, resonance occurs when  

  2mk k   ( 4.3) 

which is the classical Bragg resonance condition ([84]). Therefore, a wave propagating 

towards conduit's non-uniformities in crossectional area that involve a mode whose 

wavelength is half of the wavelength of the incident wave, cannot easily penetrate (transmit) 

through these non-uniformities (due to resonance). The implications of such result to defect 

detection are profound. Indeed, large reflection towards the source of the wave gives great 

potential for detecting the defect provided that the pressure sensor is situated between the 

generator and the defect ([36]).  

4.3. Analytical Investigation  

Consider the pipe system depicted in Figure 4.1. An incident wave train is initiated at infinity 

and propagates to the left towards the non-uniformity in the cross sectional area (blockage). 

The objective is to study the scattering effect imposed on the incident wave by the variation 

in the cross sectional area (non-uniformities). The variation in the cross sectional area is 

idealized as step function, and therefore, the whole system is equivalent to the junction of 

multiple pipes with different diameter.  

Introducing harmonic excitation at the source (see Figure 4.1) and using the method of 

separation of variables, one can assume that Eq. ( 4.1) has a solution of the form p(x,w) 

exp(iwt), where w and p(x,w) are the radian frequency and the amplitude of the propagating 

wave in the pipe, respectively. Noting that the cross section A varies from pipe to pipe but is 

constant for each pipe section, Eq. ( 4.1) for each pipe "j" (=1, 2, 3) becomes as follows: 

 

2

2 0
j

j j

d p
k p

dx
   ( 4.4) 
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where kj =w/a is the wave-number of the jth pipe segment. For simplicity but without loss of 

generality, the wave speed a is assumed to be the same for all segments. The solution of 

Eq. ( 4.4) is 

    exp exp
ref tr

j j j j jp p ik x p ik x    ( 4.5) 

where tr

jp  and ref

jp  are the transmitted and reflected wave amplitude in pipe j, respectively. 

The conditions of pressure and flow continuity at the junction of segments j and j+1 are: 
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1 1
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   at   ;  where 1,2,3...

j j j
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j j

j j

p p

x l l jdp dp
A A

dx dx



 




 


   




  ( 4.6) 

where jA  and jl  are the area and length of the jth pipe. Equations ( 4.5) and ( 4.6) together 

with the fact that the pipe is unbounded (i.e., 1

refp  = 0) can be solved for any number of 

blockages. For simplicity, only the solution for one and two blockages are given and 

discussed in this chapter. The extension to more than two-blockages is algebraically 

involved, but can be performed using software packages such as MATLAB.  

Figure  4.1 sketch of a pipe system with three blockages (non-uniformities) 
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4.4. One blockage case 

Considering one blockage case as shown in Figure 4.2 and solving for the boundary 

condition of pressure and flow continuity at each junction (Eq. ( 4.6)) by assuming no 

reflections from the upstream and downstream boundaries ( 1

refp = 0 and 3

trp  = 0p  with 0p  

the amplitude of the incident wave), lead to the final results  
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 ( 4.7) 

where 

 2 0A A   ( 4.8) 

Reflection from the blockage ( 3

refp ) and transmission through the blockage ( 1

trp ) have 

reciprocal relationship and therefore studying either of them leads to the same conclusions. 

Since the expression of the transmitted amplitude is easier, it will be considered for the 

analytical investigation. The norm squared of 1

trp  normalized by 0p  is: 
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 ( 4.9) 

The traditional approach used for the case of a bounded pipe (e.g., a reservoir in one end and 

a valve in the other ([32]), which will be discussed in Chapter 5 and Chapter 6, is to solve for 

the resonant frequencies by setting the denominator of the wave amplitude to zero. Such 

approach provides a quantitative measure of the impact of a blockage on the resonant 

frequencies of a pipe system and has been used to develop algorithms for blockage detection 

in pipes. However, the denominator of Eq. ( 4.9) is strictly positive. The absence of 

resonance in this case is due to the fact that the pipe considered is unbounded so that waves 
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transmitted from the blockage propagate towards infinity without reflection. That is, the 

unbounded pipe allows (i) the examination of the direct interaction between waves and 

blockage without interference from other effects and (ii) the investigation of which waves 

transmit least and by implication which waves reflect most towards the source. Knowledge 

of which waves transmit and which do not provides information on the coupling mechanism 

between the upstream and downstream regions of the blockage as well as the design of 

probing signals in TBDDM. For example Duan, et al. ([36]) used a blockage detection 

technique that relies on measuring the reflection coefficient. In their experimental work, they 

varied the central frequency of the generated wave to determine which waves reflect most, 

and consequently, led them to best accurate results. 

To find the frequencies for which 1

trp  is minimum and maximum, the first and second 

derivatives of Eq. ( 4.9) with respect to the frequency are performed and the results are: 

The frequencies at which maximum reflection occur are given by 

      2 2

2

cos 0    2 2 1   ;  1,2,3...
4
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a
kl w l m m
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 ( 4.10) 

and the frequencies at which maximum transmission occur are given by 

      2 2

2

sin 0    2 2 1   ;  1,2,3...
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kl w l m m
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 ( 4.11) 

Equation ( 4.10) indicates that if the blockage length is an odd multiple of the quarter 

wavelength, then maximum wave reflection from the blockage occurs. On the other hand, 

Eq. ( 4.11) indicates that if the blockage length is a multiple of the half wavelength, then the 

injected wave is totally transmitted through the blockage. Indeed, Duan, et al. ([36]) have 

noticed the condition of maximum reflection in their experiment.  

Figures 4.3 and 4.4 show the variation of transmitted and reflected amplitude with respect to 

the frequency (w) for two different blockage length l2, respectively. In order to investigate 

the effect of the radial extent,  =0.64,  =0.36 and  =0.16 are considered in 

Figures 4.3 and 4.4. The existence of Bragg-type resonance, where there are frequency bands 
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for which there is full transmission and others for which there is near complete reflection is 

clear in Figures 4.3 and 4.4 and occur for all parameters ranges. The frequencies at which 

maximum reflection and maximum transmission occur correspond to Eq. ( 4.10) and 

Eq. ( 4.11), respectively. The near complete reflection is due to multiple wave reflections 

from the junction boundaries of the blockage. For instance, consider the wave impinging on 

the blockage in region 2 (see Figure 4.2), upon reaching the right junction boundary, part of 

the incident wave gets reflected and part gets transmitted. The transmitted part of the wave 

propagates to the left and gets split into a reflected and transmitted once it reaches the left 

junction boundary. The reflected part gets split into a reflected and transmitted once it 

reaches the right junction boundary. The transmitted part, having the same phase as the 

impinging wave, resonates with the incident wave in region 3.  

From Eq. ( 4.10), the smallest frequency at which an incident wave suffers maximum 

reflection towards the source (i.e., minimum transmission through the blockage) is:  

 1 1

2

2 2 2
4

R R a
w f w f

l
       ( 4.12) 

That is, an incident wave whose wavelength is 4l2 interacts with the blockage in such a way 

that maximum reflection towards the wave source occurs. An analogous result is found for 

shallow water waves propagating in a channel that contains a shelf ([84]). The physical 

interpretation of Eq. ( 4.10) and Eq. ( 4.11) is as follows. Consider a train of waves generated 

at the source (Figure 4.2). Any wave in this train that arrives at the blockage (x=l2) 

experiences scattering whereby a part is reflected back towards the source and a part is 

transmitted towards the other end of the blockage(x=0). Once the transmitted part of the 

wave arrives at x=0, it gets scattered where a part is reflected towards x=l2. The result is that 

each wave in the train experiences multiple scattering at the two ends of the blockage x=l2 

and x=0 and interacts with the waves that are both ahead and after it in the train. Waves with 

frequencies given by Eq. ( 4.11) exhibit destructive interference at x=l2, while waves with 

frequencies given by Eq. ( 4.10) exhibit constructive interference at x=l2. It is precisely this 

type of interaction that TBDDM exploits to identify defects. For example, measuring the 

frequency spectrum of 1

trp  (Figure 4.3) allows the identification of the blockage properties. 
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The blockage length is determined by reading the lowest frequency at which the amplitude of 

the spectrum is minimum and plugging this value into the left hand side of Eq. ( 4.12). In 

addition, the radial extent of the blockage is inferred by reading the height of the first 

minimum of the frequency spectrum of 1

trp , plugging it into Eq. ( 4.9) and keeping the 

physically meaningful solution for which  <1. The result is: 
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 ( 4.13) 

Figure  4.2 Pipe system with one blockage 

 

 

Figures 4.3 and 4.4 show that wider blockage (extended blockage) leads to narrower 

frequency bands of the Bragg-type resonance. Moreover, Figures 4.3 and 4.4 show that the 

maximum reflection and the maximum transmission amplitudes are merely depending on the 

radial extent  and that these amplitudes increase for more severe blockages (as   

decreases). Figures 4.3 and 4.4a show that for severe short blockages, the frequency bands of 

maximum reflection becomes wider that the frequency bands of maximum transmission. 

This means that severe-short blockage (e.g. malfunctioning valve that is slightly opened) 
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reflects most of the waves an allows only narrow frequency bands to transmit through. Such 

features will help later analysis on eigenfrequency shift mechanism due to change in the 

cross sectional area in bounded pipe system (Chapter 5 and Chapter 6). 

Figure  4.3 Transmission amplitude variation with frequency 
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Figure  4.4 Reflection amplitude variation with frequency 
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4.4.1. Numerical Investigation 

Numerical tests are conducted using the method of characteristic (MOC) to study the wave 

reflection and transmission in an unbounded pipe system. The tests consider a blockage with 

length l2=3.6 and  = 0.16. The waveform of the incident wave in region 3 (see Figure 4.2) 

is given by  
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 ( 4.14) 

where wc is the central frequency and   is a coefficient that controls the frequency 

bandwidth (FBW). Figure 4.5 shows the time domain and the frequency domain of the wave 

form generated. Such wave form is chosen because it gives control on the FBW and the 

central frequency generated. As shown in Figure 4.5, very narrow FBW will be considered. 

The flow in the pipe is assumed initially stagnant. 3

IP  and 3

RP  denote the incident and 

reflected pressure wave in region 3, respectively; and P1 is the pressure wave in region 1. 

Figure  4.5  Input signal as transient source for numerical investigation 
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(a) Left Time domain 

(b) Right Frequency domain 

 

Figure 4.6 gives the time and frequency domain of the pressure signal at regions 1 and 3 

where the central frequency of the generated wave is 1

R

cw w  (Eq. ( 4.10)). According to the 

discussion in the previous section, maximum reflection occurs at 1

Rw w . Indeed, 
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Figure 4.6a shows that most of the wave is reflected comparing the transmitted wave shown 

in Figure 4.6c. Moreover, Figure 4.6b shows that the amplitude of the reflected wave has the 

same order of magnitude as the generated wave; whereas Figure 4.6c shows that the 

amplitude of the incident wave is much smaller.  

On the other hand, Figure 4.7 shows the case where the central frequency is 
2 12T R

cw w w   

(Eq. ( 4.11)). In this case, maximum transmission is predicted to occur. Comparing 

Figures 4.7a-b to Figures 4.7c-d shows that the amplitude of the reflected wave ( 3

RP ) is 

much smaller than the transmitted wave (P1). Figure 4.7b shows that the wave propagating at 

exactly 2

Tw  is completely transmitted as expected from Figure 4.3. 
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Figure  4.6  Pressure measurement in region 1 (upstream) and region 3 (downstream) 

of the blocked pipe system (Figure 4.2) when 
1

R

cw w  (Eq. ( 4.10)) 
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(a) Top left Time domain of the reflected pressure measurement in 

region 3 compared to the transmitted pressure in region 3. 

(b) Top right Frequency domain of the reflected pressure amplitude in 

region 3 compared to the transmitted pressure amplitude 

in region 3. 

(c) Bottom left Time domain of the reflected pressure measurement in 

region 1 compared to the transmitted pressure in region 3. 

(d) Bottom right Frequency domain of the reflected pressure amplitude in 

region 1 compared to the transmitted pressure amplitude 

in region 3. 
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Figure  4.7  Pressure measurement in region 1 (upstream) and region 3 (downstream) 

of the blocked pipe system (Figure 4.2) when 
2

T

cw w  (Eq. ( 4.11)) 
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(a) Top left Time domain of the reflected pressure measurement in 

region 3 compared to the transmitted pressure in region 3. 

(b) Top right Frequency domain of the reflected pressure amplitude in 

region 3 compared to the transmitted pressure amplitude 

in region 3. 

(c) Bottom left Time domain of the reflected pressure measurement in 

region 1 compared to the transmitted pressure in region 3. 

(d) Bottom right Frequency domain of the reflected pressure amplitude in 

region 1 compared to the transmitted pressure amplitude 

in region 3. 
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4.5. Two blockages case 

Considering the two blockages case (regions 2 and 4) shown in Figure 4.8, and applying 

Eq. ( 4.5) and Eq. ( 4.6) to solve for 1

trp  yields 
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 ( 4.15) 

where 4 4 0A A  . It is instructive to note that all terms in Eq. ( 4.15) that contain 

information about the radial extent of blockage 2 (i.e.,  ) and blockage 4 (i.e., 4 ) involves 

 2sin kl  and  4sin kl  in their coefficients, respectively. Therefore, information about 

blockage 2 is reduced if the probing length is such that  2sin kl  is small, where "small" 

refers to the sine function being of order 0.15 or less (i.e., an angle of  /20 or smaller). 

Similarly, information about blockage 4 is reduced if the probing length is such that  4sin kl  

is small. Therefore, to ensure identifiability of both blockages, it is important that the 

spectrum of the probing wave is wide enough such that the minimum ( 2kl , 4kl ) is 

significantly larger than  /20. In terms of wavelength, this requirement is that minimum 

(l2/ , l4/ ) is significantly larger than 1/40. The generalization of this result to N blockages 
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is that the minimum (lj/ ) >>1/40 for j=1,2,…N. This theoretical result is corroborated with 

the numerical results of next section.  

In fact, taking the limit when the length of one of the blockages (say blockage 2 in region 2 

(Figure 4.8)) is small in comparison to the probing length scale   such as l2 / <<1 results in 
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Now, if also l2 /  << , then Eq. ( 4.16) becomes 
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which is equivalent to the one blockage equation given by Eq. ( 4.7). Notice that Eq. ( 4.17) 

is reduced to a one blockages case when the blockage is assumed not very deep. This will be 

discussed further in the next section. 

Figure  4.8 Pipe system with one blockage 
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4.5.1. Frequency content versus resolution 

As seen from last section (Eq. ( 4.17)), the effect of a blockage may get neglected when its 

length scale is small. This section studies the effect of the probing frequency range (i.e. 

probing frequency bandwidth) on resolving multi-scale blockage in a pipe. For this purpose, 

a set of test cases, as described in Table  4.1, are conducted and analyzed. The method of 

characteristics (MOC) ([137], [13]) is used for the numerical tests cases (Test 1a and Test 

1b) and the results are compared with the analytical solution of the previous section. 

Table  4.1  Test cases with 2 blockages in unbounded pipe system 

 
Test 

1a 

Test 

1b 

Test 

2a 

Test 

2b 

Test 

2c 

Test 

3a 

Test 

3b 

Test 

3c 

l2 (m) 1.2 0.12 0.12 0 0.12 0.12 0 0.12 

A2/A0 0.5 0.5 0.5 1 0.5 0.16 1 0.16 

l3 (m) 2.1 0.21 21.1 21.1 21.1 21.1 21.1 21.1 

A3/A0 1 1 1 1 1 1 1 1 

l4 (m) 3.5 0.35 35.1 35.1 0 35.1 35.1 0 

A4/A0 0.25 0.25 0.25 0.25 1 0.25 0.25 1 

 

The following Gaussian-type impulse is used as injected wave at the source for the numerical 

tests. 
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where P0 is the initial pressure in the pipe. The Gaussian impulse is chosen because it allows 

the modeler to introduce and tests the system response to the desired bandwidth.  

Results of Test 1a and Test 1b are shown in Figure 4.9a and Figure 4.9b, respectively. Both 

tests include two blockages but the length scales of the blockages and the distance between 

the blockages are 10 times bigger for Test 1a. Comparing the results for Test 1a and 1b, it is 

first noticed that for the same accuracy of the frequency spectrum, the wave frequency 

bandwidth (FBW) needed for Test1b is 10 times larger than the FBW used in Test 1a. 

Therefore, the smaller the length scale of the blockages are, the wider must be the generated 

FBW. This result is in good agreement with the analytical solution (see Eq. ( 4.15)) of the 

previous section which shows that the natural scaling parameter for a blockage with length l 

and a probing wave with length   is l / . Therefore, the wave-blockage interaction for a 

blockage with length l and a probing wave with length   is the same as that of a blockage of 

length l /10 and  /10. Second, it is clear that when wider FBWs are used, more information 

on the frequency spectrum are given and by consequences more accurate TBDDM analysis 

can be conducted ([71]). 



 

118 

Figure  4.9 Comparison of the transmitted wave amplitude for at different central 

frequencies with the exact 1D analytical solution  
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Test 2a includes two blockages with one blockage being much smaller than the other (see 

Table  4.1) so as to show the effect of mixed blockage length scales. In Figure 4.10, this test 

is compared with test 2b and test 2c where only one blockage (either the large or the small 

one) is considered (see Table  4.1). The analytical solution shows that the detectability of 

both blockages requires a probing wave such that minimum (l2/  , l4/ )>>1/40. Using the 

data of Test 2a, this requirement leads to   <<0.12×40m5m and l2/  = (0.12/35.1) l4/  

>>1/40 (i.e., l4 / >>7). Indeed, Figure 4.10a shows that the small blockage has no influence 

on the results when l4/  is about 2 or less. In fact, the influence of the small length blockage 
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first becomes perceptible only when l4/  is about 5 or larger (Figure 4.10b). The effect of 

the small blockage is prominent once l4/  exceeds 10 (Figure 4.10c) or equivalently when 

and l2/  exceeds about 1/30. Figure 4.10d shows wide bandwidth plot of the transmitted 

wave amplitude for tests 2a-c. The green curve is for the case of a small blockage only. The 

minimum transmission for test 2c occurs when 4l4/  is around 290. Since this is a single 

blockage, then Eq. ( 4.10) applies and predicts that the minimum transmission (maximum 

reflection) occurs at minimum kl2= /2. (i.e., l2/  = 1/4). Since l2/ l4= 0.12/35.1, then l2/  = 

1/4 is equivalent to 4l4/  = 292.5 which is very close to the 290 read from the Figure 4.10d. 

In fact, envelope of the minimum values of the blue curve is approximately the superposition 

of the red and green curves. That is, the interaction between the wave and the two blockages, 

one small and one large, is the superposition of the results for the case of wave-large 

blockage interaction and the case of wave-small blockage interaction. 
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Figure  4.10 Comparison of transmitted amplitude for tests 2a, 2b and 2c  
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As seen from Eq. ( 4.16), if the area of the blockage is very small (i.e. severe blockage), then 

the influence of the blockage would be distinct even at a low frequency. Test 3a-c are 

designed to verify this behavior where the area of region 2 (see Figure 4.8) being too small 

(see Table  4.1). The results of these tests are shown in Figure 4.11. Both the analytical 

solution and the numerical results show that for blockages with Aj/A<<1, strong interaction 

between the injected wave and all blockages occurs provided that minimum (lj/ )×( A/Aj) is 

of order 1. 
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Figure  4.11 Transmitted amplitude at different bandwidth for tests 3a, 3b and 3c 
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4.5.2. Periodic blockages 

Taking the special case where the lengths of the two blockages and the spacing between 

them is the same (i.e. 2 3 4 bl l l l    with bl  is the length of the blockage), and where 

A2 = A4. In this case, Eq. ( 4.15) becomes 
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 ( 4.19) 

where 4 0 2 0A A A A   .  

Figure 4.12 gives a comparison between the variation of transmitted amplitude with 

dimensionless frequency for the case of a single blockage and two periodic blockages, 

respectively. Figure 4.12a gives the case for  = 0.16 and Figure 4.12b gives the case for 

 = 0.64. Figure 4.12 shows that, for the case of two periodic blockages, total transmission 

and local minimum transmission occur at frequencies that are different from the Bragg 

resonance frequencies (Eq. ( 4.10) and Eq. ( 4.11)). The conditions of maximum and 

minimum transmission are obtained by equating to zero the derivative of 1
trp  (Eq. ( 4.19)) 

with respect to k which gives 
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The first and second conditions in Eq. ( 4.19) give the Bragg resonace frequencies of 

maximum reflection (Eq. ( 4.10)) and total transmission (Eq. ( 4.11)) found for the one 

blockage case, respectively. The two additional conditions in Eq. ( 4.19) are due to the effect 

of the added blockage. Inserting the four conditions in Eq. ( 4.19) gives respectively 
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 ( 4.21) 

Equation ( 4.21) shows that the second and third condions in Eq. ( 4.19) give total 

transmission, whereas the two others give minumum transmission whith the least 

transmission given by the first condition. Therefore, the third condition in Eq. ( 4.19) gives 

the extra frequencies of total transmission as follows 
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For example, for m = 1, Eq. ( 4.22) gives  1 10.16 0.3243Rw w   which is as shown in 

Figure 4.12a. On the other hand, the fourth condition in Eq. ( 4.19) gives the extra 

frequencies of minimum transmission as follows 
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For example, for m = 1, Eq. ( 4.23) gives  1 10.16 0.1817Rw w   which is as shown in 

Figure 4.12a. As shown by compairing Figure 4.12a and 4.12b, those extrat frequencies of 

total and minimum transmission varies with  . For example, Eq. ( 4.22) gives 

 1 10.64 0.4847Rw w   which is as shown in Figure 4.12b.  
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Moreover, both one single blockage and two periodic blockages give minimuum 

transmission (i.e. maximum reflection) at the Bragg resonance of maximum reflection 

(Eq. ( 4.10)). However, for the case of one blockage, the minimum transmission is given by 

inserting Eq. ( 4.10) into Eq. ( 4.9) which leads to 
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 ( 4.24) 

Comparing Eq. ( 4.24) and the first equation in Eq. ( 4.19) shows that, at the Bragg 

resonance of maximum reflection (Eq. ( 4.10)), the two periodic blockages behaves as a 

single blockage but with more severe blocked area (i.e 2
2 0 1bA A   with 1b  is the area ratio 

for single blockage case) as shown in Figure 4.12. Although not presented in this work, but 

similar effect of additional total and local minimum transmission as well as inhanced 

maximum reflection occur for larger number of periodic blockages ([80]).  
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Figure  4.12 Transmission amplitude variation with frequency: comparison between 

one blockage and two periodic blockages cases. 
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4.6. Summary 

This chapter used analytical and numerical means to investigate how waves interact with 

non-uniformities with varying length scales and establishes the existence of Bragg-type 

resonance in water pipe systems. This understanding is pre-requisite for developing inverse 

techniques where measured wave signals are used to infer the size and location of blockages. 

This is accomplished by introducing a harmonic wave with wavelength   into an unbounded 
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pipe of area (A) containing N blockages. Each blockage is modelled as a pipe segment of 

length lj and area Aj, where j=1, 2,…N. The key conclusions are: 

(i) Waves experience enormous reflections (Bragg-type resonance) due to the non-

uniformities for a particular frequency range and maximum transmission otherwise. 

The ranges of large reflection and maximum transmission convey much 

information about the non-uniformities and are fundamental to defect detection in 

pipes.  

(ii) As expected, the wave length   and the intact pipe diameter are found to be the 

natural length scales in the longitudinal and radial direction, respectively. 

(iii) For blockages with small radial extent (i.e.,  ~1), strong interaction between the 

injected wave and all blockages only occurs if the probing wavelength is such that 

the minimum lj/ >>1/40. Any probing wave and blockage whose length scales do 

not satisfy this criteria do not interact (i.e. a wave passes through without 

interaction with any blockage whose length is significantly smaller than  ) 

(iv) For severe blockages (i.e.  <<1), strong interaction between the injected wave and 

all blockages occurs provided that minimum (lj/ )×(A/Aj) is of order 1.  

(v) Wider blockage (extended blockage) leads to narrower frequency bands of the Bragg-

type resonance.  

(vi) The maximum reflection and the maximum transmission amplitudes are merely 

depending on the radial extent  and that these amplitudes increase for more 

severe blockages (as   decreases).  

(vii) For severe-short blockages, the frequency bands of maximum reflection become 

wider that the frequency bands of maximum transmission. This means that severe-

short blockage (e.g. malfunctioning valve that is slightly opened) reflects most of 

the waves and allows only narrow frequency bands to transmit through.  

(viii) The addition of more blockages showed that the equations and analysis became 

involved and require further attentions. Initial results show that Bragg resonance 

effects occur for the case of multi-blockages. These preliminary results show that 

there exists regularity (periodicity) in the distribution of the Bragg resonances 

frequency bands.  
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(ix) The special case of of periodic blockages is stidied. Results show that two periodic 

blockages behave as a one single blockage but with more severe blocked area (i.e 

2
2 0 1bA A   with 1b  is the area ratio for single blockage case). Therefore, under 

transient events, periodic irregularites in the pipe crossectional area could induce 

very large pressure which might lead to weakening of the pipe wall condition and 

therefore increasing the potential for leaks!  

Next chapter studies the mechanism of eigenfrequency shift due to blockage-wave 

interaction in bounded pipe system, and shows the effect of Bragg-type resonance on the 

eigenfrequency shift. Moreover, the conclusions on wave-blockage interaction in unbounded 

pipe system, such as the blockage length effect, will be shown to have direct implication on 

the eigenfrequency shift mechanism in bounded pipe system. 
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5. CHAPTER 5 

 

WAVE SCATTERING IN BOUNDED PIPE SYSTEM: STUDY OF 

THE EIGENFREQUENCY SHIFT DUE TO A BLOCKAGE AT 

THE BOUNDARY 

5.1. Introduction 

The problem of using a measured pressure trace to infer the internal shape of a conduct is of 

interest to water supply researchers. In particular, it is found that the eigenfrequencies of a 

measured pressure signal vary with the cross sectional area of the conduit (e.g. [112], [89], 

[28], [27], [106], and [32]). So far, most of the focus in the literature is on employing inverse 

problem techniques that use the eigenfrequency shift information for the reconstruction of 

the cross sectional area function of a pipe system (e.g. [32], [35], [25], [120], [113], [106], 

[105], [92], [91], [118], [28], [27], [41], [117], [56], [89], and [112]). This chapter, on the 

other hand, focuses on studying the forward approaches to understand the mechanism 

causing such eigenfrequency shift and how it behaves under both shallow blockage (with 

small radial protrusion) and severe blockage (with large radial protrusion) cases. Such 

understanding is essential to improve the accuracy and the convergence rate of inverse 

techniques for TBDDM and cross-sectional pipe assessment. This chapter considers a 

blocked pipe system with a blockage located at the boundary. Such system consists of the 

junction of two pipes with different diameter which is the simplest configuration of blocked 

pipe system. A more involved blocked pipe system with an interior blockage will be 

considered in the next chapter.  

5.2. Problem statement 

Duan, et al. ([32]) formulated the following dispersion relationship for the case of an 

arbitrary number of unknown blockages, N: 
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  ; m mk w a  and wm are the wavenumber and the resonant 

frequency (eigenfrequency) of the mth fundamental (resonant) mode, respectively; a is the 

acoustic wave speed, which is assumed to be unaffected by the blockages; g is the standard 

gravitational acceleration; S = total number of junctions between blockages and the 

unblocked section (i.e. N  = N−1); N  = 2N-1; j,   and   are counting numbers; nJ  = 0 or 1 

and represents the number at nth binary position of j. Applying Eq. ( 5.1) to the blocked pipe 

system in Figure  5.1 gives: 

        2 1 2 1cos cos sin sin 0m m m mk l k l k l k l   ( 5.2) 

where 2 0/A A  , A0 is the cross sectional area of the intact pipe section whose length is l1, 

A2 (A2<A0) is the cross sectional area of the blocked pipe section whose length is l2, L=l1+l2 is 

total pipe length, and m mk w a  is the wavenumber of the mth fundamental (resonant) mode. 

Trigonometric manipulation of Eq. ( 5.2) gives 

        2 1cos 1 sin sin 0m m mk L k l k l    ( 5.3) 

Note that the second term in Eq. ( 5.3) represents the effect of the blockage on the dispersion 

relation. In fact, for 1  , this second term vanishes and Eq. ( 5.3) becomes identical to the 

dispersion relation of an intact reservoir-pipe-valve (RPV) system (Eq. (2.54)). 

Figure 5.2 plots the eigenfrequency variation with dimensionless length 2 2l L   for the 

first four modes (m = 1, 2, 3 and 4) and for different values of  . Since 1   represent the 

eigenfrequencies of the intact pipe case, these eigenfrequencies are independent of 2  and 

are shown as horizontal lines in Figure 5.2. When 1  , the second term on the left hand 

side of Eq. ( 5.3) is not zero. Therefore, the eigenfrequency at a given mode m ( mw ) deviates 
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from its intact case ( 0

mw ) (see Figure 5.2). In fact, Figure 5.2 shows that the eigenfrequencies 

for 1  are oscillating with respect to the eigenfrequencies of the intact case ( 0

mw ). The 

eigenfrequency shift  0

m m mw w w    takes positive values for some range of blockage 

length 2 , negative values for some range of blockage length 2 , and equal zero for 

particular values of blockage length 2 . In addition, Figure 5.2 shows that the eigenfrequency 

shift ( mw ) becomes pronounced with the severity of the blockage (i.e., as   gets smaller), 

except for some special values of 2 where the eigenfrequency shift is zero regardless of the 

severity of the blockages. Furthermore, Figure 5.2 shows that for 2  ≠ 1/2, the maximum 

eigenfrequency shift occurs at different blockage lengths as the blockage severity increases 

(i.e. the value of 2 which mw is an extremum varies with  ). On the other hand, 

mw reaches its extremum at 2 = 1/2 regardless of the value of  .  

The primary objective in this section is to provide physical and mathematical insights that 

can explain the above observations that emerged from Figure 5.2. Such understanding is 

presently lacking; yet, this insight is essential if the dispersion relation (Eq. ( 5.1)) is to 

become a viable approach for identifying blockages in fluid lines. 

Figure  5.1 Reservoir-pipe-valve system with change in cross-sectional area. 

 



 

132 

Figure  5.2 Dimensionless eigenfrequency variation with dimensionless length 2  for 

the first four modes with different   values. 
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5.3. Harmonic solution for the case of blockage at the boundary 

The transfer matrix method ([13]) can be used to determine q and h at any location 1x l  in 

the junction pipe system (Figure  5.1) as follow 
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 ( 5.4) 

where m represents the mth natural harmonic mode and mk  is the mth wavenumber. Equation 

( 5.4) can be written as  
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 ( 5.5) 

where 
11U , 

12U , 
21U  and 

22U  can be determined from the matrix multiplication in 

Eq. ( 5.4). The pressure head and discharge at the reservoir are given by (see Section 2.3) 
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 ( 5.6) 

where 
amp

mq  and 
amp

mh  are the maximum flow and pressure head amplitudes which are 

complex constants, respectively; C is a complex constant of integration. Using Eq. ( 5.6), 

Eq. ( 5.5) yields 
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Obtaining 11U  and 21U  from Eq. ( 5.4) leads to  
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 ( 5.8) 

where  =A2/A0; q  and h  are the dimensionless discharge and pressure head, respectively. 

The normalized kinetic energy ( mT ) and potential energy ( mU ) at a given location 

1x l  can be obtained from Eq. ( 5.8) as follows  
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 ( 5.9) 

where m mk w a  is the mth wavenumber, mw  is the mth eigenfrequency (natural resonant 

frequency of the system) with the subscript "m" refers to the mth resonant mode. Applying 

the boundary condition at the valve (x =L) where the flow and the kinetic energy are zero, 

Eq. ( 5.9) leads to Eq. ( 5.2).   

5.4. Analysis and discussion of frequency-blockage interaction for blockage with 

small radial protrusion (i.e.   near 1) 

5.4.1. Relationship between eigenfrequency shift and change in energy 

The principle of action invariance, which states that the action is invariant for processes 

whose time scale is significantly larger than the period of oscillations, was successfully used 

by [112] to show that the shift in frequency due to change in area in a vocal tract is related to 

the change in total energy brought about by the work done on air by the contraction and 
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expansion of the vocal tract. In this section, the principle of action invariance is applied to 

the blockage shown in Figure 5.1. The derivation that follows is along the lines of that 

proposed by Fant ([41]).  

The potential energy (Um) and kinetic energy (Tm) per unit length for the mth mode are ([65]) 
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( 5.10) 

where hm, qm and Vm are the unsteady pressure head, flow discharge and flow velocity of the 

mth mode, respectively; 0  is the fluid density; Um, Tm and Em are potential energy, kinetic 

energy and total energy for the mth mode, respectively; a is the acoustic wave speed; g is the 

standard gravitational acceleration constant; A0 is the intact cross sectional area of the pipe.  

5.4.1.1. Short (discrete) blockage 

Consider a short section of the blockage with length ∆x and with radial extent small enough 

so that the associated changes in head and flow are small and can be neglected. As a result, 

the changes in kinetic, potential and total energies of mode m are:  
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( 5.11) 

where 2 0 0A A A     =   01 A   such that 2 0A A   is the dimensionless change in pipe 

cross sectional area due to the blockage. Equation ( 5.11) shows that a small localized 

blockage increases the kinetic energy and, conversely, reduces the potential energy. To 

explain, the blockage occupies some space that was occupied by the fluid prior to the 

formation of the blockage. Therefore, the mass of the fluid in the blockage region is smaller 

by a factor of (1 ) than the mass that was there before the blockage was formed. Since the 

change in head due to the small blockage is negligible (see Figure  5.3), the reduction of 

mass by a factor of (1 ) results in reduction in potential energy by the same factor. Since 

the change in flow rate due to the small blockage is negligible (see Figure  5.3), the flow 

velocity at the blockage is 1/  times the flow velocity without the blockage. The reduction 
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in mass and increase in velocity due to the blockage result in an increase in kinetic energy by 

a factor of 1/(1 ). 

The explicit dependence of energy on frequency is brought about by considering the 

momentum and continuity equations (Eq. (2.48)) :  
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where 1i    and the superscript "0" denotes intact pipe case. Therefore, the kinetic energy 

for the case with and without blockage are 
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where 0

mw  is the mth eigenfrequency for the case without blockage, and I

mw  is the mth 

eigenfrequency for the case with blockage that would result from the change in kinetic 

energy only.  

Dividing Eq. ( 5.14) by Eq. ( 5.15) yields 
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While the change in kinetic energy shifts the frequency of mode m from 
0

mw  to 
I

mw , the 

change in potential energy shifts the frequency of the same mode from 
I

mw to 
II

mw . Therefore,  
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Dividing Eq. ( 5.17) by Eq. ( 5.18), yields 
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Multiplying Eq. ( 5.16) with Eq. ( 5.19) yields 
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 ( 5.20) 

Since a small blockage results in small change in energy, Eq. ( 5.20) can be rewritten as:  
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 ( 5.21) 

Using Taylor expansion and neglecting second order terms, Eq. ( 5.21) becomes 
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The equipartition theorem for linear wave problems states that ([84]):  
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E
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where 
0

mE  is the total energy of the mode m for the case without blockage. Inserting Eq. 

( 5.23) into Eq. ( 5.22), yields 
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 ( 5.24) 

where mw  and mE are the eigenfrequency shift and the change in energy due to the 

blockage of the mth mode, respectively. The same relation arises in many areas such as 

quantum mechanics, where it is referred to as the Ehrenfest theorem ([37]), and classical 

mechanics (e.g., oscillations of pendulums and acoustic waves in vocal tracts ([112]). Using 

Eq. ( 5.11), Eq. ( 5.24) becomes 
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 ( 5.25) 

It is clear from Eq. ( 5.25) that mw  is proportional to 0

mw . Thus, the eigenfrequency 

shift mw will only become visible for very large frequencies 0

mw . Such high frequencies 

cannot be generated by mechanical devices such as valves and are susceptible to viscous 

dissipation even if they could be generated. It is for this reason that the focus in the literature 

is to develop detection methods for discrete blockages on the basis of local damping that 

such blockages generate (e.g., [99], [134]) rather than on the basis of the small shift that they 

produce.  

5.4.1.2. Extended blockage 

The eigenfrequency shift due to extended blockage such as the one shown in Figure  5.1 is 

determined by integrating Eq. ( 5.25) along the pipe as follows: 
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   ( 5.26) 

where 
mw  and 

mE  are the shift in eigenfrequency and the change in energy due to the 

extended blockage, respectively. Note that A  came out from under the integral because it is 

a constant for the example being considered (Figure  5.1). The pressure head and discharge 

solution for an intact Reservoir-Pipe-Valve system are (Eq. (2.52)): 
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where C is a complex constant of integration ; amp

mh  and amp

mq  are the mth maximum complex 

amplitudes of pressure head and flow discharge, respectively. Inserting Eq. ( 5.27) into Eq. 

( 5.10) gives 
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and inserting Eq. ( 5.28) into Eq. ( 5.25) yields 
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   ( 5.29) 

Equation ( 5.29) shows that the eigenfrequency shift is related directly to the change in 

energy for blockages whose radial extent is small enough that the head and flow of each 

mode for the blocked pipe are approximately equal to the blockage-free case (i.e., hm and qm 

with and without blockage are the same (see Figure  5.3)).  

Inserting Eq. ( 5.27) into Eq. ( 5.29) and carrying out the integration gives  
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Using Eq. (2.54) yields 
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which gives 
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 ( 5.32) 

Equation ( 5.32) is consistent with the form in Qunli and Fricke ([105]) and 

Duan, et al. ([35]), and shows the explicit relationship between eigenfrequency shift and 

change in energy resulting from the extended blockage. It is clear from Eq. ( 5.32) that when 

  tends to 1 (i.e., blockage-free case), both the eigenfrequency shift and the change in 

energy approach zero for all 2 . In addition, Figure 5.4 plots the eigenfrequency variation 

given by Eq. ( 5.32) as well as that given by the full dispersion relation (Eq. ( 5.3)) for the 

case of mode m = 2. Good quantitative agreement between Eq. ( 5.3) and its approximate 

form (Eq. ( 5.32)) is found for 0.7  . There is overall qualitative agreement between these 

two equations for all  . Although not plotted here, a similar conclusion is found for other m 

modes. Such agreement supports the application of the principle of action invariance to 

analyse the eigenfrequency shift induced by a blockage in terms of the change in energy in a 

pipe due to the presence of blockage. 

It could be shown that Eq. ( 5.32) is symmetric around 2 =0.5 which agrees with the 

symmetry feature observed in Figure 5.2. This symmetry feature is a special instance of the 

junction case under consideration, and therefore is not general to all random variation of 

blockages in a pipe system. More involved and complex blockage in a pipe will be 

considered in future work. 
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Figure  5.3 Pressure head and flow harmonics variations for shallow blockage 

( 0.8  )                      

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

1.5

x / L

d
im

e
n

si
o

n
le

ss
 p

re
ss

u
re

 h
a
rm

o
n

ic

 

 

intact case

with a blockage of length 
2
 = 0.1

0 1/6 1/3 0.5 2/3 5/6 1

1

0.5

0

0.5

-1

x / L

d
im

e
n

si
o

n
le

n
ss

 f
lo

w
 h

a
rm

o
n

ic

 

 

intact case

with a blockage of length 
2
 = 0.1

(a)

(b)

 

(a) Top Pressure head harmonic at m = 2 

(b) Bottom Flow harmonic at m = 2 

 

 



 

142 

Figure  5.4 Normalized eigenfrequency variation with length 2  for m = 2: 

comparison between exact solution (Eq. ( 5.3)) and approximate solution (Eq. ( 5.32)) 

(Energy approach).                        
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5.4.2. Work of the radiation pressure 

The change in energy of the mth mode, given by Eq. ( 5.32), is due to the work done to form 

the blockage ([112]). This work is performed against the radiation pressure and it is derived 

below. To relate the change in energy to the work of the radiation pressure ([7], [6]), 

multiply Eq. ( 5.13) by the complex conjugate of head ( 0

mh ) and Eq. ( 5.12) by the complex 

conjugate of the velocity ( 0

mV ). Taking the difference gives 
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Adding 
0 0

0 0m m
m m

dV dV
h h

dx dx
  to the left hand side of Eq. ( 5.33) gives 
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Note that 
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where according to Eq. ( 5.13),  
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and therefore, 
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The work of the radiation pressure to form the blockage is: 
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Equation ( 5.39) shows that  
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Using Equation ( 5.29) gives 
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and "Re" denotes real part. Equation ( 5.41) shows that the eigenfrequency shift depends on 

the difference between the works done at the blockage boundaries. For the current case of a 

blockage at the downstream boundary, the work at the valve is always zero, and therefore, 

Eq. ( 5.41) becomes 
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Inserting Eq. ( 5.27) into Eq. ( 5.43) leads to Eq. ( 5.32). 

 

5.4.3. Analysis and discussion of the zero eigenfrequency shift 

Figure  5.2 shows there is zero shift for m = 1 at 2 = 0, 1; m = 2 at 2 = 0, 1/3, 2/3 1; m = 3 

at 2 = 0, 1/5, 2/5, 3/5, 4/5, 1, and m = 4 at 2 = 0, 1/7, 2/7, 3/7, 4/7, 5/7, 6//7, 1. This result 

can be generalized for all m by setting Eq. ( 5.32) to zero: 
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 ( 5.44) 

Equation ( 5.44) gives the length of the blockage for which the mth mode experiences no 

shift. Note that the condition that   ≤ 2m is due to the fact that the blockage cannot be 

longer than the pipe (i.e., 2   ≤ 1). The values of 2  where zero frequency is obtained from 

Figure  5.2 can be derived by evaluating Eq. ( 5.44) for m = 1, 2, 3 and 4. For example, 

evaluating Eq. ( 5.44) for m=2 gives  2 2,1 0  ,  2 2,2 1 3  ,  2 2,3 2 3   and 

 2 2,4 1  . These values correspond to the zero shift locations shown in Figure  5.2. 

From an energy perspective, Eq. ( 5.29) shows that the zero shift of the mth mode occurs 

when the blockage produces either (i) zero change in the potential energy and the kinetic 

energy or (ii) non-zero but equal change in potential and kinetic energy. This is illustrated in 

Figure  5.5 for m=2. It is evident that the change in potential and kinetic energy are non-zero, 

but equal at 2 = 1/3, while the change in both potential and kinetic energy are zero at 2 = 0, 

2/3, 1 (see Figure  5.5).  

The zero eigenfrequency shift of mode m due to a blockage means that the work done by the 

radiation pressure to form the blockage is zero ([112]). According to Eq. ( 5.43) this work is 

zero when either the pressure or velocity at the edge of the blockage is zero. When the 

blockage extends from the valve to x = 2L/3, the pressure of mode m = 2 is zero at x = 2L/3 

(see Figure  5.6). Therefore, the work of the radiation pressure is zero implying the change in 

energy of mode m = 2 is zero and, thus, the eigenfrequency shift is zero. When the blockage 

extends from the valve to x = L/3, the velocity of mode m = 2 is zero at x = L/3 (see 

Figure  5.6). Therefore, the work of the radiation pressure is zero implying the change in 

energy of mode m = 2 is zero and, thus, the eigenfrequency shift is zero. In general, the 

eigenfrequency shift of mode m is zero when the values of (
0 0

m mh V ) of this mode at either end 

of the blockage are equal. 

Physically, when the blockage extends from the downstream end to the pressure node ( 2 = 

2/3, case (a) in Figure  5.7), the pipe system for this mode m = 2 is effectively divided into 
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two pipe subsystems. Subsystem I is a reservoir-pipe-valve with a pipe length equal to the 

blockage length l2 = L/3. Subsystem II is a reservoir-pipe-reservoir with a pipe length equal 

to l1 = L-l2 = 2L/3. The wavelengths of the natural modes of subsystem I are n  = 

4l2/(2 n 1) = 4L/3(2 n 1) for n  = 1, 2…. Therefore, the wavelength of the fundamental 

(n=1) mode is 1  = 4l2 which explains the quarter wave in subsystem I (see Figure  5.7, case 

(a)). The wavelengths of the natural modes of subsystem II are n  = 2l2/ n  = 4L/3 n  for n  = 

1, 2…. Therefore, the wavelength of the fundamental ( n =1) mode is 1  = 2l2 , which 

explains the half wave in subsystem II (see Figure  5.7, case (a)). That is, mode m = 2 of the 

whole pipe system is made up of the two fundamental modes of subsystem I and II. The 

same reasoning can be used to explain the subsystems in Figure  5.7, case (b), as well as the 

zero shifts that occur for other modes m.  

Figure  5.5 Variation with 2  of total change in potential and kinetic energy in the 

pipe with blockage along with the eigenfrequency shift at mode m = 2 and 0.8  . 
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Figure  5.6 Eigenfrequency shift variation at mode m = 2 for different   values along 

with the intact pressure harmonic. 
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Figure  5.7 Sketch depicting how the harmonic at mode m = 2 is subdivided into single 

subharmonics. Case (a) and case (b) correspond to the zero shift cases where 2 1 3   

and 2 2 3  , respectively. 

 

 

5.4.4. Analysis and discussion of the positive and negative eigenfrequency shift 

Figure  5.2 shows that mode m = 1 experiences positive shift for all 2 (i.e., for all blockage 

lengths); mode m = 2 experiences positive for 2 in ]0,L/3[  ]2L/3, L[ and negative 

elsewhere; mode m = 3 experiences positive for 2 in ]0,L/5[ ]2L/5, 3L/5[  ]4L/5, L[ and 

negative elsewhere; and mode m = 4 experiences positive for 2 in ]0, L/7[  ]2L/7, 3L/7[  

]4L/7, 5L/7[  ]6L/7, L[ and negative elsewhere. These observations are corroborated by Eq. 

( 5.32).  

Equation ( 5.29) shows that a positive eigenfrequency shift in mode m occurs when the 

presence of the blockage results in a net negative change in the total energy of this mode. 
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This, in turn, occurs when the change in potential energy is larger than the change in kinetic 

energy (see right hand side of Eq. ( 5.29)). Conversely, Eq. ( 5.29) shows that a negative 

eigenfrequency shift in mode m occurs when the presence of the blockage results in a net 

positive change in the total energy of this mode. This in turn occurs when the change in 

potential energy is less than the change in kinetic energy (see right hand side of Eq. ( 5.29)). 

This is illustrated in Figure  5.5 for the case of m = 2. In particular, Figure  5.5 shows that the 

change in potential energy is larger than the change in kinetic energy of mode m = 2 for 2 in 

]0, L/3[ ]2L/3, L[ which is the region where there is a positive eigenfrequency shift of mode 

m =2 (see Figure  5.2). In addition, Figure  5.5 shows that change in potential energy is less 

than the change in kinetic energy of mode m = 2 for 2 in ]L/3, 2L/3[ which is the region 

where there is negative eigenfrequency shift of mode m =2 (see Figure  5.2).  

To further investigate the eigenfrequency shift in mode m = 2, Figure  5.8 shows two cases 

for which the shift is positive (case (c)) and negative (case (d)). The pressure head and 

velocity harmonics corresponding to case (c) and case (d) are given in Figure  5.9a and  5.9b, 

respectively. It is clear from Figure  5.9a that mode m = 2 has a positive h and a negative V 

at x = 5L/6. Therefore, hV A  of this mode is negative at x = 5L/6 implying that the work of 

the radiation pressure (Eq. ( 5.39)) and the change in energy for a blockage that extends from 

the valve to x = 2L/3 are negative. This explains why mode m = 2 experiences a negative 

shift in this case (Figure  5.2). Figure  5.9b shows that mode m = 2 has negative h and V at x 

= 7L/12. Therefore, hV A of this mode is positive at x = 7L/12 implying that the work of the 

radiation pressure (Eq. ( 5.39)) and the change in energy for a blockage that extends from the 

valve to x = 7L/12 are positive. This explains why mode m = 2 experiences a positive shift in 

this case (Figure  5.2). In fact, hV A  of the mth mode varies as   2sin 2 1m  ; thus, there 

is (i) a positive shift when the argument of the sine function varies is in the range ]2   , 

(2  +1) [ where   is an integer counting number and (ii) a negative shift otherwise. In 

general, a given mode m experiences negative eigenfrequency shift when the work of the 

radiation pressure due to the formation of the blockage is positive and experiences a positive 

eigenfrequency shift when the work of the radiation pressure due to the formation of the 

blockage is negative. It is noted that a positive eigenfrequency shift is sometimes referred to 

as length shortening and a negative eigenfrequency shift as length extending (e.g., [105]). 
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The maximum eigenfrequency shift position corresponds to the length of the blockage at 

which the change in energy is an extremum. Mathematically, this occurs when the derivative 

of Eq. ( 5.32) is zero; that is,  
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 ( 5.45) 

For example, consider the case of m = 2. The condition, n ≤ 2m-1 = 3 gives 'm  = 1, 2 and 3. 

Therefore, there are three maxima at 1/6, 1/2 and 5/6 (see Figure  5.4). These maxima 

correspond to hmVm A , which varies as   2sin 2 1m  , having the largest magnitude 

(i.e., where the work of the radiation pressure is extremum). 

Figure  5.8 Sketches of the junction system for two shift cases: Case (a) gives leads to 

positive shift ( 2 1 6  ) and case (d) leads to negative shift ( 2 5 12  ). 
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Figure  5.9 Dimensionless pressure and velocity harmonics when m = 2 and 0.4  . 

The black squared boxes are sketchs of the blockage. 
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(a) Left 
2 1 6   leads to positive shift 

(b) Right 
2 5 12   leads to negative shift 

 

5.5. Analysis and discussion of frequency-blockage interaction for blockage with 

large radial protrusion (i.e.,   near 0) 

The previous section is devoted to blockage with small radial protrusion. In this section, a 

blockage with large radial protrusion (referred to as severe blockage in this work) is 

investigated.  

For a severe blockage (i.e.,   tends to 0), Eq. ( 5.2) reduces to  
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    1 2cos cos 0kl kl   ( 5.46) 

which implies  
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     ( 5.47) 

or 
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     ( 5.48) 

where 
0

1w  is the first eigenfrequency of the intact pipe case and 1s

mw  and 2s

mw  are the 
thm  

eigenfrequency for the case of severe blockage. Effectively, the severe blockage decouples 

the pipe system responses into two independent subsystems. Subsystem 1 consists of the pipe 

with length l1 bounded by the upstream reservoir and the blockage. The blockage, being 

severe, would act in a manner similar to a valve. That is, a severe blockage imposes large 

impedance on the flow as a valve would. Therefore, subsystem 1’s response is equivalent to 

a reservoir-pipe-valve system. In fact, the resonant frequencies given by Eq. ( 5.47) are for a 

RPV system, where the pipe has a length l1. It is for this reason that a superscript "s1" is used 

in Eq. ( 5.47). Subsystem 2 consists of another reservoir-pipe-valve system in which the 

narrow blockage opening functions as a small diameter pipe of length l2, while the much 

larger pipe diameter of lengths l1 acts as a reservoir. Indeed, the resonant frequencies given 

by Eq. ( 5.48) are for a RPV system, where the pipe has a length l2. A sketch showing the 

decoupling into two RPV subsystems is given in Figure  5.10. 

The decoupling of the pipe system into two subsystems can be understood from an energy 

perspective. The ratio of reflected to incident energy at the interface between the blocked and 

unblocked pipe sections is (Z1Z2)
2/(Z1+Z2)

2 = ( 1)2/( +1)2, where Z1 = ρa/A0
 is the 

impedance of the unblocked pipe section and Z2 = ρa/A2
 is the impedance of the pipe section 

that has the severe blockage. The ratio of the transmitted to incident energy at the interface 

between the blocked and unblocked pipe sections is 4Z1Z2/(Z1+Z2)
2 = 4 /( +1)2. Clearly, 

as   tends to 0, the reflection coefficient approaches 1 and the transmission coefficient 

approaches zero. Therefore, a wave that is generated in subsystem 1 is largely trapped in this 
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subsystem. Conversely, a wave that is generated in subsystem 2 is largely trapped in this 

subsystem. It is in this sense that the decoupling should be understood.  

Figure  5.10 Schematic figure of the decoupling of the junction system into two intact 

uncoupled RPV subsystems when   tends to 0 

 

 

The eigenfrequencies of the whole system are the union of the eigenfrequencies of 

subsystems 1 and 2. That is, wm = {(2m-1)a /(2l1)} {(2m-1)a /(2l2)}, where  is the 

union operator. It is clear that if the blockage length l2 is much smaller than l1, then the low 

frequencies are governed by subsystem 1 and vice-versa. To see this, consider Figure  5.11. 

The fundamental frequencies of subsystem 1 (cos(kl1) = 0) and subsystem 2 (cos(kl2) = 0) are 

plotted for m = 1, 2, 3 and 4. It can be seen that w1, w2, w3 and w4 are governed by subsystem 



 

154 

2 for a short (i.e., 2  close to 0) blockage and by subsystem 1 for a long (i.e., 2  close to 1) 

blockage. For example, using Eq. ( 5.47), the first four dimensionless eigenfrequencies for 

subsystem 1 for 2 = 1/3 are 3/2, 9/2, 15/2 and 21/2. In addition, using Eq. ( 5.48), the first 

four dimensionless eigenfrequencies for subsystem 2 for 2 = 1/3 are 3, 9, 15 and 21. The 

union of these eigenfrequencies is {3/2, 9/2, 15/2, 21/2} {3, 9, 15, 21} = {3/2, 3, 9/2, 15/2, 

9, 21/2,  15, 21}. Therefore, the first four dimensionless resonant frequencies for the overall 

system are {3/2, 3, 9/2, 15/2} which agree with values that can be read from Figure  5.11 

when 2 = 1/3. Note that the first, third and fourth of these frequencies are the first three 

resonant frequencies of subsystem 1 and the second is the eigenfrequency of subsystem 2. In 

the preceding eigenfrequency sets, the four fundamental frequencies of the overall system are 

determined manually by calculating the four fundamental frequencies of each subsystem and 

then sorting them from lowest to largest value. In order to automate this sorting process, the 

following condition is specified on Eq. ( 5.3):  
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1   cos sin sin    1kL kl kl



      ( 5.49) 

which gives 
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where 
s

mw  is the mth eigenfrequency of the whole junction system for the case of severe cross 

sectional area variation (  tends to 0). Imposing the condition in Eq. ( 5.50) on Eqs. ( 5.47) 

and ( 5.48), gives 
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where, just for clarity, m1 and m2 are introduced as mode numbers for the uncoupled 

subsystem 1 and subsystem 2, respectively. 
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changing the conditions in Eq. ( 5.51) in terms of 2  yields 
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 ( 5.52) 

Equation ( 5.52) gives the different asymptotic branches at a given mode m as 2  varies, and 

as observed from Figure  5.11, these branches define the solution domain of the 

eigenfrequency shift variations for 0 1  .  

Figure  5.11 Dimensionless eigenfrequency variation with length 2  of the first four 

modes for different   along with the asymptotic solution from Eqs. ( 5.47) and ( 5.48). 
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5.6. Analysis and discussion of frequency-blockage interaction for blockage with 

moderate radial protrusion  

The last two sections focused on blockages with small radial protrusion (  near 1) and 

blockages with large radial protrusion (  near 0). It is found that the small blockage 

assumption is accurate for 0.7  (see Figure  5.4). In addition, the large blockage 

assumption is valid for 0.7   provided that the values of the frequencies of subsystem 1 

(Eq. ( 5.47)) and subsystem 2 (Eq. ( 5.48)) are not equal or close to each other (see 

Figure  5.11). This section focuses on the case 0.7  for systems where the frequencies of 

subsystem 1 (Eq. ( 5.47)) and subsystem 2 (Eq. ( 5.48)) are equal or near each other. In this 

case, the waves in subsystem 1 act as forcing functions to subsystem 2, where the forcing 

frequency is equal or close to the eigenfrequency of subsystem 2. Similarly, the waves in 

subsystem 2 act as a forcing function to subsystem 1, where the forcing frequency is equal or 

close to the eigenfrequency of subsystem 1. That is, both subsystems are driven at or near 

resonance. Therefore, although the ratio of transmitted to incident energy on the interface 

between the blocked and unblocked pipe sections of each incoming wave is of the order of 

4 /( +1)2 (i.e., small), the fact that each of the two subsystems is driven near its resonance 

frequency means that the transmitted energy accumulates with time and forces the overall 

system to behave more as a coupled rather than an uncoupled system.  

To first order, the wavenumbers and eigenfrequencies of the coupled system are those of the 

uncoupled system plus a perturbation (i.e., 
s

m m mk k k   and 
s

m m mw w w  ). Therefore, 

Eq. ( 5.2) gives:  1 2 mk l l    which gives  1 2 mw a l l   . To illustrate this, 

consider the case   = 0.2, m = 1, l1 = L/2 = l2. Then, 
0

1 1w w = ±( /l1l2)
1/2/( /2L) = 

±( /L/2L/2)1/2/( /2L) = ± (4/ )( )1/2
 = ± 0.569, which is in good agreement with the 

deviations that can be read from Figure 5.11. Note that  1 2 mw a l l    is independent 

of m which agrees with Figure 5.2. 

It is noted from Figure 5.11 that the zero shift locations are independent of  . This result 

can be explained from Eq. ( 5.2). In particular, for any 1  , Eq. ( 5.2) gives the intact pipe 

frequencies whenever the blockage length is such that either  1sin 0kl   or  2sin 0kl  . 
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Figure 5.2 shows that the position of the maximum shift changes as a function of   except 

when the blockage length is half of the pipe length (i.e., 2 = 0.5). An expression for the 

maximum eigenfrequency shift and the location 2  at which it occurs can be obtained from 

Eq. ( 5.3) as follows 

    2

1
cos cos 2 0

1
kL kL kl






  


 ( 5.53) 

where the second term on the left hand side of Eq. ( 5.53) is what causes the shift in 

frequency. The maximum shift occurs when that term is maximum which gives 
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where max max

m mk w a  is the wavenumber corresponding to the maximum mth eigenfrequency 

(
max

mw ) magnitude at a given  . Inserting Eq. ( 5.54) into Eq. ( 5.53), yields 
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which gives 
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 ( 5.56) 

where  max , , 'mw m m  is the maximum shift at a given mode m, a given  and a given 

positive or negative shift region 'm  (between two successive zero shift locations (see 

Figure 5.2 and Eq. ( 5.44)). For example, the first shift region ( ' 1m  ) as 2  increases in 

Figure 5.2 is located at    2 2 22,1 0 2,2 1 3       (see Figure 5.2 and Eq. ( 5.44)). 

Thus, at mode m = 2,   = 0.2 and ' 1m  , Eq. ( 5.56) shows that the magnitude of the 

eigenfrequency shift is  max 0

12,0.2,1mw w  = 0.4646 which agrees with Figure 5.11. 
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The location corresponding to each maximum shift is obtained by inserting Eq. ( 5.55) into 

Eq. ( 5.54) which leads to 
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 ( 5.57) 

For example, at mode m = 2,   = 0.2 and ' 1m  , Eq. ( 5.57) shows that the position of the 

maximum shift is  2 2,0.2,1  = 0.2114 which agrees with Figure  5.11.  

5.7. Symmetric pipe system with blockage at the boundary 

The above discussions and findings could be similarly applied for the case of symmetric pipe 

system such as reservoir-pipe-reservoir (RPR) system (see Figure 5.12a) or valve-pipe-valve 

(VPV) system (see Figure 5.12b). This section gives briefly the main eigenfrequency shift 

features for the case of symmetric pipe system with blockage at the boundary. 
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Figure  5.12 Symmetric pipe systems with change in cross-sectional area. 

 

(a) Left RPR system 

(b) Right VPV system 

 

Applying Eq. ( 5.1) to the blocked RPR system in Figure 5.12a gives: 

        1 2 1 2cos sin sin cos 0m m m mk l k l k l k l   ( 5.58) 

Notice that Eq. ( 5.58) could is also the dispersion relation for the VPV system in 

Figure 5.12b but with the blockage at the upstream boundary. Using trigonometric 

manipulation of Eq. ( 5.58) gives 

        1 2sin 1 sin cos 0m m mk L k l k l    ( 5.59) 

or 
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     2

1
sin sin 2 0

1
m mk L k L l






  


 ( 5.60) 

 

Note that the second term in Eq. ( 5.59) and Eq. ( 5.60) represents the effect of the blockage 

on the dispersion relation. In fact, for 1  , this second term vanishes and 

Eqs. ( 5.59) and ( 5.60) become identical to the dispersion relation of an intact RPR system. 

Figure 5.13 gives the dimensionless eigenfrequency variation with dimensionless length 

2 2l L   for the case of RPR system. The first four modes (m = 1, 2, 3 and 4) are plotted for 

different values of  . As seen for the case of RPV system, the eigenfrequency shift takes 

positive values for some range of blockage length 2 , negative values for some other range 

of blockage length 2 , and equal zero for particular values of blockage length 2 . Again, the 

zero shift locations are independent on   whereas the maximum shift location changes with 

 . 

For of blockage with small radial protrusion in RPR system, Eq. ( 5.29) or Eq. ( 5.41) gives 

the following RPR shift equation 
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from which the zero shift locations could be obtain as follows 
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 ( 5.62) 

Equation ( 5.62) gives the length of the blockage for which the mth mode experiences no 

shift. The values of 2  where zero frequency is obtained from Figure 5.13 can be derived by 

evaluating Eq. ( 5.62) for m = 1, 2, 3 and 4. For example, evaluating Eq. ( 5.62) for m=2 

gives  2 2,1 0  ,  2 2,2 1 4  ,  2 2,3 1 2  ,  2 2,4 3 4   and  2 2,5 1  . These 

values correspond to the zero shift locations shown in Figure 5.13. 
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The maximum shift occurs when the second term in Eq. ( 5.60) is maximum which gives 
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Inserting Eq. ( 5.63) into Eq. ( 5.60), yields 
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which leads to 
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where  max , ,mw m n  is the maximum shift at a given mode m, a given  and a given 

positive or negative shift region n (between two successive zero shift locations (see 

Figure 5.13 and Eq. ( 5.62)). For example, at mode m = 1,   = 0.2 and 1n  , Eq. ( 5.65) 

gives the magnitude of the eigenfrequency shift  max 0

11,0.2,1mw w  = 0.4646 which agrees 

with Figure 5.13. 

The location corresponding to each maximum shift is obtained by inserting Eq. ( 5.64) into 

Eq. ( 5.63) which gives 
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 ( 5.66) 

For example, at mode m = 1,   = 0.2 and 1n  , Eq. ( 5.66) gives the position of the 

maximum shift  2 1,0.2,1  = 0.1744 which agrees with Figure 5.13.  
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Figure  5.13 Dimensionless eigenfrequency variation with 2  for the case of RPR 

system: first four modes with different   values. 
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For a severe blockage (i.e.,   tends to 0), Eq. ( 5.58) reduces to  

    1 2cos sin 0m mk l k l   ( 5.67) 

which implies  
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Similarly to the blocked RPV system, the severe blockage decouples the pipe system 

responses into two independent subsystems. In this case of RPR system, subsystem 1 

consists of an intact RPV system with length l1; and subsystem 2 is an intact RPR system 

with length l2. A sketch showing the decoupling into two RPV subsystems is given in 

Figure 5.14. Figure 5.15 gives the fundamental frequencies of subsystem 1 (cos(kl1) = 0) and 

subsystem 2 (sin(kl2) = 0) are plotted for m = 1, 2, 3 and 4 along with the eigenfrequency 

variations. Figure 5.15 shows that the asymptotic solutions (Eq. ( 5.68) and Eq. ( 5.69)) fits 

very well the eigenfrequency variation except where the frequencies of subsystem 1 (Eq. 

( 5.68)) and subsystem 2 (Eq. ( 5.69)) are equal or near each other. That is, both subsystems 

are driven at or near resonance where the transmitted energy accumulates with time and 

forces the overall system to behave more as a coupled rather than an uncoupled system. 

Figure  5.14 Schematic figure of the decoupling of the junction system into two intact 

uncoupled RPV subsystems when   tends to 0 
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Figure  5.15 Dimensionless eigenfrequency variation with 2  for the case of RPR 

system along with the asymptotic solutions: first four modes with different   values. 
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5.8. Summary 

The eigenfrequency shift due to variation in the cross sectional area of a conduit is 

investigated with the primary goal being to understand and describe the mechanisms that 

cause such eigenfrequency shift. The cross sectional area variation in this chapter consists of 

a blockage located at the pipe boundary. The key findings are summarized below: 

(i) For shallow blockage case, wm Em is conversed implying ∆wm/wm = −∆Em/Em for all 

modes m. Moreover, the change in energy is found to equal the work of the 

radiation pressure during the formation of the blockage. For an energy prospective, 

the test cases confirm that (a) a blockage that causes an increase in total energy of a 

mode m would produce a negative shift of the eigenfrequency of this mode; (b) a 



 

165 

blockage that causes a decrease in total energy of a mode m would produce a 

positive shift of the frequency of this mode; and (c) blockage that causes a zero 

change in total energy of a mode m would produce no shift of the frequency of this 

mode.  

(ii) Moreover, it is found that the eigenfrequency shift variation caused by a shallow 

blockage in a conduit could be analyzed by studying the variation of the work of 

radiation pressure at the blockage boundaries.  

(iii) A severe blockage decouples the pipe system into independent intact subsystems with 

different lengths. The eigenfrequencies of these subsystems defines the asymptotic 

solutions of the eigenfrequency variations at the limit of most severe blockage 

cases 0  . In this case, the system is described as uncoupled pipe system. This 

decoupling effect is weakened when the eigenfrequencies of the two subsystems 

are close or equal to each other. When this happens, waves in the blockage act as 

forcing functions that drive the rest of the pipe system at or near resonance. 

Similarly, waves outside the blockage are forcing functions that drive the waves 

within the blockage at or near resonance. The fact that both subsystems are driving 

one another at or near resonance is what brings about the coupling even for a very 

severe blockage. In this case, perturbation theory is found to provide a simple and 

explicit relationship between the eigenfrequency shift and the properties of the 

blockage. 

(iv) The assumption of shallow blockage (with small radial protrusion) is applicable when 

the blockage occupies 35% of the pipe’s area or less. The assumption of severe 

blockage is applicable when the blockage occupies 35% of the pipe’s area or more 

provided that the eigenfrequencies of the asymptotic subsystems are not equal or 

close to each others. 

This chapter gave some primary knowledge and understanding of the eigenfrequency shift 

mechanism for a simple blocked pipe system consisting of blockage at the boundary. A more 

involved and common blocked pipe system with interior blockage is considered in the next 

chapter.  
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6. CHAPTER 6 

 

WAVE SCATTERING IN BOUNDED PIPE SYSTEM: STUDY OF 

THE EIGENFREQUENCY SHIFT DUE TO AN INTERIOR 

BLOCKAGE 

 

6.1. Introduction 

Similarly to the previous chapter, this current chapter focuses on studying the forward 

approaches which consists in understanding the eigenfrequency shift mechanism. While the 

previous chapter considered a simple blocked pipe system with a blockage at the boundary, 

this chapter considers the case of interior blockage. The differences between both cases are 

highlighted and investigated. In particular, the effect of the Bragg-type resonance (see 

Chapter 4) on the eigenfrequency shift is studied through analytical and experimental means.  

6.2. Problem statement 

This section studies the eigenfrequency shift mechanism due to an interior single blockage in 

a bounded pipe system. For this purpose, a reservoir-pipe-valve system is considered as 

shown in Figure  6.1. The blocked pipe system is modelled as the junction of three pipes in 

series with different diameters (see Figure  6.1). The three pipes are defined as pipe 1 with 

length l1 and cross sectional area A1=A0, pipe 2 with length l2 and cross sectional area A2<A0 

and pipe 3 with length l3 and cross sectional area A3=A0 where A0 is the intact cross sectional 

area. The blocked pipe system (Figure  6.1) is linked to a reservoir at the upstream boundary 

and to a valve at the downstream boundary. The ratio between the cross sectional areas is 

2 0/A A   and the dimensionless lengths are defined by x L , 1 1l L  , 2 2l L   and 
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3 3l L   where L=l1+l2 +l3 is the total length of the blocked pipe system and x is the 

distance along the pipe length from the reservoir (Figure  6.1). The pipe flow is assumed one 

dimensional with frictionless fluid. In what follow, the case without blockage (i.e. 1  ) is 

referred to as intact pipe case.  

The dispersion relation that governs the eigenfrequencies of the blocked pipe system 

(Figure 6.1) could be obtained by extending the transfer matrix solution (e.g. Eq. ( 5.4) to 

three pipes system) and the result is ([39],[32]) 
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which could also be written as 
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 ( 6.2) 

where the subscript "m" refers to the mth natural resonant mode and m mk w a  is the mth 

wavenumber with wm is the mth eigenfrequency and a is the acoustic wave speed. When 

1  , Eq. ( 6.2) becomes 

    0 0 0cos 0    2 2 1   ;   1, 2,3...
4

m m m

a
k L w ak m m

L

 

      
 

 ( 6.3) 

which is the dispersion relation of an intact pipe system (Eq. (2.54)) with 
0 0

m mk w a  is the 

mth wavenumber and 
0

mw  is the mth eigenfrequency of the intact pipe system.  
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Figure  6.1 A single blockage in a reservoir-pipe-valve (RPV) system 

 

 

The eigenfrequencies of the blocked pipe system are obtained by solving Eq. ( 6.1) 

graphically. Figure 6.2 and Figure 6.3 show the eigenfrequency ( mw ) variation with length 

3 20.5b     for the first five modes and different   values when 2 0.15   and 

2 0.027  , respectively. The cases where 1   in Figure 6.2 and Figure 6.3 represent the 

eigenfrequencies of the intact pipe case which are constant and vary as straight horizontal 

lines with 3 2 2b    . When 1  , the effect of the blockage is introduced, and as a 

result, the eigenfrequency at a given mode m ( mw ) deviates from the intact case (
0

mw ) as 

observed in Figure 6.2 and Figure 6.3. The eigenfrequency shift is defined as 

 0

m m mw w w    which could take positive, negative or zero values (see Figure 6.2 and 

Figure 6.3).  

Figure 6.2 and Figure 6.3 show that the magnitudes of maximum positive and negative shift 

vary for a given   at different modes m. Moreover, comparing Figure 6.2 and Figure 6.3 

shows that the variation of blockage length induces a change in the maximum shift 

magnitude at given mode m and dimensionless area  . Furthermore, at a given mode m, the 

zero shift locations varies as   changes. These features were not observed in the case of 

blockage at the boundary (Figure 5.2).  

The main objective of this section is to provide physical and mathematical insights that can 

explain the above observations that emerged from Figure 6.2 and Figure  6.3 some of which 

differ from the case of blockage at the boundary discussed in Chapter 5. Such understanding 
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is presently lacking; yet, this insight is essential if the dispersion relation (Eq. ( 5.1)) is to 

become a viable approach for identifying blockages in fluid lines.  

 

Figure  6.2 Normalized eigenfrequency variation with length 3 20.5b     of the 

first 5 modes for different   values when 2 0.15   
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Figure  6.3 Normalized eigenfrequency variation with length 3 20.5b     of the 

first 5 modes for different   values when 2 0.027   
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6.3. Harmonic solution for the case of interior blockage  

Using the transfer matrix ([13]) method, it can be shown that the pressure head and flow 

harmonics are given by 
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where 
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and 

  

 
   

     

 
   

   

1 2

3

1 222

2 1

3

1 2

cos cos
cos

1 sin sin

cos sin
sin

cos sin

m m

m

m m

u d

m m

m

m m

k l k l
k l

k l k l
M

k l k l
k l

k l k l







  
  

   
  

  
       

 ( 6.7) 

Applying the boundary condition at the valve (x =L) where the flow is zero, Eq. ( 6.4) leads 

to Eq. ( 6.1).  
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6.4. Analysis and discussion of eigenfrequency shift variation for interior 

blockage with small radial protrusion (i.e.,   near 1) 

At a given mode m, Figures 6.2 and 6.3 show that the eigenfrequency shift sign varies if the 

blockage location and /or size change. Considering a blockage with small radial protrusion, 

the shift equation (Eq. ( 5.41)) could be applied for the case of interior blockage and gives 

 
 1 2

1
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0 0 0 0

0 0 0
Re

2

l l
m m

m m m m m
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  ( 6.8) 

Inserting Eq. ( 5.27) into Eq. ( 6.8) gives 
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 ( 6.10) 

Equation ( 6.10) is the simplified shift equation obtained in Duan, et al. ([35]) by assuming 

small shift and using Taylor expansion on the dispersion relation (Eq. ( 6.2)). Equation ( 6.8) 

is a much simpler approach to obtain the simplified shift equation (Eq. ( 6.10)). 

Equation ( 6.10) could also be obtained by carrying integration in Eq. ( 5.29) between the 

blockage boundaries. Figure 6.4 give the comparison between the approximated 

eigenfrequency shift from Eq. ( 6.10) and the exact eigenfrequency from the dispersion 

relation (Eq. ( 6.1)) for different   values. Figure 6.4 shows good quantitative agreement 

between the exact shift solution from Eq. ( 6.1) and its approximate form (Eq. ( 6.10)) for 

0.6  . There is overall qualitative agreement between these two equations for all  . 

Similar conclusion is found for other m modes as shown in Figure 6.5 which gives the 

comparison between the exact and approximated eigenfrequency variation for the first eight 
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modes with 0.64  . Such agreement supports the use of Eq. ( 6.10) to analyse the 

eigenfrequency shift signs and maximum shift locations. 

Figure  6.4 Normalized eigenfrequency shift variation with length 3 2 2   for m = 2 

and 2 0.15  : comparison between exact solution (Eq. ( 6.1)) and approximate solution 

(Eq. ( 6.10)).                         
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Figure  6.5 Normalized eigenfrequency variation with length 3 2 2   for the first 

eight modes with =0.64 and 2 0.15  : comparison between exact solution (Eq. ( 6.1)) 

and approximate solution (Eq. ( 6.10)). 
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6.4.1. Analysis and discussion of the zero eigenfrequency shift 

Setting Eq. ( 6.10) to zero gives the conditions for which the eigenfrequency shift is zero at a 

given mode m as follows 

 

 

 

2

2
3

sin 2 1 0
2

or

cos 2 1 0
2

m

m





 

  
   

 




       
   

 ( 6.11) 

which leads to 
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The first equation in Eq. ( 6.12) corresponds to the Bragg resonance condition of total 

transmission (Eq. ( 4.11)) as follows 
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which states that the shift is zero if the blockage length is a multiple of half wavelength of 

the mth mode harmonic. The second equation in Eq. ( 6.12) corresponds to the location of the 

blockage mid-length from the downstream boundary where 
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 ( 6.14) 

which states that the shift is zero if the blockage mid-length is located at a position where the 

pressure head and the flow harmonics are equal in magnitude. At a given blockage length 

2 , the first equation in Eq. ( 6.12) is independent on the blockage location whereas the 

second equation depends on the blockage location. Figures 6.6a and 6.6b give the 

dimensionless pressure and flow harmonics variations along the pipe at modes m = 7 and 

m = 2, respectively. In this case, the blockage length is equal to half wavelength of the 7th 

mode harmonic which is 2 = 2/(2×7-1) = 0.1538 ≈ 0.15. Three different locations are 

considered in Figures 6.6a and 6.6b. Figure  6.6a shows that at any blockage location along 

the pipe, the products of the pressure head and flow at the blockage boundaries are equal in 

magnitudes and signs. Therefore from Eq. ( 6.8), the shift is zero at any location along the 

pipe at mode 7 as observed in Figure 6.5. Notice that in Figure 6.6b, the first equation in 

Eq. ( 6.12) is not satisfied where the blockage length is smaller than half wavelength of the 

2nd mode harmonic. The blockage location cases shown in Figure 6.6b satisfy the second 

equation in Eq. ( 6.12) where the blockage mid-length is situated at the position of equal 
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pressure head and flow magnitudes. At these specific blockage locations, the products of the 

pressure head and flow at the blockage boundaries are also equal which leads to zero shift. 

Consequently, the second equation in Eq. ( 6.12) gives the zero shift location at any given 

mode m as observed in Figures 6.2 and 6.5 except when the blockage length is a multiple of 

half wavelength of the mth mode harmonic where the shift becomes zero at any blockage 

location along the pipe.  

Figure  6.6 Dimensionless pressure head and flow harmonics variation along the pipe 

where different blockage location cases are shown to discuss the zero shift equations 

(Eq. ( 6.12))                            
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(a) Top 7th mode of pressure and flow harmonics 

(b) Bottom 2nd mode of pressure and flow harmonics 
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6.4.2. Analysis and discussion of the positive and negative eigenfrequency shift 

As observed from Figures 6.2 and 6.5, the shift sign alternates between consecutive zero shift 

locations. Moreover within two zero shift locations, the shift reaches either a positive or 

negative maximum shift. This section studies the mechanism causing such variation of shift 

sign and magnitude for shallow blockage case. Conditions for maximum shift are obtained 

by equating the gradient of Eq. ( 6.10) to zero which gives 
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yields 
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The first equation in Eq. ( 6.16) corresponds to the Bragg resonance condition of maximum 

reflection (Eq. ( 4.10)) as follows 
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which states that the shift is maximum if the blockage length is an odd multiple of quarter 

wavelength of the mth mode harmonic. The second equation in Eq. ( 6.16) corresponds to the 

location of the blockage mid-length from the downstream boundary where 
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 ( 6.18) 

which states that the shift is maximum if the blockage mid-length is located at a position of 

either a pressure node or stagnation point. Conversely to the zero shift case where either 

satisfied condition in Eq. ( 6.12) leads to zero shift, the maximum shift requires both 

equations in Eq. ( 6.16) to be fulfilled. That is the maximum shift is given when the blockage 

length is an odd multiple of quarter wavelength of the mth mode harmonic and its mid-length 

is located at a position of either a pressure node or stagnation point. Figure 6.7 gives the 

dimensionless pressure and flow harmonics variations along the pipe at modes m=4. In this 

case, the blockage length is equal to quarter wavelength of the 4th mode harmonic which is 

2 = 1/(2×41) ≈ 0.15. Three different locations are considered in Figure 6.7 to discuss the 

properties of Eq. ( 6.16). The blockage locations 1 and 3 are as such the blockage mid-length 

is placed respectively at a stagnation point and pressure node where both equations in 

Eq. ( 6.16) are satisfied. In these cases, Figure 6.7 shows that the products of the pressure 

head and flow at the blockage boundaries are equal in magnitudes but with different signs. 

Therefore the works at the boundaries in Eq. ( 6.8) are added up and since the product of sine 

and cosine is maximum when these two functions are equal, Eq. ( 6.8) gives maximum shift 

magnitude. At the blockage locations 1 and 3, Figure 6.5 shows that the shift magnitude is 

maximum. 

The blockage location 2 in Figure 6.7 is as such the blockage mid-length is placed at a 

location of equal pressure head and flow which satisfies the second condition of zero shift 

(Eq. ( 6.12)) but not the second equation in Eq. ( 6.16). In this case, the product of the 

pressure head and flow at the blockage boundaries becomes of equal magnitudes and signs. 

Therefore from Eq. ( 6.8), the shift is zero as observed from Figure 6.5. This shows the 

necessity of both satisfied equations in Eq. ( 6.16) to produce maximum shift.  
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Figure  6.7 Dimensionless pressure head and flow harmonics of the 4th mode where 

different blockage location cases are shown to discuss the maximum shift equations 

(Eq. ( 6.16))                                    
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In order to distinguish between positive and negative maximum shifts, the determinant of the 

Hessian matrix is computed and analyzed as follows 
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with 
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which at the critical points conditions (Eq. ( 6.15)) gives  
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with 
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  ( 6.22) 

Therefore, if m  and 'm  have the same parity, then the maximum shift is negative. However, 

if m  and 'm  have different parity, then the maximum shift is positive. This means that at 

given m  for which the Bragg resonance condition of maximum reflection in Eq. ( 6.16) is 

satisfied, if m  is even, then the maximum shift is positive or negative when the blockage 

mid-length is located respectively at a pressure node or stagnation point (see Eq. ( 6.18)); and 

vice versa if m  is odd. For example, Figure 6.7 shows the pressure and flow harmonics at 

mode m = 4 which corresponds to the first Bragg resonance frequency of maximum 

reflection ( m =1). The mid-length of the blockage location 1 in Figure 6.7 is at a stagnation 

point which from Figure 6.5 gives positive maximum shift as expected. On the other hand, 

the mid-length of the blockage location 3 in Figure 6.7 is at a pressure node which from 

Figure 6.5 gives, also as expected, a negative maximum shift. 

Equation ( 6.16) gives the conditions for "absolute" maximum shift which is given at specific 

modes that satisfy the Bragg resonance condition of maximum reflection. However, at any 

given mode m, the eigenfrequency variation undergoes "local" maximum shift although the 

Bragg resonance condition of maximum reflection is not satisfied. The location of those 

"local" maximum shift at any given mode m are determined by considering a fixed blockage 
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length 2 . Therefore, assuming a fixed blockage length 2  and equating to zero the first 

derivative of the shift equation (Eq. ( 6.10)) with respect to the mid-length blockage location 

( 3 2 2  ), give 

   2 2
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2 2 2 1
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 ( 6.23) 

which gives the second condition in Eq. ( 6.16). The maximum shift sign is obtained by 

computing the second derivative at the maximum shift locations as follows 
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Knowing that   2sin 2 1 2m   changes sign between two consecutive Bragg resonance 

frequencies of total transmission (Eq. ( 4.11)), Eq. ( 6.24) gives 
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where "sgn" is the sign function; and Tn  is an integer that gives the number of modes region 

between two consecutive Bragg resonance frequencies of total transmission defined as 
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 ( 6.26) 

where "Floor" is a function that gives the largest previous integer. The second derivative in 

Eq. ( 6.25) is positive when Tn  and m  have the same parity which leads to negative 

maximum shift; and positive when Tn  and m  have different parity which leads to positive 

maximum shift. This means that at given m such that Tn  is even, then the maximum shift is 

positive or negative when the blockage mid-length is located respectively at a pressure node 

or stagnation point (see Eq. ( 6.18)); and vice versa if Tn  is odd. For example, Figure 6.8 

gives the dimensionless pressure and flow harmonics at mode m = 2 where the blockage 
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length is 2  ≈ 0.15 which gives Tn = 1 (Eq. ( 6.26)). Two blockage location cases are shown 

in Figure 6.8. The mid-length of blockage locations 1 and 2 are placed respectively at a 

stagnation point and a pressure node. Figure 6.5 shows that at these blockage locations the 

maximum shift is respectively positive and negative which is as expected from Eq. ( 6.25). 

Figure  6.8 Dimensionless pressure head and flow harmonics of the 2ndmode where 

different blockage location cases are shown to discuss the maximum shift equations at 

given mode m (Eqs. ( 6.23) and ( 6.25)) 
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6.5. Analysis and discussion of eigenfrequency shift variation for interior 

blockage with large and moderate radial protrusion  

6.5.1. Asymptotic solutions 

For the case of a blockage at the boundary (Chapter 5 Section 5.5), it is shown that the 

solution for extremely blocked pipe (asymptotic solution) is very informative about the 

mechanism of coupling and decoupling (interaction) between the blocked and intact pipe 

sections. In this section, the asymptotic solutions for the case of interior blockage are 

discussed to aid demonstrating the relationship between eigenfrequency shift variations and 

Bragg-type resonance discussed in Chapter 4. 
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For severely blocked pipe such as 2 0 0A A   , the dispersion relationship in Eq. ( 6.1) 

becomes 

      1 2 3cos sin sin 0s s s

m m mk l k l k l   ( 6.27) 

where the superscript "s" refers to severe blockage case. Equation ( 6.27) is equivalent to 

    
1 1 11 1 1

1

cos 0      2 2 1   ;   1,2,3...
4

s s s

m m m

a
k l w ak m m

l

 

      
 

 ( 6.28) 

or 

  
2 2 22 2 2

2

sin 0      2 2   ;   1,2,3...
4

s s s

m m m

a
k l w ak m m

l

 

     
 

 ( 6.29) 

or 

  
3 3 33 3 3

3

sin 0      2 2   ;   1,2,3...
4

s s s

m m m

a
k l w ak m m

l

 

     
 

 ( 6.30) 

Equation ( 6.28) is equivalent to a dispersion relation of an intact RPV system with length l1. 

Equation ( 6.29) is equivalent to a dispersion relationship of either an intact Reservoir-pipe-

Reservoir (RPR) system or Valve-pipe-Valve (VPV) system with length l2. Similarly, 

Eq. ( 6.30) is equivalent to a dispersion relationship of an intact VPV system with length l3. 

Therefore, Eqs. ( 6.28)-( 6.30) show that, for severe blockage case, the blocked pipe system 

shown in Figure  6.1 is equivalent to three intact pipe subsystems with different upstream 

and downstream boundaries as sketched in Figure  6.9. In this case (Figure  6.9), subsystem 2 

is an RPR intact system with length l2 where pipe 1 and pipe 3 are considered as the 

upstream and downstream reservoirs, respectively. On the other hand, pipe 2 plays a role of a 

valve at the downstream and upstream boundaries of subsystem 1 and subsystem 3, 

respectively. In this way, the blocked pipe system is referred as uncoupled pipe system and 

its eigenfrequencies solutions in Eqs. ( 6.28)-( 6.30) are referred as asymptotic solutions. 

In Figure 6.10 and Figure 6.11, the asymptotic solutions from Eqs. ( 6.28) and ( 6.30) are 

plotted along with the eigenfrequency variation obtained from Eq. ( 6.1) for 2 0.15   and 
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2 0.027  , respectively. The case of highly severe blockage ( 0.01  ) in Figure  6.10 and 

Figure  6.11, although unrealistic, shows that the eigenfrequency solutions converge to the 

asymptotic solutions. However, the less severe blockage case ( 0.16  ) shows that the 

eigenfrequency variations approaches the asymptotic solutions at specific resonant modes 

only. For example, at mode m = 4, the eigenfrequency variation for 0.16   is better 

approximated by the asymptotic solutions than the case for mode m = 1, 2 or 3. 

Since the maximum shift magnitudes are varying at different modes, the eigenfrequency 

variation with 3 20.5b     at high modes are shown in Figure 6.12 where the first 15 

modes for the case 0.16   and 2 0.15   are given along with the asymptotic solutions. 

Figure 6.12 shows that the shift takes maximum values at given modes (e.g. m ≈ 4, 11) where 

the eigenfrequency variation fits very well with the asymptotic solutions. On the other hand, 

the shift becomes zero at any position b  for other given modes (e.g. m ≈ 7 and 14). Similar 

features were observed in Section 6.4 for the case of interior blockage with small radial 

protrusion.  

The case of short blockage length 2 0.027   is given in Figure 6.13 and shows that modes 

exhibiting maximum shifts or nearly zero shifts occur but at much higher frequency 

comparing to the case 2 0.15  . Moreover, Figure 6.13 shows that many modes undergo 

maximum shift with excellent fitting between the eigenfrequency variation and the 

asymptotic solutions (e.g. m=8 to m=29), however, fewer modes experience nearly zero shift 

(e.g. m=35 to m=38). Although not shown here, but similar features are observed for 

different   values in both 2 0.15   and 2 0.027   cases.  
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Figure  6.9 Schematic figures of uncoupled subsystems for severe blockage case. 
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Figure  6.10 Normalized eigenfrequency variation with length 3 20.5b     of the 

first 5 modes for different   values when 2 0.15   along with the eigenfrequencies of 

the uncoupled subsystems 
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Figure  6.11 Normalized eigenfrequency variation with length 3 20.5b     of the 

first 5 modes for different   values when 2 0.027   along with the eigenfrequencies of 

the uncoupled subsystems 
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Figure  6.12  Normalized eigenfrequency variation with length 3 20.5b     of the 

first 15 modes when 0.16   and 2 0.15   along with the asymptotic solutions 
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Figure  6.13  Normalized eigenfrequency variation with length 3 20.5b     when 

0.16   and 2 0.027   along with the asymptotic solutions 
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(b) Right Modes m=21 to m=40. 

 

6.5.2. Relation between eigenfrequency variation and Bragg-type resonance 

In Chapter 4, the wave-blockage interaction in unbounded pipe system is studied where it 

was shown that such interaction induces Bragg-type resonance that informs which waves 

transmit least through a blockage and, by implication, which waves reflect most towards the 

source. This section shows how Bragg resonance is related to the eigenfrequency variation in 

bounded pipe system. For this purpose, the reflection amplitude variation in unbounded pipe 

system (Figure 4.4c) is compared to the eigenfrequency variation in bounded pipe system 

(Figures 6.12 and 6.13). However, since the frequency axis in Figure 4.4c is different from 
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the frequency axis in Figures 6.12 and 6.13, a change of variable is required so that 

comparison at the same axis could be made. Thus, the following change of variable is used  

 
   2 0 0

1 2 1 1 2 1 2

2 2

1
   

2 2
4 4

R R

w w w w w w

a a Lw l w w w l

l L l


 

      ( 6.31) 

which makes Figures 4.4c and Figures 6.12 and  6.13 having the same dimensionless 

frequency axis. Using the change of variable in Eq. ( 6.31), Figures 4.4c and Figure 6.12 are 

compared in Figure 6.14 for the case 0.16   and 2 0.15   where Figure 6.14a shows the 

eigenfrequency variation with 3 2 2   for the first 15 modes (where only 

3 21 3 2 2 3     is considered for the clarity of the Figure); and Figure 6.14b gives the 

reflection amplitude (horizontal axis) variation with the dimensionless frequency (vertical 

axis). Figure 6.14 shows that the maximum shift regions, which also correspond to the 

regions where the eigenfrequencies are best approximated by the asymptotic solutions, occur 

at modes with eigenfrequencies close to the Bragg resonance frequency of maximum 

reflection ( R

m m
w w ). On the other hand, zero or nearly zero shift regions occur at modes 

with frequencies close to the Bragg resonance frequency of total transmission ( T

m m
w w ). 

The mechanism behind this is as follows. When maximum wave reflection occurs ( R

m m
w w ), 

the blockage increases the uncoupling effect between pipe 1 and pipe 3 by preventing the 

transmission of the waves from pipe 1 to pipe 3 and vice versa (Figure 4.6). Therefore, in 

this case, the eigenfrequency variation approaches the asymptotic solution. However, when 

total wave transmission occurs ( T

m m
w w ), the blockage allows all the waves from pipe 1 to 

transmit to pipe 3 and vice versa with no reflections (Figure 4.7) as if the blockage did not 

exist. In this case, the eigenfrequency variation approaches the intact pipe solution and 

therefore the shift approaches zero.  

Similarly, using the change of variable in Eq. ( 6.31), Figures 4.4c is compared to 

Figure 6.13 for the case 0.16   and 2 0.027  , and the results are shown in 

Figures 6.15 and 6.16 where Figure 6.15 shows the comparison for the first 20 modes and 

Figure  6.16 shows the comparison for modes m = 21 to m = 40. Again, the maximum and 

minimum shift regions occur at modes with eigenfrequency close to the Bragg resonance 
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frequencies of maximum reflection ( R

m m
w w ) and total transmission ( T

m m
w w ), 

respectively. 

As discussed in the unbounded pipe case (Chapter 4), Bragg resonance frequencies 

(Eq. ( 4.10) and Eq. ( 4.11)) are much higher for short blockage case than for extended 

blockage case (Figures 4.4). For example, the first Bragg resonance frequency of maximum 

reflection for the case 2 0.027   occurs at m = 18, whereas it occurs at m ≈ 4 for the case 

2 0.15  . By consequences, the shorter the blockage is, the smaller the shift induced at low 

modes. This supports the results from Lee, et al. ([71]) where they concluded that the 

generation of high frequency waves are needed for small scale defect-detection with 

TBDDM. On the other hand, if a short blockage has large radial protrusion (severe-short 

blockage), the Bragg resonance effect of maximum reflection affects large frequency 

bandwidth as shown in Figure 4.3 and 4.4; and therefore, the shift induced by a severe-short 

blockage could becomes large at much lower modes than the mode at which the 

eigenfrequency is close to the Brag resonance frequency of maximum reflection. This is why 

Figure 6.15 shows that at the first five low modes, the shift is small and the eigenfrequencies 

do not fit with the asymptotic solutions, whereas from the 6th mode, the shift magnitude 

increases and the eigenfrequencies approach the asymptotic solutions. 

The effect of Bragg resonance on the eigenfrequency shift could be observed by inserting the 

Bragg resonant frequencies (Eq. ( 4.10) and Eq. ( 4.11)) into the dispersion relation Eq. 

( 6.1). First, inserting Eq. ( 4.11) into Eq. ( 6.1) gives 

  
   

   

1 3

2

1 3

cos / cos /
cos / 0

sin / sin /

T T

m mT

m T T

m m

w l a w l a
w l a

w l a w l a


 
  
 
 

 ( 6.32) 

which leads to 

     1 3 2cos / cos / 0T T

m m
w l l a w l a  . ( 6.33) 

Considering the following manipulation 

          1 3 2 2 1 3

0

cos / cos / sin / cos / 0T T T T

m m m m
w l l a w l a w l a w l l a



     ( 6.34) 
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yields  

  cos / 0T

m
w L a   ( 6.35) 

which is the dispersion relation for intact pipe case (Eq. ( 6.3)) at T

m m
w w  (total 

transmission) and that is why the shift is zero at those frequencies for any blockage length 

2  and radial protrusion  . 

Similarly, inserting Eq. ( 4.10) into Eq. ( 6.1) gives 

          2

2 1 3 1 3sin / sin / cos / cos / sin / 0R R R R R

m m m m m
w l a w l a w l a w l a w l a  

 
 ( 6.36) 

which leads to 

        2

1 3 1 3sin / cos / cos / sin / 0R R R R

m m m m
w l a w l a w l a w l a    ( 6.37) 

Equation ( 6.37) corresponds to the dispersion relation of either a RPR system with length 

(l1+l3) having a blockage at the downstream boundary with a blockage length l3 and an area 

ratio 
2  as shown in Figure  6.17a; or a VPV system with length (l1+l3) having a blockage at 

the upstream boundary with a blockage length l1 and an area ratio 
2 as shown in 

Figure  6.17b. This means that at maximum reflection region ( R

m m
w w ), the eigenfrequency 

shift behaves similarly to the shift in a blocked pipe system with a blockage at the boundary 

where the dimensionless length and area of the blockage are the blockage location ( 1  or 3 ) 

and 
2 , respectively. The eigenfrequency shift mechanism for this simple blocked pipe 

system with a blockage at the boundary is well studied and understood in Chapter 5.  
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Figure  6.14 Relation between Bragg-type resonance and eigenfrequency variation by 

comparison between the eigenfrequency shift in bounded system and the reflected 

amplitude variation with frequency in unbounded system (frequency bands of Bragg-

type resonance) when 2 0.15   and 0.16   
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(a) Left Eigenfrequency shift variation: 3 20.5   axis limited to 

[1/3 to 2/3] 

(b) Right Reflected amplitude variation (see  4.4c) with modified 

frequency (see Eq. ( 6.31)) in unbounded system  

 

Figure  6.15 Relation between Bragg-type resonance and eigenfrequency variation by 

comparison between the eigenfrequency shift in bounded system and the reflected 
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amplitude variation with frequency in unbounded system (frequency bands of Bragg-

type resonance) when 2 0.027   and 0.16   (up to mode 20) 
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(a) Left Eigenfrequency shift variation: 3 20.5   axis limited to 

[1/3 to 2/3] 

(b) Right Reflected amplitude variation (see  4.4c) with modified 

frequency (see Eq. ( 6.31)) in unbounded system  

 



 

196 

Figure  6.16 Relation between Bragg-type resonance and eigenfrequency variation by 

comparison between the eigenfrequency shift in bounded system and the reflected 

amplitude variation with frequency in unbounded system (frequency bands of Bragg-

type resonance) when 2 0.027   and 0.16   (from mode 20 to 40) 
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(a) Left Eigenfrequency shift variation: 3 20.5   axis limited to 

[1/3 to 2/3] 

(b) Right Reflected amplitude variation (see  4.4c) with modified 

frequency (see Eq. ( 6.31)) in unbounded system  
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Figure  6.17  Equivalent pipe system with length (l1+l3) containing a blockage at the 

boundary with dimensionless blocked area 
2  corresponding to the dispersion relation 

in Eq. ( 6.37)                      

 

(a) Top RPR system with a blockage of length l3 at the downstream 

boundary  

(b) Bottom VPV system with a blockage of length l1 at the upstream 

boundary 

 

6.5.3. Variation of zero shift locations with the radial protrusion of the 

blockage 

For the case of blocked pipe system with blockage at the boundary (see Figure 5.2), the zero 

shift locations are independent on  . However for interior blockage case, Figure 6.2 and 

Figure 6.3 show that the zero shift locations at a given mode vary with   except at the 

modes corresponding to the Bragg resonance frequency of maximum reflections (for 
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example see 4th mode in Figure 6.2). In fact, at these exception modes, the pipe system with 

interior blockage behaves as a blocked pipe system with blockage at the boundary; and that 

is why the zero shift location becomes independent on  . In order to determine the variation 

of the zero shift locations, the dispersion relation for blocked RPV system with interior 

blockage (Eq. ( 6.2)) is rewritten as follows 
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 ( 6.38) 

Using the fact that at zero shift,  0 2 1
2

m mk k m
L


    leads to 
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Using trigonometric manipulation on Eq. ( 6.39) , yields 
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 ( 6.40) 

which gives 
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 ( 6.41) 

There are two possible solutions for Eq. ( 6.41). First is  

   2sin 2 1 2 0m    ( 6.42) 

which gives the Bragg resonance frequencies of total transmission; and corresponds to the 

first equation in Eq. ( 6.12) for small radial protrusion case. The second is given by 
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cos 2 1 2 cos 2 1 0

2 1 2
m m

 
  



   
       

   
 ( 6.43) 

which has the following solution (see Appendix B) 
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leading to  
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 ( 6.45) 

Equation ( 6.45) gives the zero shift locations ( m ) at a given mode m and for a given 

dimensionless area  . For example, the zero shift locations from Eq. ( 6.45) at the second 

mode (m = 2) and for   = 0.16 and 2  = 0.15 are  

 2 2 2
3 3 30.1048   ;    0.5619   ;    0.7715

2 2 2

  
         ( 6.46) 

which agree with the zero shift locations observed in Figure 6.12. 

Notice that when  
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   2cos 2 1 2 0m   , ( 6.47) 

which gives the Bragg resonance frequencies of maximum reflection, Eq. ( 6.45) becomes 

 
 

2
3

2 1

2 2 2 1

m

m





 


 ( 6.48) 

which is independent on   and corresponds to the second zero shift equation in Eq. ( 6.12) 

for small radial protrusion case. Moreover, Eq. ( 6.47) gives 
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 ( 6.49) 

and when inserted into Eq. ( 6.48) yields  
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 ( 6.50) 

which could be written as  
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 ( 6.51) 

Equation ( 6.51) corresponds to the zero shift locations for the case of blocked RPR system 

with blockage at the boundary (Eq. ( 5.62) This is because at Bragg resonance frequencies of 

maximum reflections, the blocked RPV system with interior blockage behaves as blocked 

RPR system with total length l1+l3 and having a blockage at the downstream boundary with 

length l3 (see Eq. ( 6.37) and Eq. ( 5.58)). 

Equation ( 6.45) could be written as follows 
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The first term on the right hand side of Eq. ( 6.52) is the zero shift locations for the case of 

blockage with small radial protrusion (shallow blockage). The second term on the right hand 

side represents the deviation from the zero shift locations of shallow blockage case. The 

variation range of the deviation is 

 
   

1 1
  to  

2 2 1 2 2 1m m

 
 

   
, ( 6.53) 

Notice that these deviations become very small at high modes. For example, at modes m=2 

and m=3, the deviation range becomes 

 
1 1 1 1

  to    and    to  
6 6 10 10

    
   
   

, ( 6.54) 

respectively. Therefore Eq. ( 6.52) could be approximated by the equation of zero shift 

locations for shallow blockages (Eq. ( 6.48)) at relatively high modes.  

 

6.5.4. Variation of the maximum shift locations and magnitudes 

In both, interior blockage and blockage at the boundary cases, the maximum shift locations 

change as the radial protrusion of the blockage ( ) varies (see Figure 6.2 and Figure 5.2). 

For the case of blockage at the boundary, the maximum shift locations can be determined 

from Eq. ( 5.57). To obtain the maximum shift locations for the case of interior blockage, the 

dispersion relation (Eq. ( 6.2)) is rewritten as follow 
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which gives 
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 ( 6.56) 

Note that the second term in Eq. ( 6.56) represents the effect of the blockage on the 

dispersion relation. In fact, for 1  , this second term vanishes and Eq. ( 6.56) becomes 

identical to the dispersion relation of an intact RPV system (Eq. (2.54)). Therefore, the shift 

is maximum when the term inside the curly brackets is maximum. Denoting this term by 
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 ( 6.57) 

and equating its gradient to zero, give 
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 ( 6.58) 

which yields 
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Solving for the second equation in Eq. ( 6.59) gives the blockage locations at maximum 

eigenfrequencies as follows 
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 ( 6.60) 

By studying the sign of the Hessian matrix determinant, it can be shown that the distinction 

between maximum and minimum eigenfrequency magnitudes is governed by Eq. ( 6.25). To 

verify Eq. ( 6.60), considering the case of 2 = 0.15 in Figure 6.2 where the maximum and 

minimum eigenfrequency magnitudes at mode m = 3 and   = 0.16 are max 0

3 1w w  = 5.69 and 

min 0

3 1w w  = 4, respectively. Inserting the maximum eigenfrequency magnitude into 

Eq. ( 6.60) and taking into account Eq. ( 6.25), give 

 2 2
3 30.4121    or    0.7636

2 2

 
      ( 6.61) 

which agree with the maximum positive shift locations observed in Figure 6.2. Inserting the 

maximum eigenfrequency magnitude into Eq. ( 6.60) and taking into account Eq. ( 6.25), 

give 

 2 2
3 30.125    or    0.625

2 2

 
      ( 6.62) 

which also agree with the maximum negative shift locations observed in Figure 6.2.  

For the cases of blockage with small radial protrusion, the positive and negative shift 

magnitudes are about the same at a given mode (see Figure 6.5 and Eq. ( 6.10)). However, 

Figures 6.10 and 6.12 and Figures 6.11 and 6.13 show that the magnitudes of the positive 

and negative maximum shifts oscillate as the mode number increases. For example 

Figure 6.12 shows that at the 2nd and 3rd modes, the magnitude of the positive maximum shift 

is lower than the negative maximum shift. However at the 4th mode, which is near the Bragg 

resonance condition of maximum reflection, both negative and positive maximum shift 

magnitudes are the same. But at the 5th and 6th modes, the magnitude of the positive 

maximum shift becomes larger than the negative shift. Overall, Figure 6.12 and 6.13 show 

that, between two modes where total transmission occur, the magnitude of the positive 

maximum shift is low at low modes and increases as the frequency increases, and 

conversely, the negative maximum shift is high at low modes and decreases as the frequency 
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increases. Both negative and positive shift magnitudes become the same at the Brag 

resonance frequency of maximum reflection.  

Solution of the first equation in Eq. ( 6.59) gives the maximum eigenfrequency magnitudes 

at a given mode m. However, attempts to solve for the first equation in Eq. ( 6.59) and find a 

close form for the maximum eingenfrequency at a given mode m have failed. Fortunately, 

the features observed for the maximum shift variation could be explained qualitatively.  

Equations ( 6.52) and ( 6.53) show that the variation range of zero shift location is 

 
   

2
3

1
   to   

2 2 1 2 1

m m

m m




 
   

   
 ( 6.63) 

The boundaries in Eq. ( 6.63) are the locations of a positive and negative shift for shallow 

blockages. This implies that the zero shift locations could coincide with a maximum shift 

location preventing the maximum shift to occur. To further illustrate this effect, consider the 

case of a blockage with large radial protrusion such that   ≈ 0. In this case, the zero shift 

equation in Eq. ( 6.45) gives 
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 ( 6.64) 

which leads to two cases depending on whether the zero shift location m  is even or odd as 

follows 
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 ( 6.65) 

In general and in simpler form, Eq. ( 6.65) becomes 

 
 

2 2
3

2

2 2 1 2

m

m

 
   


 ( 6.66) 
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This shows that the zero shift location for severe blockages could approach the maximum 

shift at even locations for certain modes. Knowing that the maximum shift sign at even 

locations changes at different modes, therefore the zero shift locations approach positive 

maximum shift locations at certain modes, and approch the negative maximum shift 

locations at other modes. For example, Figures 6.10 and 6.12 show that for the case of 

2  = 0.15, the 2nd maximum shift (as 3 2 2   increases) is positive at modes m = 2 and 

m = 3. Figures 6.10 and 6.12 show that at those modes, the zero shift locations are close to 

the maximum positive shift location, and therefore, the magnitude of the positive shift is 

reduced.  

Moreover, for very short blockages, Eq. ( 6.65) shows that two consecutive zero shifts take 

almost the same location at low modes. Since a shift occurs between two zero shift locations, 

this would prevent the shift at even locations to take place. For example, the case of 

2  = 0.027 in Figures 6.11 and 6.13 shows that, at low modes such as m = 2, almost only 

negative shifts occur and that the zero shift locations coincides at almost 3 2 2   = 2/3.  

Equation ( 6.66) approaches the zero shift locations for small radial protrusion when 
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 ( 6.67) 

which is the condition for Bragg resonance frequency of maximum reflections (see 

Eq. ( 6.17) and Eq. ( 4.11)). This is as shown above in Eq. ( 6.48), and as expected from 

Figures 6.14, 6.15 and 6.16. On the other hand, Eq. ( 6.66) approaches the odd maximum 

shift locations when 
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 ( 6.68) 
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which is the condition for Bragg resonance frequency of total transmission (see Eq. ( 6.13) 

and Eq. ( 4.11)). In addition, Eqs. ( 6.25) and ( 6.26) show that the maximum negative shifts 

occur at odd locations for modes below the first Bragg resonance frequency of total 

transmission. This is why Figures 6.12 and 6.13 show that as the mode number approaches 

the Bragg resonance frequency of total transmission, the magnitude of negative shifts 

decreases, and the zero shift locations move towards the negative shift locations. Notice that 

once the mode number exceeds the Bragg resonance frequency of total transmission, the zero 

shift locations switch from being close to the negative shift locations to being near the 

positive shift locations. This is because, from Eqs. ( 6.25) and ( 6.26), the positive shift 

switches from being at even locations to odd locations when the mode number crosses a 

Bragg resonance frequency of total transmission.  

 

6.5.5. Low frequency approximation 

For severe blockage case, Figure 6.10 shows that the lowest mode takes mostly negative 

shift. In this case, if the first eigenfrequency is assumed very small (
0

1 1w w <<1), then a first 

order Taylor expansion could be applied on sine and cosine functions in the dispersion 

relation (Eq. ( 6.1)) which gives 
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 ( 6.69) 

Taking into account that  <<1, Eq. ( 6.69) becomes 

 1

0

1 2 3

2w

w



  
  ( 6.70) 

To understand the physical meaning of the natural frequency in Eq. ( 6.70), consider the 

RPV blocked system in Figure 6.18 and assuming that the pipe with length l2, representing 

the blockage, has very small area ( 2A A  <<1) such that the pipe with length l1 becomes 

as part of the reservoir with respect to pipe 2. At very low frequency, the system composed 
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of pipe 2 and pipe 3 behaves as a Helmholtz resonator ([120]) where pipe 2 is equivalent to 

an acoustic mass (most of the energy is in pipe 2 is kinetic energy) and pipe 3 is equivalent to 

an acoustic compliance (most of the energy in pipe 3 is potential energy). Applying the one 

dimensional momentum equation (Eq. (2.41)) in pipe 2 and assuming ideal flow, give 

 2 2

2

1 1 cPdV dVP

dt x dt l 


    


 ( 6.71) 

where V2 is the velocity in pipe 2; P is the pressure; cP  is a characteristic pressure difference 

and   is the density. Applying the continuity equation (Eq. (2.41)) in pipe 3 gives 

 
2 23 3

3

c cdP V dP dV
a a

dt x dt l
 


    


 ( 6.72) 

where V3 is the velocity in pipe 3 and l3 is the length of pipe 3. Using the continuity of flow 

at the junction between pipe 2 and pipe 3, yields 

 
2

2 22 2

2

3 3

c cdP d PdV dV
a a

dt l dt l dt


        ( 6.73) 

Inserting Eq. ( 6.71) into Eq. ( 6.73), gives 

 
2 2

2 2

3 2

0c
c

d P a
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   ( 6.74) 

which is the ordinary differential equation of a Helmholtz resonator system ([120]) with 

natural frequency 

 
0

3 2 1 3 2

2H
H

wa
w

L w

 

    
    ( 6.75) 

This is identical to Eq. ( 6.70). Notice that for short blockage case (see Figure 6.11), the shift 

is almost always nearly zero at the lowest mode (m = 1). Therefore, a significant shift of the 

lowest eigenfrequency is a good indication of severe blockage case where Eq. ( 6.70) could 

become an accurate approximation. 
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Figure  6.18 Severely blocked RPV system. 

 

 

6.6. Symmetric pipe system with interior blockage 

The above discussions and findings could be similarly applied for the case of symmetric pipe 

system such as reservoir-pipe-reservoir (RPR) system (see Figure 6.19a) or valve-pipe-valve 

(VPV) system (see Figure 6.19b). This section gives briefly the main eigenfrequency shift 

features for the case of symmetric pipe systems with interior blockage at the boundary. 
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Figure  6.19 Symmetric pipe systems with interior blockage. 

 

(a) Left RPR system 

(b) Right VPV system 

 

Applying Eq. ( 5.1) to the blocked RPR and VPV systems in Figure 5.12 gives respectively: 

RPR: 
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 ( 6.76) 

and 
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VPV: 
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 ( 6.77) 

Using trigonometric manipulations for Eqs. ( 6.76) and ( 6.77) give 

RPR: 
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 ( 6.78) 

and  

VPV: 
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, ( 6.79) 

respectively. Note that the second to fourth terms in Eq. ( 6.78) and Eq. ( 6.79) represents the 

effect of the blockage. In fact, for 1  , those terms vanish and Eq. ( 6.78) and Eq. ( 6.79) 

become identical to the dispersion relation of an intact symmetric pipe system. 

Figures 6.20 and 6.21 give the dimensionless eigenfrequency variation with 3 2 2   when 

2 0.15   for the case of RPR and VPV systems, respectively. As seen for the case of RPV 

system, the eigenfrequency shift takes positive, negative and zero shift depending on the 

blockage location. Again, the zero and maximum shift locations change with  .  
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Figure  6.20 Dimensionless eigenfrequency variation with 3 2 2   for the case of 

RPR system with interior blockage ( 2 0.15  ) 

0.075 1/8 1/4 3/8 1/2 5/8 3/4 7/8 0.925
0

2

4

6

8

10

12

14

16

18

RPR system  ;   
2
 = 0.15


3
 + 0.5

2

w
m

  
/ 

 (
a


 /
 2

/L
)

 

 

 

 

=0.01

=0.16

=0.36

=0.64

=1

 

 



 

212 

Figure  6.21 Dimensionless eigenfrequency variation with 3 2 2   for the case of 

VPV system with interior blockage ( 2 0.15  ) 
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6.6.1. Blockage with small radial protrusion  

For the case of blockage with small radial protrusion, the shift equation Equation ( 5.41) 

gives the eigenfrequency equations for RPR and VPV systems respectively as follows 

RPR: 
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 ( 6.80) 

and 
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VPV: 
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 ( 6.81) 

where the following pressure head and flow harmonic of intact RPR and VPV systems are 

used 
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 ( 6.82) 

and  
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 ( 6.83) 

The zero shift locations for both RPR and VPV systems having an interior blockage with 

small radial protrusion are given by 
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The first equation in Eq. ( 6.84) corresponds to the case where the frequency is equal to the 

Bragg resonance frequency of total transmission (Eq. ( 4.11)). The second equation in 

Eq. ( 6.84) corresponds to the case where the blockage mid-length is located at a position of 

equal pressure head and flow magnitudes. 

Taking similar steps to obtain the maximum shift locations for RPV system, the maximum 

shift for both RPR and VPV systems occur when 
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 ( 6.85) 

The first equation in Eq. ( 6.85) corresponds to the case where the frequency is equal to the 

Bragg resonance frequency of maximum reflection (Eq. ( 4.10)). The second equation in 

Eq. ( 6.85) corresponds to the case where the blockage mid-length is located at a position of 

zero pressure head (pressure node) and or zero flow (stagnation point).  

at a given maximum shift location, the blocked RPR and VPV systems have opposite shift 

sign which is given by  
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2 if 0  max shift is negative 
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 ( 6.86) 

where "sgn" is the sign function; sysn = 1 for RPR system and sysn = 0 for VPV system; and 

Tn  is an integer that gives the number of modes region between two consecutive Bragg 

resonance frequencies of total transmission defined as 

  2Floor 1Tn m   ( 6.87) 
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6.6.2. Blockage with severe and moderate radial protrusion  

For a severe blockage such as   tends to 0, Eqs. ( 6.76) and ( 6.79) reduce respectively to  

RPR:      1 2 3cos sin cos 0s s s

m m mk l k l k l   ( 6.88) 

and 

VPV:      1 2 3sin sin sin 0s s s

m m mk l k l k l   ( 6.89) 

The solution to Eqs. ( 6.88) and ( 6.89) gives the asymptotic solutions for RPR and VPV 

systems. Eq. ( 6.88) shows that the RPR system with severe interior blockage is equivalent to 

three uncoupled intact subsystems: RPV subsystem with length l1, and RPR subsystem with 

length l2 and RPV subsystem with length l3. On the other hand, Eq. ( 6.89) shows that the 

VPV system with severe interior blockage is also equivalent to three uncoupled intact 

subsystems: VPV subsystem with length l1, RPR subsystem with length l2 and VPV 

subsystem with length l3.  

The eigenfrequency variation for RPR and VPV systems along with the asymptotic solutions 

are given in Figures 6.22 and 6.23 when 2 0.15  . Similarly to the RPV case, 

Figures 6.22 and 6.23 show that the eigenfrequencies approach the asymptotic solution (i.e. 

the decoupling effect increases) at modes with frequencies close to the Bragg resonance 

frequency of maximum reflection; and become far away from the asymptotic solutions (i.e. 

the decoupling effect decreases) at modes with frequencies close to the Bragg resonance 

frequency of total transmission. 

Inserting the Bragg resonance frequency of total transmission (Eq. ( 4.11)) into 

Eqs. ( 6.76) and ( 6.77) give  sin 0T

mw L a   which is the dispersion relation for intact 

symmetric pipe system with length L. 

Similarly, inserting the Bragg resonance frequency of maximum reflection (Eq. ( 4.10)) into 

Eqs. ( 6.76) and ( 6.77) give 

RPR:        2

1 3 1 3cos cos sin sin 0kl kl kl kl   ( 6.90) 
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and 

VPV:        1 3 1 32

1
cos cos sin sin 0kl kl kl kl


   ( 6.91) 

Equations ( 6.90) and ( 6.91) shows that, at modes with frequencies close to the R

mw  

(Eq. ( 4.10)), the RPR system becomes equivalent to a blocked RPV system with total length 

l1+l3 and having a blockage at the downstream boundary with area ratio 2 ; and the VPV 

system becomes equivalent to a blocked RPV system with total length l1+l3 and having a 

blockage at the upstream boundary with area ratio 
2 . 

Similarl to the case of RPV system, the zero and maximum shift locations for the cases of 

RPR and VPV systems could be obtained which are given by 
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and 
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respectively. 
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Figure  6.22 Dimensionless eigenfrequency variation along with the asymptotic 

solutions for RPR system ( 2 0.15  ). 
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Figure  6.23 Dimensionless eigenfrequency variation along with the asymptotic 

solutions for VPV system ( 2 0.15  ). 
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6.7. Application of Bragg resonance and eigenfrequency shift information for 

TBDDM 

6.7.1. Implication to TBDDM 

In practice, most transient wave generators transmit narrow frequency bandwidth (FBW). If 

the FBW is close to T

m
w , then the blockage signature on the transient wave will be negligible 

(see Figure  4.7) and therefore the blockage will be undetectable. On the other hand, if the 

FBW is close to R

m
w , the blockage interacts with the wave and its signature becomes clear. In 

this regards, the injected FBW should be varied for two main advantages. First is to avoid 
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hidden blockage signature if the FBW is close to a Bragg resonance frequency of total 

transmission ( T

m
w ). The second advantage is that the sweeping of the injected FBW helps 

detecting the Bragg resonance frequency. The knowledge of these frequencies gives 

information about the blockage characteristics. For example, if R

m
w  or T

m
w  is determined, the 

blockage length could be obtained from Eq. ( 4.10) or Eq. ( 4.11). With the knowledge of the 

shift sign mechanism, the search domain of the blockage location could be narrowed.  

Such FBW sweeping technique was used in Duan, et al. ([36]) to obtain the highest reflection 

coefficient that leads to accurate detectability of the blockage. In their experiment, 

Duan, et al. ([36]) found that when the length of the blockage is equal to odd integer 

multiples of a quarter of the wavelength, the power reflection ratio becomes maximum. This 

is precisely the condition of Bragg resonance frequency of maximum reflection (Eq. ( 4.10)).  

 

6.7.2. Experimental investigation  

Experimental tests are conducted in order (i) to validate the effect of Bragg resonance in 

bounded pipe system, and the different features discussed about the eigenfrequency shift 

mechanism in previous sections; and (ii) to illustrate the potential of using the 

eigenfrequency shift and Bragg resonance information for blockage detection in bounded 

pipe system. 

6.7.2.1. Description of the experimental setup 

The experimental investigation is conducted at the Water Engineering Laboratory located at 

the University of Perugia-Italy in collaboration with Prof. Bruno Brunone and Prof. Silvia 

Meniconi. The experimental setup consists of a reservoir-pipe-valve system which contains a 

single blockage as shown in Figure 6.1. The blockage is modelled as a pipe with length l2 

and a diameter D2 < D0 where D0 is the diameter of the intact pipe. The pipe material is high-

density polyethylene (HDPE) (viscoelastic pipe) ([86]) and the blockage has the same 

material as the pipe (i.e., HDPE).. Two tests, each with different blockage length, are 

conducted. The characteristics of the experimental tests are given in Table 6.1.  
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Due to the limited space in the laboratory, it was not possible to use a long straight pipe, and 

therefore a coiled pipe setup was used. A schematic description of the intact pipe system 

setup (without blockage) used for experimental tests is shown in Figure 6.24, and part of the 

real pipe setup is given in Figure 6.25.  

The flow in the pipe is initially stagnant and pressurized at P0  1±0.1 bar. The transient is 

generated using a portable pressure wave maker (PPWM) (see Figures 6.24, 6.25 and 6.26) 

which is a small-sized pressurized tank that has a higher pressure (Pw   4.3±0.1 bar) than the 

initial pressure in the pipe system (P0  1±0.1 bar). The PPWM is connected to an initially 

closed downstream electro-valve that has a diameter Dv = 1/4 inch (= 6.35 103 m). The 

opening and closing of the electro-valve is controlled to generate the desired waveform. In 

these experimental tests, a square pulse is used as wave from which is created by a rapid 

opening and closing of the valve. The duration of the pulse is 50pt ms  and the wave form 

produced is shown in Figure 6.27.  

The pressure is measured at three different locations (see points T1, T2 and T3 in 

Figure 6.24). The distance from the electro-valve to the measurement location T1 is 0.98 m. 

The measurement location T2 is at 1.26m from the downsteam junction of the blockage 

location, and the measurement location T3 is at 2.06m to the upstream junction of the 

blockage. The pressure signal is acquired by piezoresistive transducers with a frequency 

acquisition of 1,024 Hz.  

The blockage (or smaller diameter pipe) is located between the locations T1 and T3. The 

pressure signals are analysed in the frequency domain after being processed using the Fast 

Fourier Transform implemented in Matlab 2013a.  

The method of characteristic (MOC) is used to simulate the experimental tests. For the 

numerical simulation, the pressure signal in Figure 6.27 is injected at the downstream valve 

location. 

Notice that Figures 6.12 and 6.14 correspond to the case in test 1 (see Table 6.1), and 

Figures 6.13, 6.15 and 6.16 correspond to the case in test 2 (Table 6.1). These Figures will be 

used for later discussion (Sections 6.7.2.2.2 and 6.7.2.2.3). 
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Table  6.1. Characteristics of the experimental tests 

Parameters Test 1 Test 2 

l1 (m) 52.86 52.86 

l2 (m) 24 3.6 

l3 (m) 76.75 76.75 

L (m) 153.61 133.21 

2 = l2 / L  0.156  0.027 

D1 (m) 0.0933 0.0933 

D2 (m) 0.0383 0.0383 

D3 (m) 0.0933 0.0933 

 = A2 / A1 0.168 0.168 

Pipe thikness (m) 0.0167 0.0167 

Wave speed (a) (m/s)  355 ± 15  355 ± 15 

Pipe material HDPE HDPE 

Figure  6.24 Schematic description of the intact pipe system setup used for the 

experimental tests 
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Figure  6.25 Part of the real pipe setup  

 

Figure  6.26 PPWM and its connection to the pipe 
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Figure  6.27 Pressure signal in the time domain at T1 and T2 transducers (Test 1). 
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6.7.2.2. Experimental results and discussion 

6.7.2.2.1. Discussion on experimental errors 

In Figure 6.28, the frequency response function (FRF) of the pressure signal for the test case 

1 with blockage length 2 0.156   (see test 1 in Table 6.1) measured at location T1 

(downstream boundary) is compared with the numerical test which consider ideal straight 

pipe. The frequency axis in Figure 6.28 is dimensionlized by the first eigenfrequency for 

intact RPV system ( 0

1w  = a/2/L). Figure 6.28 shows that the first seven eigenfrequencies 

obtained from the measured signal match those from the numerical signal. The mean error 

between them with respect to 0

1w  is about 5% for the first 5 modes and about 20% for the 6th 
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and 7th modes. Eigenfrequencies at higher modes (>7) are not reliable because of the 

noise/errors and the limitation of the frequency bandwidth. The possible sources of errors are 

the bends effect, anchorage effect and/or measurement errors and noise.  

The mean distance between two successive bends is about 10 m. Therefore the effect of the 

bends may become very apparent at frequencies close to (a/4/10) / 0

1w  ≈ 15 which may affect 

eigenfrequency at mode six or higher.  

The anchorage effect is most likely to be small because the transient pressure head injected is 

very small (less than 1m (see Figure 6.27)), and therefore the pipe displacement is very small 

too.  

The most probable source of error affecting the experimental result is the measurement error 

especially for determining the wave speed. For example, it is found that an error of 4% in 

wave speed produces an error in the eigenfrequency that increases almost linearly from 4% 

at the 1st mode to 63% at the 7th mode; whereas an error of 1% in wave speed produces an 

error in the eigenfrequency that increases almost linearly from 0.9% at the 1st mode to 14% 

at the 7th mode. The mean wave speed in Table 6.1 (355m/s) is based on the average of 16 

repeated experiments; and the error in wave speed in Table 6.1 (15m/s) is based on the 

standard deviation. 
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Figure  6.28 Frequency response function (FRF) of the pressure signal measured at T1 

for the test case with blockage length 2 0.156   (test 1 in Table 6.1 with a = 355 m/s): 

Comparison between experimental and numerical results.  
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6.7.2.2.2. Test 1: extended blockage 

Figure 6.29 gives the frequency FRF of the pressure signal for the case of blockage length 

2 0.156   (see test 1 in Table 6.1) measured at location T1 (downstream boundary). 

Figure 6.29a indicates the location of maximum reflection frequencies ( R

nw ) and total 

transmission frequencies ( T

nw ) (see Eq. ( 4.10) and Eq. ( 4.11)); and Figure 6.29b indicates 

the location of the uncoupled eigenfrequencies for subsystem 1 (RPV system with length l1) 

and subsystem 3 (VPV system with length l3) (see Eqs. ( 6.28) and ( 6.30) and Figure 6.9). 

Figure 6.29b shows that the 3rd , 4th and 5th resonant frequencies, located respectively at 

0

1 4.2w w  , 0

1 8w w   and 0

1 8.65w w  , almost coincides with the uncoupled 

eigenfrequencies. This is because these eigenfrequencies are close to the first Bragg 
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resonance frequency of maximum reflection ( 0

1 1 6.4Rw w  ) (see Figure 6.29a) where the 

eigenfrequency variations approaches the asymptotic solutions (see Figures 6.14 and 6.12). 

On the other hand, the 6th and 7th eigenfrequencies, located respectively at 0

1 11.6w w   and 

0

1 13.1w w  , are close to the first Bragg resonance frequency of total transmission 

( 0

1 1 12.8Tw w  ) (see Figure 6.29a), and therefore, do not coincide with the uncoupled 

eigenfrequencies (see Figure 6.29b) as expected from Figures 6.14 and 6.12. Moreover, the 

3rd, 4th and 5th eigenfrequencies, which are near the first Bragg resonance frequency of 

maximum reflection, are largely shifted with respect to the eigenfrequencies of the intact 

pipe case, whereas the 7th eigenfrequency shift is zero. This is as expected from 

Figures 6.14 and 6.12. 

Two special cases occurred in Figure 6.29. The first special case is that the 2nd 

eigenfrequency, although close enough to the first Bragg resonance frequency of maximum 

reflection, is not shifted with respect to the 2nd eigenfrequency of the intact pipe case. This is 

because the blockage is placed at a zero shift location (see Eq. ( 6.45)). In fact, 

3 2 2  = (76.75+24/2)/153.61 = 0.5778 which is very close to the second shift location 

given by Eq. ( 6.45) as follows  

  2
3 0.1048   or  0.5619   or   0.7715

2


    ( 6.94) 

If Eq. ( 6.48), which gives the zero shift locations for shallow blockage case, is used instead 

of Eq. ( 6.45), the following possible blockage locations become  

  2
3 0.1667   or  0.5000   or   0.8333

2


    ( 6.95) 

The difference between Eq. ( 6.94) and Eq. ( 6.95) gives an error of about 6%.  

The second special case is that the 5th eigenfrequency is not very clear. This is because the 

blockage is located where the frequencies of uncoupled subsystem 1 (Eq. ( 5.68)) and 

subsystem 2 (Eq. ( 5.69)) are almost equal (see Figures 6.14 and 6.12 and Figure 6.29). At 

this special location, the two consecutive eigenfrequencies (4th and 5th eigenfrequency in this 

case) experience almost similar shift magnitude but with opposite signs (see 
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Figures 6.14 and 6.12 and Figure 6.29). Therefore, the eigenfrequencies are very close to 

each other, and this is probably why the 5th eigenfrequency is not very clear. 

Figure 6.29 shows that significant shifts occur at the 3rd and 4th eigenfrequencies with the 3rd 

eigenfrequency shift being positive and the 4th eigenfrequency shift being negative. In these 

cases, assuming that those shifts correspond to maximum shifts, Eqs. ( 6.60) and ( 6.25) for 

maximum shift locations could be applied which give 

   02
3 3 10.1414  ; 0.6195     ;   4.18

2
w w


     ( 6.96) 

and 

   02
3 4 10.31 ;  0.5633 ;  0.8165      ;   7.9

2
w w


     ( 6.97) 

Equations ( 6.96) and ( 6.97) show that the blockage location, which is actually at 

3 2 2   = 0.5778, is close to the 2nd negative maximum shift location of the 3rd mode and 

near the 2nd positive maximum shift location of the 4th mode. This shows that, although a 

significant shift is used which is not necessary a maximum shift, Eqs. ( 6.60) and ( 6.25) 

could give quite accurate approximation for the blockage location with an error of about 

1.4% to 4.2%. 

A relatively significant shift is observed at the first eigenfrequency in Figure 6.29 where 

0

1 1 0.72w w  . In this case, Eq. ( 6.70), for low frequency approximation, could be used to 

approximate the first eigenfrequency which gives  

 1

0

1 2 3

2 2 0.168
0.9343

0.156 0.5

w

w



   
  


 ( 6.98) 

There is a large difference between the experimental and the approximated values (21.4% 

error). Even based on the numerical results which give 
0

1 1 0.8w w  , the difference is still 

large (13% error). Therefore, Eq. ( 6.70) does not provide accurate approximation. However, 

if Eq. ( 6.69) is used instead of Eq. ( 6.70), the first eigenfrequency is 
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 1

0 2

1 1 2 1 3 2 3

2
0.83

w

w



     
 

 
 ( 6.99) 

which gives about 50% better accuracy (11% error). Consequently, Eq. ( 6.70) is probably 

not reliable for real applications, whereas Eq. ( 6.69) might gives enough accuracy since it 

produces an error relatively close to the measurement error.  

In Chapter 4, it is shown that the knowledge of Bragg resonance frequency could inform on 

the blockage characteristics (e.g. blockage length). However, it may not be trivial to identify 

the Bragg resonance frequencies from the FRF. Nevertheless, Bragg resonance frequency of 

maximum reflection could be approximated to be the intact pipe system's eigenfrequency at 

the mode where the first significant positive shift occurs. This is because, as discussed in 

Section 6.5.4, positive shift is small at low modes and become large only near Bragg 

resonance frequency of maximum reflection. For example, Figure 6.29 shows that a 

significant positive shift occurs at the 4th mode ( 0

4 1 7.9w w  ). Therefore, the 4th 

eigenfrequency of the intact pipe system ( 0

4w ) could approximated to be the Bragg resonance 

frequency of maximum reflection. In fact, inserting 0

4w  into Eq. ( 4.10) give 

 2 0 0

4 1

1 1
0.1425 0.156

7w w
      ( 6.100) 

which is very close to the true blockage length with about (0.1560.1425)×100 = 1.36% error.  

Moreover, in Section 6.5.2 it is shown that at modes with eigenfrequency close to the Bragg 

resonance frequency of maximum reflection, the blocked pipe system becomes equivalent to 

a junction pipe system (where the blockage is placed at either boundary of the pipe system) 

with squared blocked area ratio (
2 ). Therefore, if a maximum shift at such modes is 

measured, then Eq. ( 5.65) could be used to determine the area ratio ( ) as follow 
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For example, using the significant positive shift observed at the 4th mode ( 0

4 1 7.9w w  ) (see 

Figure 6.29), Eq. ( 6.101) gives 

 
 

 

1 sin 7.9 2 1 0.1425
0.1792 0.168

1 sin 7.9 2 1 0.1425






     
   

 ( 6.102) 

which is very close to the true area ratio with about (0.17920.168)×100 = 1.12% error. 

Figure  6.29 Frequency response function (FRF) of the pressure signal measured at T1 

for the test case with blockage length 2 0.156   (test 1 in Table 6.1 with a = 355 m/s) 

where the Bragg resonance frequencies and the uncoupled subsystems eigenfrequencies 

are included. 
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(a) Top Indicates the location of maximum reflection ( R

nw ) and total 

transmission frequencies ( T

nw ) (Eq. ( 4.10) and Eq. ( 4.11)). 

(b) Bottom Indicates the location of the eigenfrequencies of uncoupled 

subsystem 1 and subsystem 3 (see Eqs ( 6.28) and ( 6.30) and 

Figure 6.9) 
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6.7.2.2.3. Test 2: short blockage 

Figure 6.30 gives the FRF of the pressure signal measured at location T1 (downstream 

boundary) for the test case with blockage length 2 0.027   (see test 2 in Table 6.1). 

Figure 6.30a gives a comparison between experimental and numerical results and shows 

relatively good fitting between both of them. Figure 6.30b shows the experimental results 

with the eigenfrequencies of the uncoupled subsystems (see Eqs ( 6.28) and ( 6.30) and 

Figure 6.9). In this case, the Bragg resonance frequencies are too high ( 0

1 1 37Rw w  ) to be 

observed in the frequency domain due to the limitation of the injected frequency bandwidth 

(FBW).  

Conversely to the test case 1 discussed above (see Figure 6.29), Figure 6.30b shows that the 

eigenfrequencies at low modes do not coincide with the uncoupled frequencies (see first five 

eigenfrequencies in Figure 6.30b) as expected from Figures 6.13, 6.15 and 6.16. Notice that 

the 4th eigenfrequency, although at low enough mode, is close the eigenfrequency of the 

uncoupled subsystem 3. This is because the blockage is located near a zero shift position of 

the 4th mode as shown in Figure 6.30. A quick calculation shows that 3 2 2  = 

(76.75+3.6/2)/133.21 = 0.5035, whereas the zero shift locations at the 4th mode from 

Eq. ( 6.45) are 

 2
3

0.0371 ;  0.2486 ;  0.3228 ;  0.5343 ;  
=

0.6085 ;  0.8201 ;  0.89422




 
  

 
 ( 6.103) 

showing that the blockage mid-length is located near the 4th zero shift position of the 4th 

mode.  

Although the first Bragg resonance frequencies of maximum reflection occur at high 

frequency ( 0

1 1 37Rw w  ), Figure 6.30b shows that the 6th and higher eigenfrequencies get 

close to the eigenfrequencies of the uncoupled subsystems. This is because for severe-short 

blockages (which is the case for test 2), the Bragg resonance effect of maximum reflection 

affects large frequency bandwidth as shown in Figure 4.3 and 4.4; and therefore the 
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decoupling effect is enhanced at frequencies much lower than the Bragg resonance frequency 

of maximum reflection (see Figures 6.13, 6.15 and 6.16). 

Notice that all eigenfrequency shifts in Figure 6.30b are negative which is as expected from 

Eq. ( 6.66) where the zero shift locations approaches the maximum positive shift locations 

and therefore, preventing positive shift to occur at modes much lower than the mode with 

eigenfrequency close to the first Bragg resonance frequency of maximum reflection.  

Figure 6.30 shows that significant negative shifts occur at the 3rd and 5th eigenfrequencies. 

Assuming that those shifts correspond to maximum shifts, then Eqs. ( 6.60) and ( 6.25) could 

be applied and give  

   02
3 3 10.1629  ;  0.6124     ;   4.45

2
w w


     ( 6.104) 

and  

   02
3 5 10.08  ;  0.32  ;  0.56  ;  0.8     ;   8.33

2
w w


     ( 6.105) 

Equations ( 6.104) and ( 6.105) show that the blockage location, which is actually at about 

3 2 2   = 0.59, is close to the 2nd and 3rd negative maximum shift location of the 3rd and 5th 

modes with an error of about 2.2% and 3%, respectively. Again, this shows that 

Eqs. ( 6.60) and ( 6.25) could give quite accurate approximation for the blockage location 

based on a significant shift magnitude which may not be necessary the exact maximum shift 

magnitude.  
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Figure  6.30 Frequency response function (FRF) of the pressure signal measured at T1 

for the test case with blockage length 2 0.027   (test 2 in Table 6.1 with a = 370 m/s) 
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(a) Top Comparison between experimental and numerical results 

(b) Bottom Indicates the location of the eigenfrequencies of uncoupled 

subsystem 1 and subsystem 3 (see Eqs. ( 6.28) and ( 6.30) and 

Figure 6.9) 

 

6.7.2.3. Potential of using of Bragg resonance and frequency shift mechanism 

information for blockage detection 

The purpose of this work is to study the blockage-wave interaction in pipe system and not to 

establish new transient-based blockage defect detection method. Nevertheless, it is 

instructive to show the potential of using the understanding gained form studying wave-

blockage interaction and eigenfrequency shift mechanisms for blockage detection. Recently, 

Duan, et al. ([32]) used the dispersion relation (Eq. ( 5.1)) for blockage detection. For 
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example, denoting the dispersion relation equation for the case of blocked RPV system with 

interior blockage by 
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, ( 6.106) 

where 

 
 

 

1

1










, ( 6.107) 

Duan, et al. ([32]) used inverse optimization techniques such as genetic algorithm to 

minimize the flowing equation  

  2 3, , , minmes

dis m

m

F w l l    ( 6.108) 

where 
mes

mw  is the mth measured eigenfrequency. Such techniques requires a search on all 

possible combinations of { 2 3, ,l l  } which gives a very large search domain. This section 

shows how the use of Bragg resonance and eigenfrequency shift mechanism could reduce 

significantly the search domain. 

The procedure to reduce the search domain is to use the equations of zero shift locations 

(Eq. ( 6.45)) and maximum shift locations (Eq. ( 6.60)) whenever a zero or maximum shift is 

observed. The zero and maximum shift equations for RPV system are respectively repeated 

here for convenience 
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 ( 6.110) 

Equations ( 6.109) and ( 6.110) are discrete at any given mode m. This means if a zero or 

maximum shift occurs at a mode m, then there exist at most 2m1 possible blockage 

locations. Notice that the lower the mode where a zero or maximum shift is observed, the 

narrower the search domain becomes. At relatively high modes (m > 2), 

Eqs. ( 6.52) and ( 6.53) show that Eq. ( 6.109) could approximated by the equation of zero 

shift location for shallow blockage case as follows 
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 ( 6.111) 

with a maximum error of  

  
 

 

1
err

2 2 1

m

m
m





, ( 6.112) 

Equations ( 6.110) and ( 6.111) give different sets of multiple solutions for the blockage 

location (see Eqs. ( 6.95), ( 6.96) and ( 6.97)), which would require a position recognition 

algorithm to identify the possible blockage position. This identification is possible by 

selecting different possible combination of blockage locations where each combination must 

include one possible location from each set; and imposing the maximum error (Eq. ( 6.112)) 

on the zero shift locations and assuming a maximum error for the maximum shift locations 

which must be located between two consecutive zero locations. Such identification process 

could converge if enough sets are used. If the sets are not enough to obtain convergence 

towards unique possible location, then a probabilistic approach could be applied based on the 

minimum error in each combination. For example, the sets of possible locations given by 

Eqs. ( 6.95), ( 6.96) and ( 6.97) show that the combination of {0.5 ; 0.6195 ; 0.5633} has the 
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minimum error. An approximation of the blockage location could be obtain by an average of 

this combination as follows  

 
 

2
3

0.5 0.6195 0.5633
=0.561

2 3




 
   ( 6.113) 

which is close to the exact solution 3 2 2 0.5778    (see test 1 in Table 6.1).  

Furthermore, Eq. ( 6.110) could be inserted into the dispersion relation (Eq. ( 6.106)) to 

simplify the equation and reduce the search domain. If a significant shift occurs at the mth 

eigenfrequency, then Eq. ( 6.110) is inserted into Eq. ( 6.106) which gives 
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 ( 6.114) 

For example, Figure 6.29, which gives the FRF for test 1 (see Table 6.1), shows a significant 

negative shift occuring at the 3rd eigenfrequency and a significant positive shift occuring at 

the 4th eigenfrequency. Therefore, one could write the following equations  
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 ( 6.116) 

If a unique blockage position is obtained through a location recognition algorithm, then 

Eqs. ( 6.115) and ( 6.116) depend only on the blockage length ( 2 ) and severeness ( ). 

Inserting Eqs. ( 6.115) and ( 6.116) into Eq. ( 6.108) for inverse optimization process gives 

narrower search domain and better accuracy to obtain the blockage characteristics. The pipe 

length constraint imposes a condition on the blockage length that helps narrowing the search 

domain. This condition is given by 
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 ( 6.117) 

Moreover, if Bragg resonance frequency is determined, then the blockage length could be 

obtained from Eq. ( 4.10). In addition, it is shown (see Section 6.5.2) that at modes with 

eigenfrequencies close to the Bragg resonance frequency of maximum reflection, the blocked 

pipe system becomes equivalent to a junction pipe system (where the blockage is placed at 

either boundary of the pipe system) with squared blocked area ratio (
2 ). If maximum shift is 

measured at such modes, then Eq. ( 5.56) or Eq. ( 5.65) could be used to determine the area 

ratio ( ). For RPV system, Eq. ( 5.65) could be used and gives 
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whereas for RPR and VPV systems, Eq. ( 5.56) is used and gives 
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and  
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, ( 6.120) 

respectively. Bragg resonance frequency of maximum reflection may not be trivial to 

identify in the frequency response; however, it could be approximated to be the intact pipe 

system's eigenfrequency at the mode where the first significant positive shift occurs. This is 

because, as discussed in Section 6.5.4, positive shift is small at low modes and become 

significant only near Bragg resonance frequency of maximum reflection. If such positive 

shift is measured, then the area ratio and blockage length could be obtained as given in 

Eqs. ( 6.100) and ( 6.102).  

Another possible way to identify the Bragg resonance frequency is to use signal correlation 

techniques in the frequency domain. This is because, as shown from the results in Chapter 4 

(see Figures 4.10 and 4.11), there exists regularity (periodicity) in the distribution of the 

Bragg resonances frequency bands which related to the pipe system's characteristic lengths. 

However, this technique may require a large FBW. To understand this technique, assume 

that the eigenfrequency shift has the following form 

      1 2 30

1

sin 2 1 , ,m
i i i

i

w
m

w
    


        ( 6.121) 

where  1 2 3, ,i     is a combination of the characteristic lengths of the pipe system (e.g. 

2i    or 3i    or 2 3i      or 1 3i     );  i   is a coefficient depending in the 

area ratio (  ), i  is representing a phase. The choice of the shift equation form in 

Eq. ( 6.121) is based on the shift equation form for shallow blockage (Eq. ( 6.10)) and the 

form of the dispersion relation (Eq. ( 6.2)). Applying Fourier transform on the shift equation 

in Eq. ( 6.121) with respect to the mode number gives the  

      0

1

exp ,m
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w
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  ( 6.122) 
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where  refers to discrete Fourier transform (DFT); 
i  is amplitude; 

i  is phase;   the 

characteristic length variable; and  , i    is the Kronecker delta function. Eq. ( 6.122) 

shows that, if the shift has the form in Eq. ( 6.121), the Furrier transform of the 

eigenfrequency shift with respect to the mode number would indicate the characteristic 

lengths of the pip system ( i ). To verify this, Figure 6.31a gives the exact eigenfrequency 

shifts at the first 40 modes corresponding to the experimental test 1 (see Table 6.1). The DFT 

of the eigenfrequency shift (Figure 6.31a) with respect to the mode number is given in 

Figure 6.31b. The observed peaks in Figure 6.31b are given at 0.15  , 0.35   and 

0.5   which correspond approximately to the blockage length (
2 = 0.156), the length 

1 = 52.86/153.61 = 0.344. and 1 2  = 0.5.  

Figure  6.31 Eigenfrequency shift variation with mode number and its DFT 

corresponding to test 1 in Table 6.1. 
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(a) Left Eigenfrequency shift variation with mode number  

(b) Right DFT of the eigenfrequency shift 
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Similarly, the DFT of the eigenfrequency shift is carried for four different blocked pipe 

systems in Figure 6.32. The sets of lengths and area ratio ({
1 2 3, , ,    }) for the four 

different tests are given in Table 6.2 which correspond to the test cases in Figure 6.32a-d, 

respectively.  

Figure 6.32a , which is similar to the experimental test 2 in Table 6.1, shows that the 

observed peaks are given at 0.025  , 0.175   and 0.4   which correspond 

approximately to the blockage length (
2 = 0.027), 3 1  = 0.1794 and 

1 =0.3968. One 

more unclear peak in Figure 6.32a is shown in circle which as at 0.425   and corresponds 

approximately to the 1 2  = 0.4238. Figure 6.32b shows that the three peaks correspond to 

1 , 
2  and 

3 , whereas Figure 6.32c shows that the three peaks correspond to 
1 , 

3  and 

1 3  . The area ratio in these two last tests is 0.5   showing that the DFT of the shift is 

not affected by the area ratio, which means that it is not affected by the shift magnitude. In 

fact Figure 6.32d gives a test case with 0.8   and shows that the peaks are clear and 

correspond to 
2 , 

1  and 
3 .  

The characteristic lengths appearing in DFT the shift are restricted by the Nyquist frequency 

which states that the characteristic lengths are less than m /2 = 1/2 to remove any aliases. It 

is this condition which makes the apparent characteristic lengths varies for different pipe 

system cases. To understand this better, Eq. ( 6.10) given the shift for shallow blockage case 

is recalled here  
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 ( 6.123) 

and shows that the shift could be written in terms of different characteristic lengths. The DFT 

select the ones restricted by the Nyquist frequency.  
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Table  6.2. Sets of lengths and area ratio for the test examples in Figure 6.32  

# a b c d 

1  0.3968 0.22 0.14 0.34 

2  0.027 0.36 0.58 0.12 

3  0.5762 0.42 0.28 0.54 

  0.168 0.5 0.5 0.8 

 

Figure 6.32 DFT of eigenfrequency shift corresponding to the test cases in Table 6.2. 
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(b)                                                   
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(c)                                                   
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(d)                                                   

 

(a) Top left Test case number a in Table 6.2 

(b) Top right Test case number b in Table 6.2 

(c) Bottom left Test case number c in Table 6.2 

(d) Bottom right Test case number d in Table 6.2 
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The clarity of the peaks in the DFT of the shift depends on the frequency bandwidth. For 

example, Figure 6.33 gives the DFT of the shift at the first seven modes for the case 

corresponding to the experimental test 1 (Table 6.1) and compares the exact and 

experimental results. First, Figure 6.33 shows that the experimental and exact results are 

similar. Second, although the peaks are not as clear as for the case using 40 modes (see 

Figure 6.31b), the peak observed in Figure 6.33 give an estimate of the blockage length with 

about 1.31% error. On the other hand, Figure 6.33 compares the exact and experimental 

results of the DFT of the shift at the first seven modes for test 2 (Table 6.1) and shows no 

clear peaks. The higher amplitude at low characteristic length ( ) may be an indication that 

a small length scale is involved. This shows that small scale blockages requires larger FBW, 

and therefore, higher injected frequencies. 

Although not shown here, but it is found that Eqs. ( 6.121) and ( 6.122) could be 

applied for multi-blockages case.  

Figure 6.33 DFT of eigenfrequency shift corresponding to test 1 in Table 6.1 using 

only the first seven modes. A comparison between experimental and exact results. 
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Figure 6.34 DFT of eigenfrequency shift corresponding to test 2 in Table 6.1 using 

only the first seven modes. A comparison between experimental and exact results. 
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6.8. Summary 

This chapter studied the eigenfrequency shift due to an interior blockage in bounded pipe 

system with the primary goal being to understand and describe the mechanisms that cause 

such eigenfrequency shift. The key findings are summarized below: 

(i) The eigenfrequency shift variation caused by a shallow blockage in a conduit is 

analyzed by studying the variation of the work of radiation pressure at the blockage 

boundaries. It is found that if the works at the blockage boundaries are equal in 

magnitude and sign, then the eigenfrequency shift is zero. This case occurs under 

two conditions: The first condition is when the blockage length is a multiple of half 

wavelength of the mth mode harmonic, and therefore, the eigenfrequency 

corresponds to the Bragg resonance frequency of total transmission. Under such 

condition, the shift is zero for any blockage location. The second condition states 

that, at a given mode m, the shift is zero when the blockage mid-length is located at 

a position of equal pressure and flow magnitudes. On the other hand, maximum 

shift occur if the work at the blockage boundaries are equal in magnitude but with 

opposite sign. There are two mechanisms governing the maximum shift. The first 

mechanism is for a given resonant mode m and states that the shift is maximum if 

the blockage mid-length is located at a position of either a pressure node or 

stagnation point. The second mechanism describes the variation of the maximum 

shift magnitude with mode number and shows that the largest magnitude of 

maximum shift occurs at modes with eigenfrequency close to the Bragg resonance 

frequencies of maximum reflection. Positive and negative shifts depend on which 

work is higher at the blockage boundaries.  

(ii) Similarly to the case of blockage at the boundary, an interior severe blockage 

decouples the pipe system into independent intact subsystems with different 

lengths. The eigenfrequencies of these subsystems defines the asymptotic solutions 

of the eigenfrequency variations at the limit of most severe blockage cases 0  . 

This decoupling effect is governed by two mechanisms depending on either the 
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change of the blockage location at a given mode or the change in mode number. 

The first mechanism is for a given resonant mode and states that the decoupling 

effect is weakened when the blockage location is such that the eigenfrequencies of 

the subsystems are close or equal to each other. When this occurs, waves in the 

subsystems act as forcing functions for one to another which drives the whole pipe 

system at or near resonance. The fact that subsystems are driving one another at or 

near resonance is what brings about the coupling even for a very severe blockage. 

The second mechanism describes the variation of the maximum shift magnitudes 

with mode number and shows that as the eigenfrequency mode number varies, the 

coupling/decoupling mechanism is governed by the Bragg resonance effect studied 

in Chapter 4. In fact, it is shown that most decoupling effect occurs at modes with 

eigenfrequencies close or at the Bragg resonance frequencies of maximum 

reflection. This is because the more reflections are from the blockage, the more the 

upstream and downstream regions of the blockage become decoupled. Conversely, 

maximum coupling effect occurs at modes with eigenfrequencies close or at the 

Bragg resonance frequencies of total transmission where the eigenfrequency shift is 

zero for any blockage location. 

(iii) The assumption of shallow blockage (with small radial protrusion) is applicable when 

the blockage occupies 35% of the pipe’s area or less. The assumption of severe 

blockage is applicable when the blockage occupies 35% of the pipe’s area or more 

provided that the eigenfrequencies of the asymptotic subsystems are not equal or 

close to each others. 

(iv) At modes close to the Bragg resonance frequency of maximum reflection, the 

blocked pipe system with interior blockage behaves as a blocked pipe system with 

blockage at the boundary.  

(v) Experimental tests are conducted validating the effect of Bragg resonance in bounded 

pipe system as well as the different features discussed about the eigenfrequency 

shift mechanism. Experimental and numerical tests showed that the eigenfrequency 

mechanism has potential to improve blockage detection techniques in pipe system. 

For example, if a zero or maximum shift is measured, a narrow solutions set of 

blockage location could be obtained which reduces the search domain for inverse 

techniques used in TBDDM. Moreover, knowledge of the Bragg resonance 
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frequencies allows the determination of blockage characteristics such as its length 

and area.  

(vi) The injected FBW should be varied through a range of frequencies inversely 

proportional to the blockage length scale in target for detection. This avoid hidden 

blockage signature and helps detecting the Bragg resonance frequencies from 

which the blockage characteristics could be obtained.  

(vii) The smaller the blockage length is, the smaller the shifts at low modes are. This is 

because, for short (discrete) blockages, the Bragg resonant frequencies becomes at 

high resonant modes (high frequencies). Therefore, if the injected FBW contains 

only low frequencies, the blockage signature becomes unclear. The FBW should be 

either large enough or swept to include frequencies close to the Bragg resonance 

frequency of maximum reflection. However, severe-short blockages induce large 

Bragg resonance frequency bandwidth of maximum reflection which increases the 

shift at low modes.  

Localisation of small scale blockages could require the use of high frequency waves (HFW) 

to obtain better resolution and clear blockage signature. However, plane wave assumption, 

on which all one dimensional models are based, fails if the injected frequency FBW exceeds 

the cut-off frequencies of high radial and/or azimuthal modes. Next chapter studies the 

behaviour of HFW in water-filled pipe flow using a high order two dimensional numerical 

scheme (see Chapter 3) and gives some initial conclusions on the different aspects that 

practitioners must take into account if HFW are to be used for TBDDM. 
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7. CHAPTER 7 

 

BEHAVIOUR OF HIGH FREQUENCY ACOUSTIC WAVES IN 

PRESSURIZED CONDUIT 

 

7.1. Introduction 

In the past, the condition that the frequency of the transient is smaller than a/D, and by 

implication the classical water-hammer (WH) theory, has never been challenged because 

WH waves are generated by mechanical devices such as valves and pumps whose frequency 

is far below 1 kHz. Recent research showed that the accuracy of transient based defect 

detections methods (TBDDM) increases with higher frequencies of the injected wave signal 

([71], [79]). This is natural given that higher frequencies (i.e., shorter wavelength) provide 

higher resolution of defect detection and are better at localizing multi-defects with multi-

scales. However, the use of high frequency waves excites radial and azimuthal waves and 

renders the classical one-dimensional WH theory invalid. Unlike classical WH theory, the 

resulting wave field is highly dispersive.  

Although the theory of high frequency waves (HFW) in water supply system (WWS) has not 

received much attention, the physics of acoustic waves in gas/air flows is well advanced and 

is founded on early notable works (e.g. [5], [55], [93], [94], [95], [42] and [109]). A good 

summary of key analytical treatment of acoustic wave propagation in cylindrical gas-filled 

tubes is given in Tijdeman ([124]). Moreover, HFW have been widely used in underwater 

acoustics applications (e.g. [67], [1], [84], [24], [46], [47], [49], [61] and [66]), but rarely in 

the study of pipe transient flows.  

Recently, Kondis ([69]) studied the propagation of acoustic waves in water-filled pipes and 

provided an algorithm that advises under which circumstances the simplified model of the 

rigid pipe should be used versus the more complete model, which includes pipe wall 



 

247 

impedance and takes the pipe surroundings into account. At the same time and in a related 

work by Kondis ([69]), an experiment was conducted by Kokossalakis ([68]) with the 

purpose of communication system design for an in-pipe wireless sensor network where high 

frequency waves were injected and collected in separate locations using different pipes 

setups. Although the experiment was conducted in air-filled pipes, all the parameters in the 

experiment were scaled to mimic the wave propagation in water-filled pipe. 

Metje et al. ([90]) gave initial results of a proof-of-concept prototype smart pipe system. 

Their work consisted of designing a sensor-communication system for a prototype water pipe 

network which was built and buried in the summer of 2009 on the University of 

Birmingham, UK campus, where different commercial MEMS (Micro-Electro-Mechanical 

System) sensors are tested. They provided initial results of the research carried out on 

communication, power and miniaturisation of the sensors even though much research is still 

required for individual components of the system.  

Lee's group at the University of Canterbury, NZ, has recently developed and employed a 

piezoelectric generator capable of generating signals with frequencies as high as 1 MHz in 

water pipes. Furthermore, this work is part of a theme-based research project at HKUST 

([121]) led by the advisor of the author of this thesis that aims to use high frequency (2 kHz-

100 kHz) waves to detect defects in WSS. Currently, the research group at HKUST is 

conducting preliminary transient tests generated by piezoelectric actuators with a frequency 

band that goes up to 100 kHz.  

In aeroacoustic applications, where most of the focus is on sound intensity and propagation, 

analytical solutions are available because the sound sources are usually not complex and can 

be represented by simple models (monopoles, dipoles and quadripoles) ([78], [23]), and the 

acoustic analogy ([45]) can be applied to project the sound solution in the far field. However 

if high frequency waves (HFW) are to be used in WWS, specific probing wave sources are 

generated at the boundaries, and analytical solutions for such applications are not 

straightforward.  

In this chapter, the behaviour of high frequency waves (non-plane and dispersive waves) in 

water-filled pipe is studied numerically using higher-order numerical scheme (see 
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Chapter 3). The study gives some initial conclusions on the different aspects that 

practitioners must take into account if high frequency waves are to be used for TBDDM.  

7.2. Study of high frequency waves behaviour in unbounded pipe system 

In this section, the behaviour of high frequency waves in fluid in a pipe is studied 

numerically. The second and fifth order numerical schemes developed in Chapter 3 are used 

to solve the two dimensional axi-symmetric Navier-Stokes equations (Eq. (2.56)). In some 

test cases, where comparison with the 2D wave theory properties is made and where wave 

dispersion is solely studied, only inviscid flow will be considered. The test rig of unbounded 

pipe system is depicted in Figure 7.1, where a wave is generated from a source located at 

x = L and only the left going waves are considered. The waveform at the source is given by 

Eq. ( 3.42) (see Figures 3.8 and 3.9). In what follows the zeroth, first and second modes are 

referred as M0, M1 and M2, respectively.  

Figure  7.1 Sketch of unbounded pipe system 

 

 

7.2.1.  High frequency waves behaviour under resonating probing source 

In this section, the frequency bandwidth (FBW) is chosen so as to include the cut-off 

frequencies of the excited high modes. In this way, the resonant response is studied and 



 

249 

results could be compared to the properties of the 2D inviscid wave theory (Chapter 2 

Section 2.6) where the natural cut-off frequencies are well defined. The test rig is a pipe with 

diameter D=0.4m and length L (Figure  7.1). In this section, the flow is considered inviscid 

and initially stagnant. The source has a cylindrical shape with diameter denoted by Ds and 

located at the pipe centreline (r = 0) and at x = L (Figure 7.1). The input signal has a FBW 

within [0.5fc to 1.5fc] corresponding to 16   (Figure  3.8) where fc is the central 

frequency corresponding to the angular frequency wc =2fc. 

7.2.1.1. Dispersion and behaviour of high modes 

Three tests are conducted using three different central frequencies fc=1000Hz, 3000Hz and 

5000Hz and using a source diameter Ds=0.1D. The upper bound frequency content (UBFC) 

in these three test cases are 1500Hz, 4500Hz and 7500Hz, respectively. The results are given 

in Figures  7.2 and  7.3 which show the time and the frequency domains of the pressure at 

x=9m and x=0m along the pipe centreline, respectively. The dashed lines in Figure  7.3 

indicate the cut-off frequencies of the higher modes. Figure 2.11 plots the group velocity (Eq. 

(2.120)) for the first four modes and will aid later discussions. According to Eq. (2.115) and 

Figure 2.11, if the frequency is higher than f1=3050Hz, the first higher mode (M1) is excited 

and the classical 1D WH theory is no longer valid. This is in good agreement with the 

numerical tests in Figures 7.2 and 7.3 where the signals with fc=3000Hz and fc=5000Hz are 

dispersive and do not conform to the classical 1D WH theory as the wave form of the signal 

is distorted due to the dispersion of the signal (Figures  7.2b and  7.2c). On the other hand, 

the signal with fc=1000Hz (Figures  7.2a and  7.3a) is non-dispersive and behaves according 

to the classical 1D WH theory. The frequency axis in Figure  7.3a is extended to show that 

no higher modes are excited. Figure  7.3b (fc=3000Hz) shows that both M0 and M1 are 

excited, which is in agreement with Eq. (2.115). In Figure  7.3c (fc=5000Hz), the second 

mode (M2) is also excited as predicted from Eq. (2.116).  
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Figure  7.2 Dimensionless pressure variation with time measured near the source and 

at 7m away from the source and at the pipe centreline. For all cases Ds=0.1D and 

L=10m. 
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Figure  7.3 Amplitude in the frequency domains corresponding to the pressure signals 

in Figure  7.2 measured near the source and at 7m away from the source and at the pipe 

centreline. For all cases Ds=0.1D and L=10m. 
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The dispersion of the waves along the pipe is associated with radial waves. It is, therefore, 

important to analyze the behaviour of these radial waves. Figure  7.4 shows the surface plot 

(along r and x) of the pressure of the three tests conducted in Figure  7.2 for which the 

central frequencies are fc=1000Hz, 3000Hz and 5000Hz, and each test is plotted at different 

times t = twave = 8/fc, t = 0.66L/a and t = 0.9L/a (see Figure  7.4) with L=50m in these cases.  

As discussed earlier, for the case where fc=1000Hz (UBFC<f1), the classical 1D WH theory 
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is held (Figures  7.4a,  7.4b and  7.4c). However, for the case where fc=3000Hz (see 

Figures  7.4d,  7.4e and 7.4f), both M0 and M1 are excited, but the amplitude of M0 is much 

smaller than M1 (see arrow in Figure  7.4f). In addition to M0 and M1, M2 is excited for the 

case fc=5000Hz shown in Figures  7.4g-i and Figures  7.5 which is an enlarged version of 

Figure  7.4i for better visualization. In this case, it is first noticed that there exist a region 

(see arrows in Figure  7.5) where M2 is developed. It is clear that M2 propagates at slower 

speed than the two other modes as it is lagging behind M1 and M0 which is as expected from 

Eq. (2.120) and Figure 2.11 showing that the speed at which M2 propagates is slower. 

Second, it is seen that M1 spreads over a longer region for the case with fc=5000Hz case 

(Figure 7.4i) than for the case with fc=3000Hz (Figure 7.4f). This is because, from 

Figure 2.11, the UBFC of fc=5000Hz case excites much faster M1 waves than for the case of 

fc=3000Hz. A quick check using Figure  7.4h (fc=3000Hz) shows that the leading M1 wave 

propagates at a speed of 0.65/(0.9/a) ≈ 722m/s. On the other hand, Figure  7.4i (fc=5000Hz) 

shows that the leading M1 wave travels at 0.81/(0.9/a) ≈ 900m/s. Both speeds agree well 

with the theoretical speeds read from Figure 2.11 for which the speeds of leading M1 waves 

for the cases fc=3000Hz (UBFC=1.5*3000=4500Hz) and fc=5000Hz 

(UBFC=1.5*5000=7500Hz) are 735m/s and 913m/s, respectively. The agreement between 

computed and analytical group velocities testify to the fact that the scheme has little 

numerical dispersion. Such conclusion is key for the remaining analysis. 
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Figure  7.4 Surface plot of the pressure in the r-x surface plane when different central 

frequencies are used showing the behaviour of the excited high modes. For all cases 

Ds=0.1D and L=50m.                 

 

(a) Top left fc=1000Hz ; t ≈ twave 

(b) Middle left fc=3000Hz ; t ≈ twave 

(c) Bottom left fc=5000Hz ; t ≈ twave 

(d) Top middle fc=1000Hz ; t ≈ 0.66 L/a 

(e) Middle middle fc=3000Hz ; t ≈ 0.66 L/a 

(f) Bottom middle fc=5000Hz ; t ≈ 0.66L/a 

(g) Top right fc=1000Hz ; t ≈ 0.9 L/a 

(h) Middle right fc=3000Hz ; t ≈ 0.9 L/a 

(i) Bottom right fc=5000Hz ; t ≈ 0.9 L/a 

 

The analytical solution (Eq. (2.111)) shows that at any given x, the n-th mode (n = 1, 2,…) is 

standing radial wave with nodes located at J0(krnr)=0. For example, M1 has one node at kr1r 

≈ 2.4048 which gives r ≈ 0.627R. In addition, M2 has two nodes: one at r ≈ 0.3427R and the 

other at r ≈ 0.787R. These nodes are clearly shown in Figure 7.5. Figure 7.5 shows that there 

is a region where the node of M1 is clear which implies that M2 is negligible in this region. 
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Similarly, there is a region where the nodes of M2 are clear which implies that M1 is 

negligible in that region. Knowledge of the locations of these nodes could have important 

implications in locating sensors for transient-based defect detection methods (TBDDM). For 

example, locating a sensor at the nodes of M1 would mean that this sensor cannot provide 

information about this mode. Results of this nature are important to the theme-based project 

([121]) led by the advisor of the author of this thesis.  

Figure  7.5 An enlarged figure of Figure  7.4i which gives the case of pressure 

distribution in the r-x space plane when fc=5000Hz, Ds=0.1D and t=0.9L/a to show in 

more details the pressure nodes and the mode forms. 

 

 

7.2.1.2. Multi-path effect 

Figure 7.6 shows the energy flux with time at three different locations along the pipe (x≈L-

0.5m, x ≈ L/2, x ≈ 0) where fc=3000Hz, the frequency band is [1500Hz, 4500 Hz] and 

Ds=0.1D. Waves with frequency in the range [1500 Hz to 3050 Hz (=f1) [ are WH waves and 
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propagate with speed of 1000m/s (see Figure 2.11). Frequencies in the range [3050Hz (=f1) 

to 4500Hz] excite both M0 and M1 waves, where the group (energy) velocity of the M0 is 

1000 m/s (Figure 2.11) while that of the M1 varies continuously from 0 to about 700m/s with 

frequency (see Figure2.11). That is, the energy of M0 leads that of the M1 when the 

frequency is in the range [3050Hz (=f1) to 4500Hz]. The spatial separation between the fast 

propagating energy of M0 and the slow propagating energy of M1 is small near the wave 

source (Figure 7.6a) and grows with distance from the source (Figures 7.6b and 7.6c). In 

addition, due to the variation of the propagation angle of M1 waves (Eq. (2.122) and 

Figure 2.13), and by consequences their group velocity (Figure 2.11), with frequency, these 

waves experience significant spatial spread with time (Figures 7.6b and 7.6c). This spreading 

is due to the fact that M1 waves travel along zig-zag path (Figure 2.12 ) where waves at 

frequencies near f1 (cut-off frequency of the first high mode) taking much longer path than 

those travelling at high frequencies. The fact that different wave modes acquire different 

paths is referred to as multipath process and is the reason why these waves are dispersive 

([108]). 

In practice, if one is interested in using high frequency waves for defect detection by 

injecting these waves in one location and collecting pressure measurement in another 

location, it is important to know how this multipath process influences measured signals. 

Therefore, the multipath effect is further analysed. Figure 7.6a shows that, close to the source 

location, most of the energy is propagating as unit (see also Figure 7.4d). However, in 

Figures 7.6b and 7.6c, the energy gets distributed with a pronounced tail and such tail grows 

longer and gets more uniform with distance from the source. It is observed from 

Figures 2.11 and 2.13 that for a given mode, the farthest away are the frequencies from the 

cut-off frequency, the more uniform are the group velocity and the propagation angle, 

respectively. In the frequency region where the group velocity does not vary much with the 

frequency, the energy at different frequencies travels at nearly the same speed (Figures 7.6b 

and 7.6c). However, as time increases considerably while waves are propagating, even small 

variations in group velocity could lead to significant spread of energy along the pipe. By 

consequences, the wave magnitude gets reduced with time and could eventually become of 

the same order as noise or even lower. Therefore, it is crucial that measurements are taken (i) 
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over a long enough time to ensure that the whole wave passes through and (ii) not too far 

away from the source to ensure that they do not become “buried under noise”. 

Figure  7.6 Energy flux computed numerically for the case of fc=3000Hz and 

Ds = 0.1D showing how energy spreads with distance from the source. For all cases 

L=10m. 
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7.2.1.3. Effect of the transient source size 

In all the previous test cases, the source diameter was fixed at Ds=0.1D. In what follows, the 

effect of the source size on the wave dispersion behaviour is studied. This is an important 

parameter in the selection of a wave generator. In Figures 7.7 and 7.8 three tests are 

conducted each with different source diameter Ds=D, 0.5D and 0.1D. The central frequency 

is fixed to fc=3000Hz. The total energy (potential and kinetic) along the pipe for these tests is 

given in Figure 7.9. The results show that when Ds=D (Figure 7.7a and 7.8a), the signal 

propagates as a plane wave (M0) despite the fact that the waves with frequencies in the range 

[f1=3050Hz, 4500Hz] all exceed f1. The reason is that the wave generator, having the same 

diameter as the pipe, transmits signals that are independent of radius; thus, radial waves are 

not excited. However, if the M0 waves with frequencies higher than f1 meet any non-

uniformity in the pipe, M1 gets excited. For the cases where Ds=0.5D and Ds=0.1D (see 

Figures 7.7b and 7.7c and Figures 7.8b and 7.8c), M1 is excited. However, in the Ds=0.5D 

case, more energy is carried by M0 (Figure 7.9b) in comparison with the Ds=0.1D case 

(Figure 7.9c). Therefore, the magnitude of the radial scale of the wave source has significant 

influence on how the input energy gets distributed over the different excited modes. 

Figure 7.9 shows that the smaller the source diameter, the less energy is carried by M0. In 

fact, as seen from Figures 7.10a and 7.10b, which are magnified versions of Figures 7.7b 

and 7.7c, M0 gets separated from M1 as it propagates at a faster speed (Eq. (2.120)), and it is 

very clear that the amplitude of M0 is much smaller for the Ds=0.1D case (Figure 7.10b) in 

comparison with the Ds=0.5D case (Figure 7.10a).  

This could be important since previous work on TBDDM were based on plane wave 

assumption ([32], [35], [70]; [79]). If one is able to develop TBDDM based on the 

measurement of M0 waves alone, the use of small sized source will make the amplitude of 

M0 waves very small, making these waves susceptible to turbulence dissipation, and thus, 

undetectable. A discussion of the propagation range of HFW modes is given in later 

discussion where viscous laminar flow is considered.  

As the injected FBW contains the cut-off frequency of the excited high mode, the tail of 

energy of the high mode extends from the source location to the measurement location 
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(Figure 7.8) because the group velocity at the cut-off frequency is zero (Figure 2.11). In this 

case, it takes, theoretically, infinite time to measure all the energy at a location away from 

the source (Figure 7.6). The case where the FBW does not contain the cut-off frequency of 

the excited high mode is discussed later (see Section 7.2.2). 

 

Figure  7.7 Dimensionless pressure variation with time measured near the source and 

at 7m away from the source and at the pipe centreline. For all cases fc=3000Hz, r ≈ 0 and 

L=10m. 

0 0.5 1 1.5 2 2.5 3
-0.1

-0.05

0

0.05

0.1

(a)    D
s
 = D                                                                                   

t / (L/a)

(P
-P

0
)/

P
0

 

 

0 0.5 1 1.5 2 2.5 3
-0.1

-0.05

0

0.05

0.1

(b)    D
s
 = 0.5D                                                                                   

t / (L/a)

(P
-P

0
 )

/P
0

 

 

0 0.5 1 1.5 2 2.5 3
-0.01

-0.005

0

0.005

0.01

(c)    D
s
 = 0.1D                                                                                   

t / (L/a)

(P
-P

0
)/

P
0

 

 

x   L - 7m x   L - R/2

x   L - 7m x   L - R/2

x   L - 7m x   L - R/2

 

(a) Top Ds = D  

(b) Middle Ds = 0.5D 

(c) Bottom Ds = 0.1D. 

 



 

259 

Figure  7.8 Amplitude in the frequency domains corresponding to the pressure signals 

in Figure 7.7 measured near the source and at 7m away from the source and at the pipe 

centreline. For all cases fc=3000Hz, r ≈ 0 and L=10m. 
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Figure  7.9 Dimensionless energy distribution along the pipe axis for different source. 

For all cases fc=3000Hz and L=10m. 
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Figure  7.10 Magnified versions of Figures  7.7b and  7.7c showing the separation of 

the plane mode (fundamental mode M0) from the higher mode at about 7m away from 

the source.                     
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7.2.2. High frequency waves behaviour under non-resonating probing source 

In previous test cases, the FBW included the cut-off frequencies at which resonance occurs. 

Their inclusion helped to validate the physical behaviour of the numerically-modelled high 

frequency waves where resonance occurs (see Figures 7.3 and 7.8). However in practice, the 

FBW should not include the resonant frequencies to avoid damage to pipes. In this section, 

similar numerical tests as presented above are studied but with narrower FBW of an injected 

waveform that does not include any cut-off frequency. Such waveform and FBW are shown 
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in Figure  3.9 where 80   and shows that the FBW is within about [0.9fc to 1.1fc]. Two 

central frequency cases are considered: (i) fc=6800Hz which excites three modes (M0, M1 

and M2) (see Figure 2.11), and (ii) fc=4000Hz which excite only two modes (M0 and M1) 

(see Figure 2.11). 

The plane wave mode propagates at the acoustic wave speed a=1000m/s. However, the 

energy of high mode waves travel at the group velocity (see Figure 2.11) which is bounded 

within the interval [ min

gnV  , max

gnV ] where min

gnV  and max

gnV  are the minimum and maximum group 

velocity of the n-th excited high mode. The maximum and minimum group velocities could 

be determined from Eq. 2.120 or Figure 2.11 using the lower and upper bound of the FBW, 

respectively. For fc=4000Hz, the M1 group velocity varies within 

[
1

min

gV = 532m/s , 
1

max

gV = 721m/s], whereas for fc=4000Hz, M1 and M2 group velocity varies 

within [
1

min

gV = 867m/s , 
1

max

gV = 913m/s] and [
2

min

gV = 411m/s , 
2

max

gV = 666m/s], respectively.  

The pipe diameter D is fixed to 0.4m whereas the pipe length L is 100m for the cases of 

fc=6800Hz and 180m for fc=4000Hz case. The source has a cylindrical shape with diameter 

Ds=0.2D located at the pipe centreline (r = 0) and at x = L (see Figure 7.1).  

For some test cases, viscous flow is considered but only at laminar regime (Reynolds number 

Re <1300) to study the effect of multi-path on dissipation. Note, unless explicitely stated, the 

fluid is assumed inviscid.  

 

7.2.2.1. Modes separations 

Figure  7.11 shows the pressure variation with time for fc=6800Hz where M0, M1 and M2 

are excited as expected from Figure 2.11. Due to the group velocity difference at different 

modes (Figure 2.11), separations of these modes occur as shown in Figure 7.11. The position 

at which the n-th mode separates from all other excited modes is given as follows: 
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which states that the slowest propagating wave of the (n1)-th mode catches up with the 

fastest propagating wave of the n-th mode arrive at s

nx . Equation ( 7.1) leads to  
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 ( 7.2) 

where s

nx  is the position at which the modes n and (n-1) get separated; and twave (see 

Eq. ( 3.42)) is the duration of the injected transient wave at the source which is about 0.005s 

when measured from Figure  3.9. Applying Eq. ( 7.2) to M2 gives 

2

sx =0.005/(1/6661/867)  ≈ 14.3m, and this is why in Figure  7.11a, M2 looks separated from 

M0 and M1 at about 15m away from the source. For M1 case, Eq. ( 7.2) gives 

1

sx = 0.005/(1/9131/1000) ≈ 52.5m which agrees with Figure  7.11b which shows that M1 

gets separated from M0 at about 50m away from the source.  

Figure  7.12 gives the total area-averaged energy distribution along the pipe at the time 

t=0.7L/a (Figure 7.12a) and the energy flux variation with time for the case of fc = 6800Hz 

measured at 50m away from the source (Figure 7.12b). Figure 7.12a shows that the energy 

distribution of the n-th excited mode is bounded by the location where the fastest and slowest 

waves at the n-th mode, travelling respectively at max

gnV  and min

gnV , are located at a given time. 

Figure 7.12b shows that it takes a finite time to measure the whole injected energy at a given 

location away from the source which depends on the time it takes for the slowest wave at the 

highest excited mode to reach the measurement location. Such time is given by min

h

mes

gnx V  

where 
mesx  is the measurement location away from the source and nh is the highest excited 

mode number. For fc=6800Hz case, the highest excited mode is M2 and therefore the whole 

injected energy is measured at 50m away from the source within 50/411/(L/a) ≈ 1.22 L/a as 

shown in Figure 7.11c and Figure 7.12b. This is in contrast with the case of resonating 



 

264 

probing wave (see Section 7.2.1) where the tail of the energy extends from the source 

location to the measurement location (Figure 7.8) because the group velocity near cut-off 

frequency is too small and zero at the cut-off frequency (Figure 2.11), and where it takes, 

theoretically, infinite time to measure all the energy flux at a location away from the source 

(Figure 7.6).  

Notice in Figure 7.11 that M2 waveform is more elongated to the right hand side (slower 

waves) than to the left hand side (faster waves) whereas M0 and M1 waveforms are not. 

Since the waveform symmetry is with respect to the central frequency fc, therefore, this 

deformation feature of the waveform is due to the difference between the rates of dispersion 

of the waves travelling at frequencies higher than fc (fast propagating waves) and those 

travelling at frequencies lower than fc (slow propagating waves) (see Figure 2.11). To 

explain this feature, a magnified portion of Figure 2.11 is shown in Figure 7.13 which gives 

the group velocity variation with the non-dimensional frequency (f / fc; where fc=6800Hz). 

Approximating the variation of group velocity to the left and to the right side of the central 

frequency by an average linear variation, Figure 7.13 shows that the slope of M2 group 

velocity is steeper to the left side of the central frequency than to the right side, whereas the 

variation in slope of the group velocity is almost the same for M1. The slope of the group 

velocity of the fast propagating waves (to the right of the central frequency (see Figure 7.13)) 

dictate the rate at which a high mode separate from M0. The difference between the group 

velocity slopes of the fast propagating M1 and M2 waves dictates the rate at which these two 

modes separate. 

If the central frequency of the injected wave is reduced to a region where M1 group velocity 

varies more non-linearly (see Figure 2.11), M1 waveform would undergo severe distortion. 

For example, Figure 7.14 gives the case of for fc=4000Hz where only M0 and M1 are excited 

and shows that, similarly to M2 waveform, M1 waveform is deformed and no longer 

symmetric (see Figure 7.11c and Figure 7.14c).  
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Figure  7.11 Variation of the pressure signal at the centreline with time for the case 

fc=6800Hz where M0, M1 and M2 are excited. 
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Figure  7.12 Distribution of the area-averaged energy along the pipe and the variation 

of energy flux with time for the case fc=6800Hz. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
(b)                                                                                                                           

x / L

E
n

e
rg

y
 /

 (
T

o
ta

l 
E

n
e
rg

y
)

 

 

t  0.70L/a

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

0.2

0.4

0.6

0.8

1

t / (L/a)

E
n

e
rg

y
 F

lu
x

  
( E

F
 /

 E
F

m
ax

(x
  


 L
) 

)

 

 

(b)                                                                                                                           

x   L - 50m

 

(a) Top Total area-averaged energy distribution along pipe at 

the time t=0.7L/a 

(b) Bottom Energy flux variation with time for the case of 

fc = 6800Hz measured at 50m away from the source. 

 



 

267 

Figure  7.13 Group velocity variation with the non-dimensional frequency (f / fc; where 

fc=6800Hz) showing how the M2 group velocity variation is steeper to the left side of the 

central frequency than to the right side, whereas the variation slope is almost the same 

for M1.                        
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Figure  7.14 Variation of the pressure signal at the centreline with time for the case 

fc=4000Hz where only M0 and M1 are excited. 
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7.2.2.2. Energy propagation range of high modes  

Figure 7.15 gives the area-averaged energy flux variation with time at 15m (Figure 7.15a) 

and 50m (Figure 7.15b) away from the source for fc=6800Hz case. Figure 7.15b shows that 

the injected energy is carried by three propagating modes. The energy distribution among the 

different modes is affected by the source size (Ds) (see Section 7.2.1.3). The energy 

conveyed by M0, M1 and M2 are about 8%, 42.3% and 47.22% of the total injected energy, 

respectively. This shows how most of the energy is conveyed by the high modes. However, 

since high modes are dispersive, the farther away from the source, the more the energy is 

spread (Figure 7.15 and Figure 7.6). The combined effect of energy spreading with time and 

energy conservation means that the maximum energy amplitude (MEA) decreases with 

distance from the source (see Figure 7.15).  

Although almost half of the energy is conveyed by M2, because of its high dispersion rate, 

Figure 7.15 shows that the M2 MEA reduces severely and becomes smaller than that of M0 

at 50m away from the source (see Figure 7.15b). On the other hand, even though M1 

conveys almost the same amount of energy carried by M2, but since its dispersion rate is 

lower (ses previous section), its energy spreads less than M2 energy does at a given location 

away from the source (Figure 7.15b). As a result, the M1 MEA is higher than that of M2 

(Figure 7.15b), and therefore, M1 waves are able to propagate over larger range.  

Since M0 is non-dispersive, its propagation range could only be affected by the presence of 

viscous dissipation. However, the propagation ranges of high modes are affected by both 

dispersion and viscous dissipation. It is therefore important to know at which measurement 

location away from the source the MEAs of an excited high mode and M0 would have 

similar order of magnitude. This and the knowledge of the rate of viscous dissipation, would 

allow predicting which high modes could propagate farther than M0 and which does not. 

Such predictions could help in designing the location of measurements.  
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Figure  7.15 Energy flux variation with time for the case of fc = 6800Hz  
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For this reason, the propagation range of a given n-th high mode with respect to M0 is 

defined by the location away from the source at which MEA of M0 and the n-th high mode 

are the same. Denoting by n  the ratio of MEA between the n-th high mode and M0 

measured at the location 
s

nx  (see Eq. ( 7.2)). To obtain an approximate order of magnitude of 

the position 
r

nx  away from the source where the MEAs of the n-th high mode and M0 have 

about the same magnitude, energy conservation requires that the energy spreads by a similar 

factor n . That is:  
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where s

nt  denote the spreading time of the energy flux of the n-th high mode at s

nx . 

Equation ( 7.3) leads to 
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  ( 7.4) 

Applying Eq. ( 7.4) to M2 in Figure 7.15a gives 

  2 2 2 2.48 14.3 35.5mr sx x       ( 7.5) 

Figure 7.16 gives the total energy (integrated with respect to the cross sectional area) 

distribution along the pipe at the time when M0 and M2 have about the same MEAs and 

shows that M2 waveform is centred at about 38.5m which is close to what was predicted 

from Eq. ( 7.5). Applying Eq. ( 7.4) to M1 in Figure 7.15b gives 

  1 1 1 4.18 52 220mr sx x       ( 7.6) 

where 1  is measured from Figure 7.15b. In this case 1

rx =220m > L=100m and it is 

computationally very time consuming to simulate very long pipe using high frequencies. 

Therefore, it is difficult to check the approximated 1

rx  for fc=6800Hz case. In order to study 

the dispersion of M1, the test case with fc=4000Hz and pipe length L=180m is used where 

only M0 and M1 are excited. Figure  7.17 gives the energy flux variation with time at 

different locations for the case of fc=4000Hz. Figure 7.17c shows that the MEAs of M0 and 

M1 becomes of same magnitude at about 80m. Applying Eq. ( 7.4) for this case gives 

  1 1 1 3 23.2 70mr sx x       ( 7.7) 

Although 1

rx  is lower than 80m, but Figure 7.17b shows that at 1

rx = 70m away from the 
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source, the M1 and M0 MEA have about the same order of magnitude. The reason why r

nx  

does not give the exact value where a given high mode has the same MEA of that of M0, is 

because Eq. ( 7.4) assumes linear spreading whereas the true spreading is not linear (see 

Figure 2.11 and Figure 7.13). The difference between the assumed and the true spreading is 

sketched in Figure 7.18. However, Eq. ( 7.4) gives reliable and quick estimate of the energy 

amplitude with time. 

Figure  7.16 Total energy (integrated with respect to the cross sectional area) 

distribution along pipe axis at the time when M0 and M2 have the same MEA.  
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Figure  7.17 Energy flux variation with time for the case of fc = 4000Hz and L=180m. 

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.2

0.4

0.6

0.8
(a)                                                   

t / (L/a)

E
n

e
rg

y
 F

lu
x

  
( E

F
 /

 E
F

m
ax

(x
  


 L
) 

)

 

 

x  L-20m

0.3 0.4 0.5 0.6 0.7 0.8

0

0.1

0.2

0.3

0.4

0.5

0.6
(b)                                                   

t / (L/a)

E
n

e
rg

y
 F

lu
x

  
( E

F
 /

 E
F

m
ax

(x
  


 L
) 

)

 

 

x  L-70m

0.4 0.5 0.6 0.7 0.8

0

0.2

0.4

0.6

0.8
(c)                                                   

t / (L/a)

E
n

e
rg

y
 F

lu
x

  
( E

F
 /

 E
F

m
ax

(x
  


 L
) 

)

 

 

x  L-80m

0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8
(d)                                                   

t / (L/a)

E
n

e
rg

y
 F

lu
x

  
( E

F
 /

 E
F

m
ax

(x
  


 L
) 

)

 

 

x  L-100m

 

(a) Top left At 20m away from the source 

(b) Top right At 70m away from the source 

(c) Bottom left At 80m away from the source 

(d) Bottom right At 100m away from the source 
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Figure  7.18 Comparison between the true spreading behaviour and the linear 

spreading assumed in Eq. ( 7.4). 

 

(a) Top M1 energy flux spreading from measurement 

at 20m to 80m from the source (fc=6800Hz) 

(b) Bottom Sketch of linear spreading assumption 

 

7.2.2.3. Effect of multi-path on dissipation  

Waves at higher modes take longer paths to traverse a given section of a pipe than waves at 

lower modes. This is the multi-path process discussed earlier in this chapter. Naturally, one 

should expect that waves which take longer paths to traverse a given section of a pipe would 

exhibit more energy losses due to friction. It is noted that this effect is found to be important 

in the field of ocean acoustics (e.g. [24], [46], [47], [49], [61] and [66]). To investigate this 

phenomena in water supply systems, a viscous fluid is considered in this section where 

viscosity is treated as a parameter. For stagnant flow (e.g., state of the flow late at night), the 
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viscosity is 610   m2/s. For normal operating condition where the flow is turbulent, the 

eddy viscosity is of the order of (fv / 8)0.5VD in which fv is the friction factor, D is the pipe 

diameter and V is the average water speed along the pipe. For typical values of fv, D and V, 

the eddy viscosity varies from about 310   m2/s to about 210   m2/s. These ranges are 

investigated in this section.  

Figure 7.19 gives the energy flux variation with time for the case of viscous flow, 

fc = 4000Hz, L = 180m. In this case, the kinematic viscosity is 310   (m2/s). Figure 7.19 

shows that M0 and M1 have similar MEA at 70m from the source which implies that weak 

viscous effect ( 310   (m2/s)) does not change too much the range of propagation. However, 

Figure 7.20 gives the case for 
210   (m2/s) and shows that the two modes have similar 

MEA at about x = 45m away from the source which is almost half the distance for the 

inviscid case (Figure 7.20c). In fact, using the MEA ratio ( 1 ) between M0 and M1 for the 

case of viscous flow with 
210   (m2/s) gives 1 1 1 1.9 23.2 44mr sx x      which shows 

that Eq. ( 7.4) is still approximately valid for viscous (laminar) cases. 

Figures 7.20c and 7.20d show that at either 70m (Figure 7.20c) or 80m (Figure 7.20d) away 

from the source, M1 MEA is much smaller than M0. This demonstrates that as the viscous 

effect increases, it affects the propagation ranges of higher modes more than lower modes. 

For example, for the case of 
210   (m2/s), Ds = 0.2D and fc=4000Hz (see Figure 7.20), the 

computed viscous dissipation rate of the total energy carried by both M0 and M1 is about 

21% at 10m away from the source. However, if instead, the total energy is carried by M0 

only (considering Ds=D case), the computed viscous dissipation rate of the total energy is 

found to be only about 13.2% at 10m away from the source. This difference in dissipation 

rate is because high modes take longer path than lower modes, and therefore, dissipate more 

energy. To quantitatively explain the dissipation rate difference, denote by 
E

nt  the time at 

which the n-th mode energy reaches a measurement location 
mes

nx  which is given as follows 

 
mes

E

n

gn

x
t

V
   ( 7.8) 
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and using Eqs. (2.120) and (2.122), yields 
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    ( 7.9) 

Eq. ( 7.9) shows how high modes energy propagate over longer time due to the longer path it 

takes with respect to the M0 energy path. Assuming that the difference in energy dissipation 

rate is only due to the propagation time ratio from Eq. ( 7.9), the viscous dissipation rate of 

the n-th mode n  is given by 

  
 cos
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   ( 7.10) 

where   denote the viscous dissipation rate of the plane wave mode. Using, Eq. ( 7.10), the 

total energy dissipation ( E ) is  
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n n v

n n kn
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     ( 7.11) 

Applying Eq. ( 7.11) to the case of 
210   (m2/s), Ds=0.2D and fc=4000Hz (see 

Figure 7.20), and assuming that, on average, the whole energy is propagating at the central 

frequency for which the M1 propagation angle is 1 5 18c

k   degrees, gives 
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  ( 7.12) 

where TE  is the total injected energy from the source. The energy carried by M0 (E0) and 

M1 is (E1) are obtained from the inviscid flow case (see Figure 7.17) which are E0 =16.75% 

and E1 =83.25% of the total energy, respectively. Inserting these M0 and M1 energy values 

into Eq. ( 7.12) to compute the dissipation for the viscous case with 
210   (m2/s), gives 
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which is very close to the above 21% energy dissipation measured for the case in Figure 7.20. 

Figure  7.19 Energy flux variation with time for the case of viscous flow with kinematic 

viscosity  3 210 m s  , fc = 4000Hz, L=180m. 
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(a) Top left At 20m away from the source 

(b) Top right At 60m away from the source 

(c) Bottom left At 70m away from the source 

(d) Bottom right At 80m away from the source 
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Figure  7.20 Energy flux variation with time for the case of viscous flow with kinematic 

viscosity 
210  (m2/s), fc = 4000Hz, L=180m. 
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(a) Top left At 20m away from the source 

(b) Top right At 45m away from the source 

(c) Bottom left At 70m away from the source 

(d) Bottom right At 80m away from the source 

 

7.2.2.4. Effect of energy radial distribution  

So far, the energy propagation is studied by computing the energy through integration over 

the cross sectional area of the pipe, and therefore, the energy variation along the radial 

direction was not considered. Figure 7.21 gives the pressure distribution in the r-x space 

plane for the case of fc=6800 at time t ≈ 0.7L/a and shows clear separation of the three modes. 

The Modes are distinct by their pressure nodes along the radial axis where M2 include two 
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pressure nodes and M1 include only one pressure node. Figure 7.22 gives the vector velocity 

field (VVF) in the r-x space plane for the case of fc=6800 at time t ≈ 0.7L/a. Figure 7.22 

shows that, at the pressure node locations, the flow is radial with zero axial velocity and 

maximum radial velocity. For the case of fc = 6800Hz and inviscid flow, Figure 7.23 gives 

the distribution in the r-x space plane of total energy (Figure 7.23a), the potential energy (U) 

(Figure 7.23b), the kinetic energy due to axial velocity only (Tx) (Figure 7.23c) and the 

kinetic energy due to radial velocity only (Tr) (Figure 7.23d). The energy plotted in 

Figure 7.23 are non-dimensionlized by the maximum total energy. Figure 7.23 shows that 

most of the energy of the high modes is trapped near the pipe centreline and the energy 

magnitude decreases towards the pipe wall. Figure 7.23 also shows that, at the pressure node, 

only Tr is present and it takes maximum values. This section studies in more details the 

properties of the energy radial distribution and its effects on the propagation range. 

Figure 7.24 gives the energy and pressure distribution along the pipe when M0 and M2 have 

the same MEA. Figures 7.24a and 7.24b show that, at the pipe centreline, the M2 maximum 

pressure amplitude (MPA) and MEA are much larger than those of M0. However, 

Figures 7.24b and  7.24d show that, at the pipe wall, M2 and M0 have about the same MPA 

and MEA. Similar results were observed for the case of fc=4000Hz with comparison between 

M0 and M1. The variation of the length-averaged energy and the time-averaged energy flux 

along the radial direction in dimensionless form are given respectively by (Chapter 2 

Section 2.6.5) 
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where 
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The maximum energy is given at the pipe centreline where Eqs. ( 7.14) and ( 7.15) gives 
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and therefore, when Eqs. ( 7.14) and ( 7.15) are dimensionlized by their corresponding 

maximum energy in Eqs. ( 7.17) and ( 7.18), yields 
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Figure 7.25 gives the M1 and M2 energy and energy flux distributions along the pipe radius 

computed from Eqs. ( 7.19) and ( 7.20). The results are compared with the numerical 

solution (Figure 7.15b) and show excellent agreement. Figure 7.25 illustrates how most of 

the energy is trapped near the pipe centreline, and that the energy decreases with distance 

from the centreline. The energy takes minimum values at the pressure nodes where only the 

kinetic energy due to the radial velocity (Tr) is present (see Figure 7.23), but this radial 

velocity is small.  

At the pipe wall, the dimensionless energy flux from Eq. ( 7.20) is  2

0 rnJ   and the averaged 

dimensionless energy flux over the cross sectional area is also  2

0 rnJ   (Eq. (2.137)) 

showing why Eq. ( 7.4) holds for energy measured at the pipe wall as shown in Figure 7.24b. 

At a given location and time, the pressure magnitude is (Eq. (2.123)) 
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with  max exp  mes

n n xnP ik x iwt   ( 7.22) 

Notice from Eqs. ( 7.20) and ( 7.21) that the magnitude of the dimensionless pressure is the 

square root of the dimensionless energy flux at any radial location. Moreover, 

Eqs. ( 7.19) and ( 7.21) show that the magnitude of the dimensionless pressure becomes also 

the square root of the dimensionless energy magnitude at the pipe wall and centreline. That is, 

the energy propagation range (Eq. ( 7.4)) discussed above is also valid for the pressure 

propagation range at the wall as shown in Figure 7.24d.  

For a given mode, the magnitude ratio between measurements at the pipe wall and the pipe 

centreline is 1/  2

0 rnJ   for the energy and 1/  0 rnJ   for the pressure which increases for 

higher modes. For example, the energy ratios for M1 and M2 are about 6.16 and 11.1, 

respectively. The M1 and M2 energy ratios measured from Figures 7.24a and 7.24b are 

respectively about 6 and 10 which are very close to the analytical values. Theoretically, the 

M1 and M2 pressure ratios are 6.16 2.48  and 11.1 3.33  which are close to 2.49 and 

3.37 ratios measured from Figures 7.24c and 7.24d, respectively. The small differences 

between the numerical and analytical values are probably due to numerical boundary 

conditions errors and that the measurements are taken slightly above the centreline and 

slightly below the pipe wall.  

The radial distribution of pressure and energy has profound implications in practice. For 

example, pressure measurements are generally taken at or near the pipe wall. However, the 

results show that the pressure magnitude at the wall of M1 is only 40% of the of the 

maximum pressure, and that of M2 is only 30% of the maximum pressure. If many modes 

are excited, then the higher the modes are, the lower their pressure magnitudes at the wall. If 

one relies only on measuring the pressure at the pipe wall only, it may mislead the analyst to 

believe that the energy is highly dissipated and/or attenuated. 
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It is shown above that measurement at the wall gives the averaged energy flux, and therefore, 

Eq. ( 7.4) could predict the range of propagation with respect to M0 at the wall, but not near 

the centreline. However, using the ratio of 1/  0 rnJ   between magnitudes at the centreline 

and at the wall, one could predict the range of propagation of high modes with respect to M0 

at the pipe centreline which is  

  
   0 0

r s
c n n n
n

rn rn

x x
x

J J 


    ( 7.23) 

To check this, consider the case of viscous flow ( 210  (m2/s)) and fc=4000Hz shown in 

Figure  7.20 where it is found that M0 and M1 have the same MEA at about 45m from the 

source. Equation ( 7.23) predicts that the propagation range of M1 waves at the pipe 

centreline with respect to M0 is 45×2.48=111m. Figure  7.26 gives the pressure variation 

near the pipe wall and near the centreline measured at 45m (Figures 7.26a and 7.26c) and 

110m (Figures 7.26b and 7.26d) form the source. Figure 7.26b shows that at 110m from the 

source, M0 and M1 have similar pressure amplitude as predicted from Eq. ( 7.23). 
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Figure  7.21 Dimensionless pressure distribution in the r-x space plane for the case 

fc=6800Hz at time t/(L/a) ≈ 0.7. 

 

Figure  7.22 Vector velocity field (VVF) distribution in the r-x space plane for the case 

fc=6800Hz at time t/(L/a) ≈ 0.7. 
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Figure  7.23 Energy distribution in the r-x space plane for the case of inviscid flow and 

fc = 6800Hz at time t/(L/a) ≈ 0.7. 

 

(a) Top left Total energy 

(b) Top right Potential energy 

(c) Bottom left Kinetic energy due to axial velocity 

(d) Bottom right Kinetic energy due to radial velocity 
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Figure  7.24 Energy and pressure distributions along the pipe axis for the case of 

inviscid flow and fc = 6800Hz at time t/(L/a) ≈ 0.7 
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(a) Top left Energy at the pipe centreline 

(b) Top right Energy at pipe wall 

(c) Bottom left Pressure at the pipe centreline 

(d) Bottom right Pressure at pipe wall 
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Figure  7.25 Dimensionless energy and energy flux variations along the pipe radius and 

comparison with the numerical result for the case of inviscid flow and fc = 6800Hz at 

time t/(L/a) ≈ 0.7.                 
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(a) Top left M1 energy flux 

(b) Top right M1 energy 

(c) Bottom left M2 energy flux 

(d) Bottom right M2 energy 
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Figure  7.26 Pressure variation with time for the case of viscous flow ( 210  (m2/s)), 

fc=4000Hz and L=180m. 
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(a) Top left At the pipe centreline and x=L-45m 

(b) Top right At the pipe centreline and x=L-110m 

(c) Bottom left At the pipe wall and x=L-45m 

(d) Bottom right At the pipe wall and x=L-110m 

 

7.2.3. High frequency waves in blocked pipe system 

At a junction of two pipe segments (see Appendix A), an incident wave is scattered into 

reflected and transmitted modes such that the continuity of pressure and velocity is satisfied, 

and by consequences, the energy is conserved. This section studies numerically the scattering 

behaviour of high frequency wave due to blockage in an unbounded pipe, where the 

blockage is modeled as a pipe segment (Figure 7.27). 
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The three pipe segments in Figure 7.27 are defined as pipe 1 with length extending from 

negative infinity to junction 2 and diameter D1 = D; pipe 2 with length l2 and diameter 

D2 < D; and pipe 3 with length extending from junction 1 to positive infinity and diameter 

D3 = D where D is the intact pipe diameter. It is assumed that the wave speed (a) is not 

affected by the change in diameter. Two D2 cases are considered in this section. The first 

case is D2 / D=0.8 and it is referred to as shallow blockage case. The second case is 

D2 / D=0.4 and is referred to as severe blockage case. The incident wave generated at a 

source located at x=L has a waveform as shown in Figure 3.9 with central frequency fc 

=4000Hz and a narrow FBW [0.9fc to 1.1fc] ≡ [3600Hz to 4400Hz].  

A long blockage length l2=100m is first considered so that the interaction of the incident 

wave with the blockage could be clearly analysed in two parts. The first part considers the 

wave scattering at junction 1. The second part considers the wave scattering at junction 2. 

Figure  7.27 Sketch of blocked pipe system in unbounded pipe. 

 

 

For the shallow blockage case (D2/D=0.8), Figure 7.28 gives the pressure distribution in the 

r-x plane where only a plane wave mode is generated at the source (Ds=D). Figure 7.28a is at 

time before the incident wave reaches the blockage, whereas Figure 7.28b is at time after the 

incident wave reaches junction 1 but before it reaches junction 2. Figure 7.28b shows that the 

incident plane wave is scattered into reflected M0 ( 0M0R
) and M1 ( 0M1R

) and into 
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transmitted M0 ( 0M0T ) and M1 ( 0M1T ). However, in Figure 7.29 which shows the severe 

blockage case (D2/D=0.4), only M0 is transmitted through the blockage. The reason for this 

is that the M1 cut-off frequency in pipe 2 (i.e. blockage) for the shallow blockage case is (see 

Eq. (2.115)) 1 1 2rf a D    ≈ 3800Hz which means that waves propagating at 

frequencies within [3800Hz to 4400Hz] excite M1. However, the M1 cut-off frequency in 

pipe 2 for the severe blockage case is 1 1 2rf a D    ≈ 7600Hz which is higher than the 

upper bound frequency content (UBFC) 4400Hz of the incident signal. Therefore M1 in the 

blockage does not get excited.  

Figure  7.28 Dimensionless pressure distribution in the r-x space plane for shallow 

blockage case where only M0 is injected. (fc=4000Hz and L=200m; l2=100m and l3=50m). 

 

(a) Top At time t ≈ 0.2L/a: before the incident waves 

reach the blockage 

(b) Bottom At time t ≈ 0.5L/a: after the incident waves reach 

the blockage 
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Figure  7.29 Dimensionless pressure distribution in the r-x space plane for severe 

blockage case where only M0 is injected. (fc=4000Hz and L=200m; l2=100m and l3=50m). 

 

(a) Top At time t ≈ 0.2L/a: before the incident waves 

reach the blockage 

(b) Bottom At time t ≈ 0.5L/a: after the incident waves 

reach the blockage 

 

Figure 7.30 gives an enlarged plot of the pressure distribution at the time right after the wave 

interacts with junction 1. Figure 7.30 shows the presence of M1 and a third high mode just to 

the left and to the right of junction 1, respectively. These two modes are evanescent that get 

excited at junction 1 to conserve the continuity of pressure and velocity but they do not 

propagate along the pipe. They get attenuated over a short range near the junction (see 

Chapter 2 Section 2.6.3). The scale of attenuation of these evanescent modes is of the order 

of pipe diameter. 
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Figure  7.30 Enlarged plot of dimensionless pressure distribution in the r-x space plane 

for severe blockage case where only M0 is injected showing the presence of evanescent 

modes. (fc=4000Hz and L=200m; l2=100m and l3=50m). 

 

 

Similarly, Figures 7.31 and 7.32 gives the pressure distribution in the r-x plane, respectively, 

for the case of D2=0.8D and D2=0.4D where M1 is excited (Ds=0.2D) and separated from 

M0 before reaching the blockage (see Figures 7.31a and 7.32a). The M0 waves in 

Figures 7.31 and 7.32 scatter as discussed above (see Figure 7.28 and 7.29). Figure  7.31b 

shows that, for the shallow blockage case, M1 is scattered into reflected M0 ( 1M0R ) and M1 

( 1M1R
) and into transmitted M0 ( 1M0T

) and M1 ( 1M1T
). However, Figure  7.32b shows that, 

for the severe blockage case, only 1M0T
 waves are transmitted through the blockage. This is 

because, for the shallow blockage case, the transmitted M1 waves at frequencies within 

[3600 and 3800] are cut-off in pipe 2, whereas M1 waves at frequencies within [3800 and 

4400] are cut-on for pipe 1. On the other hand, for the severe blockage case, all transmitted 

M1 waves are cut-off in pipe 2. Figures 7.33 and 7.34 give the velocity vector field for 

shallow and severe cases and show the existence of M1 where radial velocity is present. 
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Notice that in Figures 7.31b and 7.33, the transmitted M1 from the incident M0 ( 0M1T ) is not 

clear because it carries little energy (see Figure 7.28) and it is located where 1M0T  is 

dominant.  

Figure  7.31 Dimensionless pressure distribution in the r-x space plane for shallow 

blockage case where M0 and M1 are injected. (fc=4000Hz and L=200m; l2=100m and 

l3=50m). 

 

(a) Top At time t ≈ 0.2L/a: before the incident waves 

reach the blockage 

(b) Bottom At time t ≈ 0.5L/a: after the incident waves 

reach the blockage 
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Figure  7.32 Dimensionless pressure distribution in the r-x space plane for severe 

blockage case where M0 and M1 are injected. (fc=4000Hz and L=200m; l2=100m and 

l3=50m). 

 

(a) Top At time t ≈ 0.2L/a: before the incident waves 

reach the blockage 

(b) Bottom At time t ≈ 0.5L/a: after the incident waves 

reach the blockage 
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Figure  7.33 Vector velocity field (VVF) distribution in the r-x space plane at time 

t ≈ 0.5L/a for shallow blockage case where M0 and M1 are injected. (fc=4000Hz and 

L=200m; l2=100m and l3=50m). 
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Figure  7.34 Vector velocity field (VVF) distribution in the r-x space plane at time 

t ≈ 0.5L/a for severe blockage case where M0 and M1 are injected. (fc=4000Hz and 

L=200m; l2=100m and l3=50m). 
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The scattered incident wave distributes it energy into the transmitted and reflected modes 

such that the continuity of pressure and velocity at the discontinuity is satisfied. 

Figures 7.35a and 7.35b gives the energy distribution for shallow and severe blockage 

corresponding to the cases shown in Figures 7.31b and 7.32b, respectively. 

Figures 7.35a and 7.35b show that the reflected and transmitted energy from the incident M0 

is very different for severe and shallow blockage cases where severe blockage reflects much 

more of M0 energy than shallow blockage. However, the amount of energy reflected from 

the incident M1 is similar for both severe and shallow blockage cases. One reason for this is 

that most of M1 energy is trapped near the pipe centreline and therefore it does not interfere 

much with the blockage in comparison with M0 (see Figure 7.23a).  
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Figure  7.35 Dimensionless area-averaged energy variation along the pipe at time 

t ≈ 0.5L/a where M0 and M1 are injected. (fc=4000Hz and L=200m; l2=100m and 

l3=50m). 
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(a) Top Shallow blockage case 

(b) Bottom Severe blockage case 

 

To discuss the wave scattering at junction 2, the pressure distribution in the r-x plane where 

only M0 is injected is given in Figures 7.36 and 7.37 respectively for the case of shallow and 

severe blockage cases. Figures 7.36a and 7.37a are given at the time before the incident M0 

exits the blockage, whereas Figures 7.36b and 7.37b are given at the time after the incident 

M0 exits the blockage. Figures 7.36b shows that the incident M0 wave is scattered into 

transmitted M0 and M1 and into reflected M0 and M1 for the case of shallow blockage. 

However, Figures 7.37b shows that, for the case of severe blockage, the incident M0 wave in 

the blockage and incident on junction 2 gets scattered into transmitted M0 and M1 and into 

only reflected M0. The absence of a reflected wave from junction 2 is due to the fact that M1 
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is cut-off in pipe 2 (i.e. blockage) for severe blockage as discussed above. 

Figures 7.36b and 7.37b show two main features of plane wave scattering at junction 2. First, 

more wave reflections is induced for the case of shallow blockage than for the case of severe 

blockage. Second, most of the transmitted energy from a shallow blockage is carried by the 

transmitted M0 waves rather than by M1 waves. Conversely, most of the transmitted energy 

from a severe blockage is carried by the transmitted M1 waves rather than by M0 waves. 

This shows how different blockages induces different signature on the injected signal. It is 

these differences that could be exploited in using high frequency waves for blockage 

detection. 

 

Figure  7.36 Dimensionless pressure distribution in the r-x space plane for shallow 

blockage case where only M0 is injected. (fc=4000Hz and L=200m; l2=100m and l1=50m). 

 

(a) Top At time t ≈ 0.7L/a: before the incident waves 

exits the blockage 

(b) Bottom At time t ≈ 0.9L/a: after the incident waves 

exited the blockage 
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Figure  7.37 Dimensionless pressure distribution in the r-x space plane for severe 

blockage case where only M0 is injected. (fc=4000Hz and L=200m; l2=100m and l1=50m). 

 

(a) Top At time t ≈ 0.7L/a: before the incident waves 

exits the blockage 

(b) Bottom At time t ≈ 0.9L/a: after the incident waves 

exited the blockage 

 

A smaller blockage with length l2=5m is considered to discuss the overall pressure field 

induced from a wave-blockage interaction. Figures 7.38 and 7.39 give the pressure 

distribution in the r-x plane, where M0 and M1 are injected for the case of shallow and 

severe blockage cases, respectively. Figures 7.38a and 7.39a are given at the time before the 

incident waves reach the blockage (i.e. junction 1), whereas Figures 7.38b and 7.39b are 

given at the time after the incident waves are scattered from junction 1. 

Figures 7.38b and 7.39b show that each incident mode is scattered into transmitted M0 and 

M1 and into reflected M0 and M1. Figures 7.40a and 7.40b give the area-averaged energy 
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along the pipe at the time after the incident waves are scattered from the blockage for the 

shallow and severe blockage cases, respectively. Figures 7.38b and 7.40a show that most of 

M0 energy (97%) is transmitted through the shallow blockage, whereas 

Figures 7.39b and 7.40b show that about only half of M0 energy is transmitted through the 

severe blockage. On the other hand, Figures 7.38b, 7.39b and 7.40, show that most of M1 

energy is transmitted through both severe and shallow blockages except that shallow 

blockage induces slightly extra reflections which could be observed within [x/L=0.55 to 

x/L=0.65] in Figures 7.38b and 7.40a. The reason that shallow blockage reflect slightly more 

M1 waves than the severe blockage is because at junction 2, shallow blockage reflects part of 

its energy whereas severe blockage transmits most of its energy as shown in 

Figures 7.36b and 7.37b. Figures 7.38b and 7.39b show that wave scattering increases the 

dispersion and distortion of the waves. Because the energy of the incoming waves is 

distributed into multiple transmitted and reflected modes, the maximum pressure and energy 

magnitudes decreases severely. Therefore, if there exist multiple non-uniformities in the pipe 

cross sectional area (such as junctions, partially closed valve, bends…etc), the attenuation of 

the pressure signal due to scattering would increase severely and would reduce the range of 

propagation of high frequency waves. 
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Figure  7.38 Dimensionless pressure distribution in the r-x space plane for shallow 

blockage case where M0 and M1 are injected. (fc=4000Hz and L=205m; l2=5.1m and 

l1=99.9m). 

 

(a) Top At time t ≈ 0.49L/a: before the incident waves 

reach the blockage 

(b) Bottom At time t ≈ 0.97L/a: after the incident waves are 

scattered from the blockage 
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Figure  7.39 Dimensionless pressure distribution in the r-x space plane for severe 

blockage case where M0 and M1 are injected. (fc=4000Hz and L=205m; l2=5m and 

l1=99.9m). 

 

(a) Top At time t ≈ 0.7L/a: before the incident waves 

reach exits the blockage 

(b) Bottom At time t ≈ 0.9L/a: after the incident waves 

exited the blockage 
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Figure  7.40 Dimensionless area-averaged energy variation along the pipe at t ≈ 0.97L/a 

where M0 and M1 are injected. (fc=4000Hz and L=205m; l2=5.1m and l1=99.9m). 
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(a) Top Shallow blockage case 

(b) Bottom Severe blockage case 

 

7.3. Classical water-hammer test case: rapid valve closure in a RPV system  

This section considers a classical test case for WH application which consists of a rapid 

valve closure in RPV system with initial Poiseuille flow. The pipe system and boundary 

conditions for this test case are given in Chapter 3-Section 3.2.7.5. This test case was first 

considered by Mitra and Rouleau ([96]) to study radial waves in liquid transmission lines 

numerically. Usually radial waves are not considered in WH models because WH waves are 

generated by mechanical devices such as valves and pumps whose frequency is far below the 

cut-off frequency of any high mode. However, Mitra and Rouleau ([96]) considered an ideal 
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sudden valve closure which induces a broad band signal (with large FBW) that excites high 

modes, and yet they reported that radial pressure waves are only large near the valve and 

decay rapidly with distance from the valve. The reason is that the numerical scheme used by 

Mitra and Rouleau ([96]) was implicit in time and with low accuracy, therefore the numerical 

dissipation is too high for simulating accurately HFW. This work uses the developed high 

order explicit scheme to study the radial wave's propagation due to sudden valve closure.  

Figure 7.41 gives the dimensionless pressure variations with time at the valve. Figure 7.41a 

shows that the pressure at the pipe centreline is twice as large as the Joukowsky pressure. 

This is because the maximum velocity at the centerline is twice the average velocity for a 

steady state pipe Poiseuille flow (Eq. ( 3.58)). In fact Figure 7.41b gives the pressure at the 

pipe wall and shows that pressure oscillates slightly around the Joukowsky pressure. The 

pressure signal at the pipe wall in Figure 7.41b up to t = L/a is shown in Figure 7.42a and it 

is transformed into the frequency domain shown in Figure 7.42b. Figure 7.42b shows that the 

pressure oscillations observed in Figure 7.41 are due to the radial waves excited by the 

sudden valve closure where fn (n = 1,…5) in Figure 7.42b are the cut-off frequencies of the 

first five high modes (Eq. (2.117)).  
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Figure  7.41 Dimensionless pressure variation at the valve with time 
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(a) Top At pipe centreline 

(b) Bottom At pipe wall 
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Figure  7.42 Dimensionless pressure variation at the valve and at the pipe wall for a 

period of L/a and its frequency domain transformation 
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(a) Top Dimensionless pressure variation with time (normalized 

by Joukowsky pressure (PJou =
0

0 xV a )) 

(b) Bottom Frequency domain 

 

Figure 7.43 gives the dimensionless pressure distribution in r-x plane for different times and 

shows the propagation of M0 and M1 along the pipe. Although higher modes (n > 1) are 

excited (see Figure 7.42b), M1 is dominant and carry most of the energy as shown in 

Figure 7.42b. As shown in Figure 2.11, waves close to the cut-off frequency propagate at 

very low speed. These waves are observed in Figure 7.43 near the valve location. The fastest 

waves are propagating at the highest injected frequency for which the group velocity 
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approaches the M0 acoustic speed (Figure 2.11). These fast waves are located right behind 

the plane waves (see Figure 7.43). Figure 7.43 shows that the slower the waves are, the 

higher their spreading is. This is because, as explained previously form Figure 7.13, the 

group velocity variation with frequency (see Figure 7.13 and Figure 2.11) is steeper near the 

cut-off frequency and becomes more uniform away from the cut-off frequency.  

 

Figure  7.43 Dimensionless pressure distribution in the r-x space plane for the case of 

sudden valve closure in a RPV system with initial Poiseuille flow at different times. 

 

(a) Top left At time t = 0.2L/a 

(b) Top right At time t = 0.4L/a 

(c) Bottom left At time t = 0.6L/a 

(d) Bottom right At time t = 0.8L/a 
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7.4. Summary 

Although, the physics of acoustic wave behaviour in ducts containing gas/air is well 

advanced, there is little literature relevant to high frequency waves in water-filled pipes. In 

this chapter, the behaviour of high frequency waves (non-plane and dispersive waves) in 

water-filled pipe is studied. The study is conducted numerically using high order numerical 

scheme (see Chapter 3) and discusses the dispersion behaviour of HFW under resonating 

probing source (i.e. the injected FBW contains the cut-off frequencies of high modes) and 

non-resonating probing source (i.e. the injected FBW does not contain any cut-off frequency) 

as well as their scattering behaviour due to the presence of a blockage in the conduit. The 

key conclusions of this study are given below:  

(i) Riemann solver scheme preserves the physical dispersion of high frequency waves. 

(ii) The resonant response of high frequency waves is studied and the results agree well 

with the analytical solution.  

(iii) At a given location x, the pressure nodes of standing radial wave located at J0(krnr)=0 

were accurately observed from the numerical results. At these pressure nodes, the 

pressure is constant, the wave-induced axial velocity is zero and the wave-induced 

radial velocity is maximum, but still small. Knowledge of the locations of these 

nodes could have important implications in locating sensors for TBDDM. 

(iv) The numerical results show that the magnitude of the radial scale of the wave source 

has significant influence on how the input energy gets distributed over the different 

excited modes. It is found that small sized source reduces the amplitude of the M0 

waves. When high frequency waves are used for TBDDM, and if these methods 

rely on measuring the plane (M0) waves, then the design of the source size plays 

significant role.  

(v) The dispersion and multipath effect of high modes is analysed. It is shown that the 

energy contained in high modes gets distributed along the pipe in the form of a tail 

of energy that grows longer and more uniform with distance from the source. 

Moreover, if the injected FBW contain the cut-off frequency of a given mode n, the 

tail of energy of the n-th mode becomes infinite because the group velocity near 

cut-off frequency is too small and it is zero at the cut-off frequency. However, 
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when the injected FBW does not contain any cut-off frequency, each excited mode 

get separated from all other excited modes with finite tail of energy, and their 

spatial spreading with distance from the source depends on the slope of the group 

velocity with respect to frequency over the range of injected frequencies. As a 

result, the measurement locations of HFW should neither be far away from the 

source locations where wave amplitude becomes very small due to dispersion, nor 

very close to the source so that the modes get separated, and thus, are easily 

analyzed. Simple and reliable expressions to determine the waves propagation 

range and the separation locations of different modes are proposed.  

(vi) It is found that the energy of radial modes is trapped near the centreline and decreases 

with distance from the centreline. This is a result of no flux boundary at the pipe 

wall. The energy at the pipe wall gives the magnitude of the area-averaged energy. 

The n-th energy magnitude at the pipe centreline is proportional to the magnitude at 

the pipe wall by the factor 1/  2

0 rnJ   where  2

0 rnJ  <1. The pressure magnitude 

has similar feature except that the proportionality factor is 1/  0 rnJ  . This is 

important in practice because, usually, the pressure measurements are taken at the 

pipe wall. If many modes are excited, the higher the modes are, the lower the 

pressure magnitudes are measured at the pipe wall. If one relies only on measuring 

the pressure at the pipe wall without taking into account the radial distribution of 

the high modes, it could mislead to believe that the energy is highly dissipated 

and/or attenuated.  

(vii) Viscous effect affects the propagation ranges of higher modes more than lower 

modes. This is because high modes take longer path than lower modes, and 

therefore, they dissipate over a longer time. Knowing the dissipation rate for plane 

wave, the additional dissipation of high modes due to multi-path effect could be 

determined from the ratio between the plane wave path and high modes paths 

which is given by the propagation angle. 

(viii) Scattering of high frequency waves due to the presence of a blockage is studied. It is 

shown that each incident mode is scattered into multiple of reflected and 

transmitted modes. The plane wave mode is highly affected by the severity of area 
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reduction. The more severe the reduction is, the more energy of a plane wave is 

reflected. However, high radial modes have little interaction with the blockage and 

transmit most of their energy through both severe and shallow blockage. This is 

because most of the high radial modes energy is trapped near the pipe centreline. 

This work considered only axi-symetric pipe system, and therefore, blockages are 

assumed axi-symmetric.  
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8. CHAPTER 8 

 

CONCLUSIONS 

 

8.1. Overall conclusions 

As stated in the introduction chapter, the objective of this thesis is to shed greater light on the 

forward problem of wave-blockage interaction in WSS under a wide range of frequencies. In 

particular,  

(i) The eigenfrequency shift mechanism induced by wave-blockage interaction is 

investigated theoretically, numerically and experimentally. The underlying physics 

of the frequency shift is clrafied.  

(ii) HFW in water-filled pipe and how they interact with blockages is investigated.  

These aims have been addressed in this research and the results and conclusion are given 

below.  

This work uses analytical, numerical and experimental means to investigate the wave-

blockage interaction in a conduit. This investigation is accomplished in a two-pipe system 

case scenarios discussed in Chapter 4, Chapter 5 and Chapter 6. In Chapter 4, an unbounded 

pipe system is considered which allows examination of the direct interaction between waves 

and blockages without interference from other effects. Such analysis established the 

existence of Bragg-type resonance in conduits where wave reflections are enhanced at 

certain frequency bands and wave transmissions are enhanced at other frequency bands. The 

Bragg resonce conditions are derived in this thesis.   
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A bounded pipe system (e.g. reservoir-pipe-valve (RPV) system) is considered in Chapter 5 

and Chapter 6. Chapter 5 studied the case where the blockage is located one end of the pipe, 

whereas Chapter 6 studied the case of interior blockage. The eigenfrequency shift 

mechanism is investigated for both blockage cases. 

It is found that the eigenfrequency shift caused by shallow blockages (with small radial 

protrusion) could be explained either by the variation of the change of kinetic and potential 

in the blocked area, or by the change of the difference in work of the radiation pressure at the 

blockage boundaries. Both approaches lead to an analytical equation of the eigenfrequency 

shift for the case of shallow blockage. In particular, the shallow blockage assumption shows 

that zero shifts occur under two conditions. The first condition is when the blockage length is 

a multiple of the half wavelength of the mth mode harmonic. At these modes, the 

eigenfrequency corresponds to the Bragg resonance frequency of total transmission. Under 

this condition, the shift is zero for any blockage location. The second condition states that, at 

a given mode m, the shift is zero when the blockage mid-length is located at a position of 

equal pressure and flow magnitude. Furthermore, maximum shifts are governed by two 

mechanisms. The first mechanism is for a given mode m and states that the shift is maximum 

if the blockage mid-length is located at a position of either a pressure node or stagnation 

point. The second mechanism describes the variation of the maximum shift magnitude with 

mode number and shows that the largest magnitude of the maximum shift occurs at modes 

with eigenfrequencies close to the Bragg resonance frequencies of maximum reflection. The 

assumption of shallow blockage is found to remain applicable when the blockage occupies 

35% of the pipe area, or less.  

Severe and moderate blockages decouple the pipe system into independent intact subsystems 

with different lengths and diameters corresponding to the blocked and intact regions (pipe 

sections). The eigenfrequencies of these subsystems define the asymptotic solutions of the 

eigenfrequency variations at the limit of the most severe blockage case ( 0  ). This 

decoupling effect is governed by two mechanisms, depending on either the change of the 

blockage location at a given mode or the change in eigenfrequency mode number. The first 

mechanism is for a given resonant mode and states that the decoupling effect is weakened 

when the blockage location is such that the eigenfrequencies of the subsystems are close or 
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equal to each other. As a result, waves in one subsystem acts as forcing to other subsystems. 

The fact that subsystems are driving one another at or near resonance is what brings about 

the coupling, even for a very severe blockage. The second mechanism describes the variation 

of the shift magnitudes with mode number and shows that as the eigenfrequency mode 

number varies, the coupling/decoupling mechanism is governed by the Bragg resonance 

effect discussed in Chapter 4. In fact, it is shown that modes with eigenfrequencies close to 

or at the Bragg resonance frequencies of maximum reflection experience the largest shift 

magnitude. To explain, the more the reflections are from the blockage, the more the upstream 

and downstream regions of the blockage become decoupled. Conversely, modes with 

eigenfrequencies close to or at the Bragg resonance frequencies of total transmission 

experience zero shifts for any blockage location. 

The Bragg resonance effects, as well as the different features of the eigenfrequency shift, are 

investigated using experimental tests conducted at the Water Engineering Laboratory in the 

University of Perugia-Italy in collaboration with Prof. Bruno Brunone and Prof. Silvia 

Meniconi. Reasonable agreement and consistency between the experimental and numerical 

Bragg resonance and eigenfrequency shift is found. In addition, it is shown that the 

eigenfrequency and Bragg resonance can be exploited in the development of for blockage 

detection techniques in pipe systems. In particular, the relation between Bragg-type 

resonance and eigenfrequency shift allows the identification of the blockage characteristics 

(i.e. blockage's length and area) from the frequency response function. Moreover, simple 

equations that link the measured zero shifts as well as maximum shifts (i.e. significant shifts) 

to discrete sets of possible blockage locations are proposed, which improves the inverse 

optimization techniques for blockage detection in pipe systems. 

The behaviour of HFW are studied numerically in Chapter 7. Second, third and fifth (for 

smooth waves) order finite volume schemes based on the approximate Riemann solver are 

developed. The details and accuracy of these schemes are given in Chapter 3. The second 

order accuracy is achieved by using the MUSCL–Hancock approach. The third and fifth 

order accuracy for smooth wave propagation is achieved by using a weighted essentially 

non-oscillatory (WENO) reconstruction. Prior to using the developed schemes to conduct 

numerical experiments, their accuracy, efficiency and robustness were tested. The results 
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show that second and third order schemes could be used for simulating wave propagation at 

frequencies less than 1000Hz. However, for frequencies higher than 1 kHz, higher order 

schemes are needed to minimize the numerical dissipation at low computational time. 

Numerical experiments reveal that for frequencies ranging from 5 kHz to 100 kHz, the 

required order of accuracy increases from 5 to 8. 

Plane waves propagate at the acoustic wave speed (a). However, dispersive waves at high 

modes propagate at the group velocity which is the speed at which the energy propagates. 

The group velocity is smaller than the acoustic wave speed (a) and varies with the frequency. 

Therefore at high modes, the energy of waves with different frequencies propagates at 

different speeds. The fact that different wave modes acquire different paths is referred to as a 

multipath process and is the reason why HFW are dispersive.  

The dispersion and multipath effect of the high modes is analysed. It is shown that the energy 

contained in high modes gets distributed along the pipe in the form of a tail of energy that 

grows longer and more uniform with distance from the source. Moreover, if the injected 

FBW contain the cut-off frequency of a given mode n, the tail of the energy of the n-th mode 

becomes infinite because the group velocity near the cut-off frequency is too small and it is 

zero at the cut-off frequency. However, when the injected FBW does not contain any cut-off 

frequency, each excited mode get separated from all other excited modes with a finite tail of 

energy, and the spatial spreading with distance from the source depends on the slope of the 

group velocity with respect to frequency over the range of injected frequencies. As a result, 

the measurement locations of HFW should not be far away from the source location where 

the wave amplitude becomes very small due to dispersion, or very close to the source so that 

the modes get separated, and thus, are easily analyzed. Simple and reliable expressions to 

determine the waves propagation range and the separation locations of different modes are 

proposed.  

It is found that the energy of the radial modes is trapped near the centreline and decreases 

with distance from the centreline. This is a result of "no flux" boundary at the pipe wall. The 

energy at the pipe wall gives the magnitude of the area-averaged energy. The n-th energy 

magnitude at the pipe centreline is proportional to the magnitude at the pipe wall by the 
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factor 1/  2

0 rnJ  , where  2

0 rnJ  <1. The pressure magnitude has a similar feature except 

that the proportionality factor is 1/  0 rnJ  . This is important in practice because, the 

pressure measurements are usually taken at the pipe wall. If many modes are excited, the 

higher the modes are, the lower the pressure magnitudes measured at the pipe wall. If one 

relies only on measuring the pressure at the pipe wall without taking into account the radial 

distribution of the high modes, it could be misleading to believe that the energy is highly 

dissipated and/or attenuated.  

The viscous effect affects the propagation ranges of the higher modes more than lower 

modes. This is because the high modes take longer paths than the lower modes, and therefore, 

they dissipate over a longer time. Knowing the dissipation rate for a plane wave, the 

additional dissipation of the high modes due to multi-path effect could be determined from 

the ratio between the plane wave path and the high modes paths which is given by the 

propagation angle. 

Scattering of high frequency waves due to the presence of a blockage is studied. It is shown 

that each incident mode is scattered into a multiple of reflected and transmitted modes. The 

plane wave mode is highly affected by the severity of the area reduction. The more severe 

the reduction, the more the energy of a plane wave is reflected. However, high radial modes 

have little interaction with the blockage and transmit most of their energy through both 

severe and shallow blockages. This is because most of the high radial modes energy is 

trapped near the pipe centreline. This research considered only axi-symetric pipe systems, 

and therefore, blockages are assumed to be axi-symmetric.  

 

8.2. Future work 

This research assumes that fluid is inviscid, the flow is initially at rest, the pipe system is 

relatively simple and the wave siganls are free of noise. However, WSS are highly complex, 

the flows in them are turbulent and subjected to a myriad of noise sources (e.g. vibrations of 
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mechanical devices, traffic noise, etc). To advance and extend the research of this thesis to 

more practical applications, below are some recommendations for future work regarding one 

dimensional analysis: 

(i) Conduct a sensitivity analysis of the wave signals to noise and develop ways to 

maximize signal to noise ratio.  In this regard, the HKUST research group working 

on the theme-based project led by the advisor of the author of this thesis ([121]) has 

started conducting experimental field tests to obtain initial information on the noise 

level and characteristics in HK WSS.  

(ii) Initial results showed that the Bragg resonance effects, where wave reflections are 

enhanced for certain frequency bands and weakened for other bands, occurs in the 

case of multi-blockages. An understanding of the mechanisms describing the 

relation between these Bragg resonance frequency bands and the blockage 

characteristics could open the doors to new techniques for processing the data in 

the frequency domain. In particular, it would be very important if such an 

understanding could lead to prior knowledge of the blockage number in the pipe. In 

fact, current solutions of inverse problems require that the number of blockages is 

known a priori, which leads to unrealistic computational time for practical 

applications. Preliminary results with multi-blockages showed that regularity exists 

in the distribution of the Bragg resonances frequency bands. Therefore, it could be 

possible to use signal correlation techniques in the frequency domain to identify the 

Bragg resonance frequency bands which leads to inform on the blockage 

characteristics. 

(iii) Leak detection is a major problem for WSS. A study similar to the one conducted in 

this thesis but for the case of leak-wave interaction would contribute greatly to the 

understanding of how waves scatter from a leak and would form the pre-requisite 

for the development of reliable leakage detection in WSS.  

(iv) The pipe system used for the experimental investigation in this work includes bends, 

and it is found that that these bends may influence the eigenfrequency shift. Yet, 

the phenemomna of bend-wave interaction is not yet understood and should be 
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addressed in the future especially that most laboratory pipe systems are coiled due 

to space limitation. 

The HFW research in this thesis considers only a simple pipe configuration where the pipe 

flow is assumed either inviscid or viscous but laminar. In addition, the flow is assumed axi-

symetric. Prior to using HFW for TBDDM, the following researches need to be conducted in 

the future: 

(i) This thesis shows that wave dispersion spreads the energy in space and could easily 

be misconstrued as damping. Future work should seek to understand the reduction 

in amplitude of HFW as they propagate and how much of this reduction is due to 

dissipiation, how much is due to dispersion and how much is due to fluxes of 

energy from the fluid to the pipe wall. This requires numerical and experimental 

investigation of HFW under more realistic conditions. In addition, models that 

incorporate the interaction between the pipe wall and the fluid will need to be 

developed for the case of HFW.  

(ii) Numerical results in this thesis show that the size of the radial scale of the wave 

source has significant influence on how the input energy is distributed over the 

different excited modes. Therefore, further study on the influence of the source size 

should be undertaken in future work. This would help in designing an appropriate 

transient source and give control on the energy field injected into the pipe system.  

(iii) In current practice, transients are typically generated from a side discharge valve and 

the pipe wall is the easiest and most practical spot for implementing wave 

generators. This causes flow asymmetry; as a consequence, azimuthal waves (that 

travel in a helicoidal motion) are generated and could excite the natural azimuthal 

modes of the pipe system. Therefore, the dispersion effect studied in this thesis 

could become more pronounced; leading to increased distortion of the pressure 

signal. As a result, it is expected that the energy dispersion gets intensified. These 

processes are currently not understood and need to be invrestigated in the future.  

(iv)  The current study analyzes an idealized blockage (i.e. axi-symmetrical shape, pipe 

junctions with different diameter). More realistic blockage shapes will need to be 

investigated in the future.  
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(v) WSS flows are highly turbulent. The effect of turbulent noise and nonlinearity on the 

high frequency waveform and transformation need to be investigated.  

(vi) The current thesis focuses on blockages and a follow up study that investigates the 

interaction between leaks and HFW would be interesting and important.  
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Appendix A  

Mode matching at discontinuity 

Consider a junction of tow pipes with a discontinuity in diameter at x = 0 (Figure A.1) with a 

radius R along x < 0 and a radius Rs along x > 0, where R > Rs. The subscript "s" denotes the 

region of incident wave. 

Figure A.1 Mode matching at discontinuity 

 

 

An incident wave from x = ∞ given by (see equation Eq. (2.114)) 

      0exp  exps s s

in n xn rn

n

P ik x iwt J rk   (A.1) 

is scattered at x=0 into a reflected wave Pref 

      0exp -  exp -s s s

ref n xn rn

n

P ik x iwt J k  (A.2) 
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and into a transmitted Ptr  

      0exp  exptr n xn rn

n

P ik x iwt J rk   (A.3) 

The reflected and transmitted amplitudes could be written as follows 

 
s s

n nm m

m

    (A.4) 

and 

 
s

n nm m

m

    (A.5) 

where nm  and Tnm are the contributions of the mth mode to reflected and transmitted nth 

modes, respectively. nm  and Tnm are also called the reflection and transmission matrices, 

respectively. Applying the continuity of pressure at x=0, gives 

    
00in ref tr xx

P P P


   (A.6) 
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s s s s
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n m n m

J rk J rk  
      

          
      

     (A.7) 

Considering a single incident mode m=j such that 0s

m j    and 0s s

m j j    , yields 

        0 0 0

s s s s s

j rj nj j rn nj j rn

n n

J rk J rk J rk        (A.8) 

        0 0 0

s s
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n n

J rk J rk J rk       (A.9) 

Taking the inner product with  0 'rnJ rk r  and using the Orthogonality of Bessel's function 

gives:  
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  (A.12) 

where nj  is the Kronecker delta function. In matrix form, Eq. (A.12) gives 
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. 

Applying the continuity of axial velocity at x = 0 gives 

    
0 0

in ref tr

x x
x x

V V V
 

   (A.15) 

This condition can be written in terms of pressure by using the momentum equation as 

follows 

 
1 1 1

        
V p p p

iwV V
t x x iw x  

   
       

   
 (A.16) 

where the convective terms are neglected. Considering only the incident mode m=j, leads to 
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   (A.17) 

Taking the inner product with  0 '

s

rnJ rk r  and integrating from 0 to Rs for x>0 and from 0 to 

R for x<0, give 
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  (A.20) 

Equations (A.12) and (A.20) are combined into a system of equations as follows 
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In matrix form, Eq. (A.21) becomes 
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where  
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which leads to 

 

1
tr tr

s s

x u x u x u x uM M M M 


   
       

      
 (A.24) 

and 

 

1

2
tr

s ss
u x u x u x

R
M M M

R




           
 (A.25) 

where  
1

2

0

2
u r

s

M J M
RR




  and 
 

   

1

' 2 2
2

' 0 '

2 rn rn s

u n n
s

s rn rn rn

J R R
M

R k k J

 






      

.  

The transmitted and reflected modes from the discontinuity must satisfy the energy 

conservation as follows: 
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where nt are the transmitted modes numbers; nr are the reflected mode numbers; 

,  and tr ref inE E E  are the transmitted, reflected and incident energy, respectively. Using 

Eq. (2.136) yields 
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Appendix B  

Solution of cos(x) = y 

The solution of  cos x y   is 
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