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ABSTRACT
It is becoming evident that high resolution finite volume (FV) numerical schemes for multi-dimensional waterhammer problems are needed for the
development of an accurate transient-based condition assessment of pipelines. As a prerequisite, FV methods for one-dimensional waterhammer
flows need to be developed. Such models can then be applied to multi-dimensional problems via directional splitting. In this paper, two FV schemes
(one uses Bhatnagar–Gross–Krook Boltzmann (BGK) and the other uses kinetic flux vector splitting (KFVS) in the flux approximation) for one-
dimensional waterhammer problems are formulated and applied. It is found that the KFVS and BGK schemes correctly capture discontinuity fronts in
a classical reservoir-pipe-valve system. An oscillation-free collision time formulation has been proposed, tested and found to be robust. The stability
of the proposed schemes is guaranteed when Cr < 0.5. Comparison between the BGK, KFVS, fixed-grid MOC, and first and second order Godunov
schemes reveals that the second-order Godunov performs best, followed closely by the BGK scheme. However, the BGK should not be quickly
dismissed since it is known that its real power becomes evident when dealing with complex physics, multi-scale and multi-dimensional problems.
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1 Introduction

The method of characteristics (MOC) is the most popular tech-
nique for solving water hammer problems. In fact, out of 14
commercially available water hammer software packages found
in the World Wide Web, 11 are based on MOC (Ghidaoui, Zhao,
McInnis, & Axworthy, 2005). The attributes of MOC include (i)
ability to handle complex boundary conditions, (ii) efficiency
due to its explicit nature, (iii) ease of coding, and (iv) inherent
hyperbolic nature. The drawbacks of MOC include (i) difficulty
in handling multi-dimensional waves, (ii) difficulty in handling
flows with variable wave speeds, and (iii) discretization prob-
lems that arise when modelling multi-pipe systems (Ghidaoui
& Karney, 1994). These drawbacks are largely inconsequen-
tial for classical water hammer applications such as design and
analysis of pipe systems and their pressure and flow controls.

Recently, water hammer (transient) waves have been noted
for their potential to detect defects such as leakages and partial
blockages in pipes. As a result, the field of transient-based defect
detection is an active area of research around the world (Duan,
Lee, & Ghidaoui, 2014; Lee, Duan, Tuck, & Ghidaoui, 2014;

Meniconi et al., 2013). The spatial resolution of the probing
water hammer waves is an essential property underlying tran-
sient based defect detection. Physically, the spatial resolution
of the transient-based defect detection method is of the order
of a/ω, where a is the wave speed and ω is the frequency
of the probing wave. Therefore, an increase in the wave fre-
quency is accompanied by an increase in spatial resolution.
Consider a typical value of a = 1000 m s−1. The spatial reso-
lution with ω = 10 Hz and ω = 10 kHz are 100 m and 0.1 m,
respectively. Therefore, higher frequencies offer better localiza-
tion of defects in pipe systems. In fact, the second author of this
paper leads a large research program, Smart Urban Water Sup-
ply Systems (Smart UWSS), with one of its objectives being the
development of high frequency methodology for pipe condition
assessment (see http://smartuws.ust.hk/). The high frequency
waves (as high as 100 kHz) have been tested numerically (Duan
et al., 2017; Louati & Ghidaoui, 2017; Zhao, Ghidaoui, Louati,
& Duan, 2018) as well as in the lab and field (Lee, Tuck,
Davidson, & May, 2017; Li, Jing, & Murch, 2017)

The classical one-dimensional water hammer wave theory
in which pressure waves are assumed to travel along pipes is
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valid for frequencies of the order of L/a, where L is the length
of the pipe under investigation. For example, for L = 1000 m
and a = 1000 m s−1, the classical one-dimensional water ham-
mer wave theory is valid for frequencies of the order of 1 Hz.
This is far below the desired frequencies of tens of kHz. In
fact, for frequencies of the order of D/a, three-dimensional
waves arise, where D is the diameter of the pipe under inves-
tigation. Such three-dimensional waves not only go back and
forth along pipes but also travel radially between the centre and
the wall of pipes. For example, for D = 100 mm and a = 1000
m s−1, three-dimensional water hammer waves arise if the prob-
ing signal has frequency of the order of 10 kHz. Therefore,
three-dimensional water hammer wave theory is essential for
the development of high spatial resolution transient based defect
detection techniques.

MOC is impractical for three-dimensional water hammer
wave theory. On the other hand, high resolution finite volume
(FV) methods are well suited for three-dimensional wave prob-
lems. The modelling of fluxes at cell interfaces is either accom-
plished by macroscopic (Toro, 1999) or mesoscopic methods
(Xu, 1998). Macroscopic methods are based on the Riemann
solution while mesoscopic methods are based on the Boltzmann
equation. The approach is often to develop such methods for
one-dimensional problems. Directional splitting is, then, used to
turn a multi-dimensional problem into a set of one-dimensional
problems where the methods developed for one-dimensional
problems apply along each of the flow direction being con-
sidered. The fact that water hammer problems are low Mach
number flows means that the nonlinear advective terms are
negligible and that directional (operator) splitting is a good
approach for multi-dimensional water hammer waves. That is,
the development of one-dimensional FV methods for water
hammer flows is the prerequisite for the progress of high fre-
quency wave theory in pipes. The Riemann based FV method
has been applied to one-dimensional water hammer problems
(Guinot, 2000; Hwang & Chung, 2002; Zhao & Ghidaoui, 2004)
and two-dimensional water hammer problems (Louati & Ghi-
daoui, 2016). However, to the authors’ knowledge, Boltzmann-
based FV methods have not been applied to water hammer
problems. Therefore, the objective of this paper is to develop
a Boltzmann-based FV method for water hammer and test it
against MOC, and Riemann-based FV methods.

Mesoscopic schemes can be broadly classified into (i) BGK
models, which are FV schemes that use the Bhatnagar–Gross–
Krook Boltzmann equation to model the fluxes; and (ii) LB
schemes, which solve the lattice Boltzmann equation. In the LB
scheme, particle velocities are discrete, but the BGK scheme
velocity-distribution functions are continuous. Yongguang, Shi-
hua, and Jianzhi (1998) and Cheng, Zhang, and Chen (1998)
successfully utilized the LB scheme to simulate classical water
hammer problems. Of concern to this paper is the BGK scheme.
The BGK scheme is known to possess excellent shock cap-
turing ability and high accuracy for viscous flow simulations
(Xu & He, 2003). The collision-less Boltzmann scheme (e.g.

the kinetic flux vector splitting (KFVS) scheme) was also for-
mulated using a continuous velocity-distribution function while
disregarding the collision term. Although the KFVS scheme
lacks particle collisions in the evolution stage, it still gives rea-
sonable numerical solutions (Xu, 1998). The BGK and KFVS
schemes have been applied to a number of complex fluid prob-
lems such as shock waves in compressible flows (Xu, Kim,
Martinelli, & Jameson, 1996), multicomponent and multiphase
flows (Xu, 1997), low Mach number flows (Xu & He, 2003),
heat transfer and reaction diffusion flows (Xu, 1999), shal-
low water flows and mass transportation phenomena (Ghi-
daoui, Deng, Gray, & Xu, 2001; Ghidaoui & Liang, 2008;
Li, 2001; Liang, Ghidaoui, Deng, & Gray, 2007; Zhang, Ghi-
daoui, Gray, & Li, 2003), hypersonic viscous flows (Xu, Mao,
& Tang, 2005), and micro-scale fluid flows (Liu, Xu, Zhu,
& Ye, 2012). To our knowledge, no water hammer model based
on the BGK or KFVS scheme has been developed so far. Such
models are developed and applied in this paper. The authors of
this paper also applied the BGK and KFVS schemes on moder-
ately complex pipe systems. The pipe systems include different
boundary conditions such as junctions where pipes’ cross-
sectional area change, leakage where fluid leaves out pipes, and
joints of two pipes in which waves travel with different speeds.
Using the BGK and KFVS schemes, the authors proposed a
unified finite volume scheme in which boundary conditions
are embedded. They successfully captured the wave interac-
tion with boundary conditions. To make the current paper short,
details of the unified finite volume scheme are presented in
another paper named “Formulation of consistent finite volume
schemes for hydraulic transients” (Mesgari Sohani & Ghidaoui,
2018).

2 Mesoscopic models for water hammer problems

The fundamental equation in the kinetic approach was
established by Boltzmann in 1872 (Cercignani, 1988; Ghi-
daoui, 2008). The Boltzmann equation originally models the
dynamics of rarefied gases via a time-dependent density of par-
ticles (namely, f (X , t, C)) in a six-dimensional phase space
(i.e. x, y, z, cx, cy, cz, where subscripts represent spatial direc-
tions) (Villani, 2008; Vincenti & Kruger, 1965). The Boltzmann
equation with external force boundaries is:

∂f
∂t

+ C · ∇f︸ ︷︷ ︸
Advection

+ F′ · ∂f
∂C︸ ︷︷ ︸

Acceleration

= Q′( f )︸ ︷︷ ︸
Collision

(1)

where C = [cx, cy , cz]T are the particles velocities; F′ =
[F ′

x, F ′
y , F ′

z]
T are the external forces; C · ∇ is the advection oper-

ator; F′ · (∂/∂C) is the acceleration operator; and Q′ is the
collision operator. Theoretically, the range of particle velocities
(cx, cy , and cz) is the whole real line. Boltzmann also introduced
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H-theorem function that states:

S( f ) = −H( f ) = −
∫∫∫

f ln( f ) dcx dcy dcz (2)

where S is the entropy. Boltzmann’s H-theorem is of
basic importance because it shows that the Boltzmann
equation ensures irreversibility (Xu, 1998). In addition,
it is used to achieve an equilibrium velocity-distribution
function. As S increases and achieves its maximum, a
non-equilibrium velocity-distribution function (f ) approaches
an equilibrium velocity-distribution function denoted by g.

The collision operator term in Eq. (1) prevents us from
obtaining an exact solution of the Boltzmann equation due to
the operator’s complexity. Therefore, approximate forms of this
operator have been proposed over the last century (Cercig-
nani, 1988). Among these approximate methods, the model pro-
posed by Bhatnagar–Gross–Krook in 1954 ( the BGK model) is
the most popular in fluid applications because of its simplicity
and accuracy. The one-dimensional BGK Boltzmann equation
without external forces, then, is:

∂f
∂t

+ cx
∂f
∂x

= g − f
τ

(3)

where τ is the average time interval between successive par-
ticle collisions. Moreover, the fundamental laws of classical
physics dictate that the mass, momentum, and energy of the
particles are collision invariant (Vincenti & Kruger, 1965).
Therefore:

∫ +∞

−∞

⎡
⎣ 1

cx

c2
x

⎤
⎦ g − f

τ
dcx =

⎡
⎣0

0
0

⎤
⎦ (4)

The above relation is often called the compatibility condi-
tion. The collision term in the BGK model causes the equi-
librium velocity-distribution function (g) to deviate from the
non-equilibrium velocity-distribution function (f ). This makes
the BGK model capable of capturing both equilibrium and
non-equilibrium gas flow accurately and robustly (Vincenti
& Kruger, 1965; Xu, 1998). A bridge between the BGK Boltz-
mann equation on the one side and Navier–Stokes or Euler equa-
tions on the other side is established using the Chapman–Enskog
expansion solution (Kogan, 1967). Throughout the established
connection, the collision term τ needs to be a function of the
local macroscopic flow variables as follows (Xu, 1998):

τ = μ

P
(5)

where μ is the dynamic viscosity; P is the fluid pressure.
Any mesoscopic-based scheme is initially constructed from

the BGK Boltzmann equation and then specified to describe a
certain type of fluid applications. In the next section, the one-
dimensional BGK Boltzmann equation (Eq. (3)) is specified for
water hammer problems.

2.1 Specification of mesoscopic-based equations for water
hammer applications

Boltzmann-based models were originally established for gas
flow in which pressure is coupled with flow density and
temperature through the gas flow state equation. (Xu, 1998). In
water hammer, however, temperature is decoupled from pres-
sure due to relatively large specific heat of water. Thus, the state
equation fitted for water hammer applications is dP/dρ = a2,
where a is the transient wave speed (Chaudhry, 1979). It is
worth mentioning that in the classical water hammer model,
wave speed includes both water and pipe wall effects in the for-
mulation (Chaudhry, 1979), whereas in the mesoscopic-based
approaches, wave speed only bears the elasticity of fluid and
excludes the wall effects (i.e. the rigid pipe assumption). In the
other words, the mesoscopic-based models solve fluid in pipes
and exclude any interaction between fluid and pipe walls. To
include the wall elasticity in the current formulation, however,
the mesoscopic-based models are able to adopt the wall elas-
ticity effect as external forces in formulation. Such a practice
is outside the scope of the current study and is left for future
studies.

Using the Boltzmann H-theorem (see Appendix), the spec-
ification of velocity-distribution function for one-dimensional
water hammer problems at the equilibrium state, then, gives:

g = ρ

√
l

π
e−l(cx−u)2

(6)

where l = 1/(2a2) is constant as the wave propagation speed
(a) is constant; ρ is the macroscopic density; and u is the macro-
scopic flow velocity in x-direction which is equal to the macro-
scopic average flow velocity in x-direction (U) in the current
one-dimensional water hammer model. The statistical moments
of g (i.e. the zero, first, second moments of g) provide the
macroscopic flow variables:

⎡
⎢⎢⎣

ρ

ρu

ρ

(
u2 + P

ρ

)
⎤
⎥⎥⎦ =

∫ +∞

−∞

⎡
⎣ 1

cx

c2
x

⎤
⎦ g dcx (7)

The link between one-dimensional BGK equation and the
classical one-dimensional water hammer equation can be
established using two steps. In the first step, the compress-
ible one-dimensional Navier–Stokes equations can be derived
from the one-dimensional BGK equation using the Chapman–
Enskog expansion (Kogan, 1967). In the second step, the
one-dimensional water hammer equations are obtained by
combining the state equation dP/dρ = a2 with the com-
pressible one-dimensional Navier–Stokes equation (Ghidaoui
et al., 2005). The fact that one-dimensional water hammer equa-
tions are obtainable from the one-dimensional BGK equation
is exploited here to formulate FV fluxes on the basis of solv-
ing the BGK equation. In coming sections, first, a finite volume
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mesoscopic-based scheme is built then the fluxes are determined
using the mesoscopic approaches.

2.2 Discrete mesoscopic-based FV

The mesoscopic-based schemes are established in a finite vol-
ume framework in which an integral form of the BGK equation
(Eq. (3)) is applied on flow inside a pipe (i.e. a space domain).
Due to restriction of the space domain in its boundaries, the for-
mulation of BGK scheme is needed to be customized inside the
intact pipe and its two ends, separately.

An intact pipe

Figure 1 shows a one-dimensional discrete space domain, a
pipe of length L. The space domain is equally discretized to
Nx cells of width �x (i.e. �x = L/Nx). Cell (i), i ∈ [1, Nx],
is confined to the interface x = xi−1/2 and the interface x =
xi+1/2. The flow variables (ρ and ρu) are assumed to be the
piecewise constant, namely W

n
i = [ρn

i , ρun
i ]T inside cell (i) at

time step n. The over-line notation indicates the cell-averaged
flow variables. Fi−1/2 and Fi+1/2 are the numerical fluxes
across the interface x = xi−1/2 and the interface x = xi+1/2,
respectively.

Applying integral form of the BGK equation (Eq. (3)) on cell
(i) shown in Fig. 1 from time tn to time tn+1, then, gives:

∫ xi+1/2

xi−1/2

( f n+1 − f n) dx =
∫ tn+1

tn
cx( fxi−1/2) dt −

∫ tn+1

tn
cx( fxi+1/2) dt

+
∫ tn+1

tn

∫ xi+1/2

xi−1/2

g − f
τ

dx dt (8)

Taking the zero and first moments of Eq. (8) gives how flow
variables inside cell (i) evolve from time tn to time tn+1 as
follows:

W
n+1
i = W

n
i + 1

�x
(Fi−1/2 − Fi+1/2) (9)

where

�x = xi+1/2 − xi−1/2, �t = tn+1 − tn, W =
[

ρ

ρu

]
(10)

Figure 1 Discrete space domain

Fi−1/2 =
∫ �t

0

∫ +∞

−∞
cxfi−1/2

[
1
cx

]
dcx dt,

Fi+1/2 =
∫ �t

0

∫ +∞

−∞
cxfi+1/2

[
1
cx

]
dcx dt (11)

Fi−1/2 and Fi+1/2 are mesoscopic-based and time-dependent
fluxes at the interface x = xi−1/2 and the interface x = xi+1/2,
respectively. The last term in Eq. (3) disappears due to the com-
patibility conditions (i.e. Eq. (4)), so the collision term has no
direct influence on the update of conservative variables inside
each cell.

The FV Boltzmann-based model (Eq. (9)) solves the density
and mass flux (ρ and ρu), whereas the classical water hammer
solution solves the pressure head and flow rate (H and Q). In
order to compare the classical water hammer solution to the pro-
posed Boltzmann-based scheme, a map is required to relate ρ

and ρu to H and Q, respectively. The state equation (dP/dρ =
a2) can relate the density to the pressure head. Integration of the
state equation leads to:

P = a2ρ (12)

where P = P1 − P0 is the pressure fluctuation due to any tran-
sient, ρ = ρ1 − ρ0 is the density fluctuation due to any transient.
P0 and ρ0 are the pressure and density before any disturbance.
Eq. (12) in the form of pressure head becomes:

H = ρa2

9.81ρ0
(13)

Flow rate also can be obtained from the below relationship:

Q = ρuA
ρ0

(14)

where A is the pipe cross-sectional area. Using the map
(Eqs (13) and (14)), the numerical results associated with
the KFVS and BGK schemes can be represented in the
form of pressure head and flow rate, notwithstanding that
the original Boltzmann-based equation solves the density and
mass flux.

Valve and reservoir

The valve is locally placed at the interface between cell (i = Nx)

and fictitious cell (i = Nx + 1) denoted by the subscript vf . The
reservoir is located at the interface between fictitious cell (i = 0)

denoted by the subscript rf and cell (i = 1). A water hammer
wave is initiated by an instantaneous closure of the valve. At the
closed valve, the impedance is infinite. As a result:

ρvf = ρNx and (ρU)vf = −(ρU)Nx (15)

where U is the macroscopic average velocity. The reservoir
maintains a constant pressure at the interface between fictitious
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cell (i = 0) and cell (i = 1). Therefore, the pressure wave fluc-
tuation and the impedance at the reservoir are zero, which
implies:

ρrf − ρ0 = −(ρ1 − ρ0) and (ρU)rf = (ρU)1 (16)

where the fact that P = a2ρ (Eq. (12)) has been used; and ρ0 is
the fluid density before any disturbance.

2.3 High-order flux approximation using reconstruction

The time-dependent fluxes in Eq. (11) are calculated at cell
interfaces where the flow variables and the velocity-distribution
function may experience a discontinuity. To achieve a high-
resolution scheme, a piecewise linear function within each cell
as shown in Fig. 2 is applied.

Using a 2nd-order Taylor expansion around cell-averaged
values, the flow variables within cell (i) at time step n
become:

Wn
i (x) = W

n
i + (x − xi)

(
∂W
∂x

)n

i
where x ∈ [xi−1/2, xi+1/2]

(17)
where W is the cell-averaged flow variables; and (∂W/∂x)n

i is
the gradient of flow variables within cell (i). The 2nd-order
scheme offers less numerical dissipation, but may produce non-
physical oscillations near large gradients (Hirsch, 2007). One
way to suppress the numerical oscillations is to add artificial
dissipation terms to the scheme. However it is difficult to find
an appropriate artificial dissipation term to maintain monotonic-
ity but avoid unnecessary smearing (Ghidaoui et al., 2001). The
other alternative to produce a monotone solution is applying
limiters (i.e. slope limiters) to the reconstructed fluid states at
each time step. The basic notion behind limiters is to control
the generation of over- and under-shoots by preventing slopes
to exceed certain limits. In this way, the oscillations whose ori-
gins are in numerical approximations are cured at the generation
stage by keeping the slopes in an appropriate bound within each
cell (Hirsch, 2007).

To guarantee an oscillation-free 2nd-order scheme, the
Van Leer limiter (Hirsch, 2007; Van Leer, 1997) is used to

Figure 2 Data reconstruction under the slope limiter

approximate a proper gradient for flow variables as follows:(
∂W
∂x

)n

i
=

[ ∂ρ

∂x
∂(ρu)

∂x

]n

i

= 1
2�x

⎡
⎢⎢⎢⎢⎢⎢⎣

sign(ρi − ρi−1, ρi+1 − ρi)
|ρi − ρi−1||ρi+1 − ρi|

|ρi − ρi−1| + |ρi+1 − ρi|
sign((ρu)i − (ρu)i−1, (ρu)i+1 − (ρu)i)

|(ρu)i − (ρu)i−1||(ρu)i+1 − (ρu)i|
|(ρu)i − (ρu)i−1| + |(ρu)i+1 − (ρu)i|

⎤
⎥⎥⎥⎥⎥⎥⎦

n

(18)

The Van Leer limiter function is a sort of second order TVD.
This means that they are designed to pass through a certain
region of the solution, known as the TVD region, to guaran-
tee stability. These limiters do not ensure the satisfaction of
the entropy condition (Hirsch, 2007). However, the entropy
condition is intrinsically held in Boltzmann-based equations
(Xu, 1998). Lui and Xu (2001) also proved that entropy condi-
tion for the KFVS scheme and concluded that the KFVS scheme
is robust for CFD applications.

Knowing the slopes within each cell, the flow variables at
the left and right sides of the interface x = xi−1/2, denoted by a
negative sign for the left side and a positive sign for the right
side, are obtained from the linear extrapolation of cell-averaged
values (see the magnified region in Fig. 2):

Wn
i−1/2− = W

n
i−1 + 0.5�x

(
∂W
∂x

)n

i−1
and

Wn
i−1/2+ = W

n
i − 0.5�x

(
∂W
∂x

)n

i
(19)

In the next sections, high-order fluxes at the interface x = xi−1/2

can be calculated from Wn
i−1/2− and Wn

i−1/2+ instead of W
n
i−1 and

W
n
i using the KFVS and BGK approaches, respectively.

Flux approximation using the KFVS scheme

To determine unique time-dependent mass and momentum
fluxes at the interface x = xi−1/2 (i.e. Fi−1/2), a unique velocity-
distribution function (fi−1/2) is required to obtain at the interface
x = xi−1/2. However, it is unlikely to achieve such a velocity-
distribution function in typical water hammer problems since
a discontinuity in flow fields is physically imposed. Neverthe-
less, the KFVS scheme offers that a unique velocity-distribution
function can be approximated if the velocity-distribution func-
tion can be split in the term of particle speeds (Li, 2001;
Xu, 1998; Zhang et al., 2003). In the KFVS approach, particles
move freely with positive and negative speeds across interfaces.
The freely movement is implied from the analytical solution of
the collision-less Boltzmann equation as follows:

f (x) = f0(x − cxt) (20)

where f0 is the velocity-distribution function at the initial con-
dition. The splitting notion of the KFVS scheme, however,
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proposes that particles with positive speed travel forward but
particles whose speed are negative travel backward, so a 2nd-
order approximation of the velocity-distribution function at time
step n around the interface x = xi−1/2 gives (Li, 2001; Xu, 1998;
Zhang et al., 2003):

f (xi−1/2, t, cx)

=

⎧⎪⎨
⎪⎩

gn
i−1/2− +

(
∂g
∂x

)n

i−1/2−
(x − xi−1/2) x ≤ xi−1/2 and cx ≥ 0

gn
i−1/2+ +

(
∂g
∂x

)n

i−1/2+
(x − xi−1/2) x > xi−1/2 and cx < 0

(21)

where

x = xi−1/2 − cxt, (22)

gn
i−1/2− =

[
ρ

√
l

π
e−l(cx−u)2

]n

i−1/2−
,

gn
i−1/2+ =

[
ρ

√
l

π
e−l(cx−u)2

]n

i−1/2+
(23)

(
∂g
∂x

)n

i−1/2−
= gn

i−1/2−

[(
1
ρ

+ 2lu2

ρ

)
∂ρ

∂x
− 2lu

ρ

∂(ρu)

∂x

+cx

(
−2l

ρ

∂(ρu)

∂x
+ 2lu

ρ

∂ρ

∂x

)]n

i−1/2−
(24)

(
∂g
∂x

)n

i−1/2+
= gn

i−1/2+

[(
1
ρ

+ 2lu2

ρ

)
∂ρ

∂x
− 2lu

ρ

∂(ρu)

∂x

+cx

(
−2l

ρ

∂(ρu)

∂x
+ 2lu

ρ

∂ρ

∂x

)]n

i−1/2+
(25)

The variables in the left and right sides of the interface x =
x1−1/2 are denoted by − and + , respectively. The slopes of
the macroscopic flow variables (∂ρ/∂x and ∂(ρu)/∂x) in the
left and right side of the interface x = xi−1/2 have already been
determined from the data reconstruction step (Eq. (18)). Substi-
tuting Eq. (21) into Eq. (11) gives the 2nd-order approximation
of time-dependent mass and momentum fluxes at the interface
x = xi−1/2:

Fi−1/2 =
∫ �t

0

∫ +∞

−∞
cxfi−1/2

[
1
cx

]
dcxdt

=
∫ �t

0

∫ +∞

0
cx

(
gn

i−1/2− −
(

∂g
∂x

)n

i−1/2−
cxt

)[
1
cx

]
dcxdt

+
∫ �t

0

∫ 0

−∞
cx

(
gn

i−1/2+ −
(

∂g
∂x

)n

i−1/2+
cxt

)[
1
cx

]
dcxdt

(26)

The zero and first moments of Eq. (26) in terms of positive and
negative particle speeds (see Appendix) give:

Fi−1/2 =
∫ �t

0

∫ +∞

−∞
cxfi−1/2

[
1
cx

]
dcx dt

= �t

⎡
⎣ ρu

2 erfc(−√
lu) + ρe−lu2

2
√

πl

ρu2+ρ/2l

2 erfc(−√
lu) + ρue−lu2

2
√

πl

⎤
⎦n

i−1/2−

+ �t

⎡
⎣ ρu

2 erfc(+√
lu) − ρe−lu2

2
√

πl

ρu2+ρ/2l

2 erfc(+√
lu) − ρue−lu2

2
√

πl

⎤
⎦n

i−1/2+

− �t2

2

⎡
⎢⎢⎢⎢⎢⎢⎣

〈c2
x〉>0

((
1
ρ

+ 2lu2

ρ

)
∂ρ

∂x − 2lu
ρ

∂(ρu)

∂x

)
+ 〈

c3
x

〉
>0

(
−2l
ρ

∂(ρu)

∂x + 2lu
ρ

∂ρ

∂x

)
〈c3

x〉>0

((
1
ρ

+ 2lu2

ρ

)
∂ρ

∂x − 2lu
ρ

∂(ρu)

∂x

)
+ 〈

c4
x

〉
>0

(
−2l
ρ

∂(ρu)

∂x + 2lu
ρ

∂ρ

∂x

)

⎤
⎥⎥⎥⎥⎥⎥⎦

n

i−1/2−

− �t2

2

⎡
⎢⎢⎢⎢⎢⎢⎣

〈c2
x〉<0

((
1
ρ

+ 2lu2

ρ

)
∂ρ

∂x − 2lu
ρ

∂(ρu)

∂x

)
+ 〈

c3
x

〉
<0

(
−2l
ρ

∂(ρu)

∂x + 2lu
ρ

∂ρ

∂x

)
〈c3

x〉<0

((
1
ρ

+ 2lu2

ρ

)
∂ρ

∂x − 2lu
ρ

∂(ρu)

∂x

)
+ 〈

c4
x

〉
<0

(
−2l
ρ

∂(ρu)

∂x + 2lu
ρ

∂ρ

∂x

)

⎤
⎥⎥⎥⎥⎥⎥⎦

n

i−1/2+

(27)

erfc is the complementary error function appearing in Eq. (27)
because the velocity-distribution function is spilt in terms of
positive and negative particle speeds. Equation (27) repre-
sents the 2nd-order approximation for time-dependent mass and
momentum fluxes at the interface x = xi−1/2. Excluding the last
two terms in Eq. (27) reduces the accuracy of Eq. (27) to a 1st-
order scheme. In an analogous way, time-dependent mass and
momentum fluxes at any interface can be obtained.

Flux approximation using the BGK scheme

In the BGK scheme, fluxes are calculated from the analytical
solution of the BGK Boltzmann equation at the interface xi−1/2

and at time t as below (Cercignani, 1988; Ghidaoui, 2008):

f (xi−1/2, t, cx) = f0(xi−1/2 − cxt)e−t/τ

+ 1
τ

∫ t

0
g(x′, t′, cx)e−(t−t′)/τ dt′ (28)

where t′ is a dummy variable; x′ = xi−1/2 − cx(t − t′) is the tra-
jectory of a particle motion; f0(xi−1/2 − cxt) is a not-equilibrium
velocity-distribution function at the beginning of each time step;
g is an equilibrium velocity-distribution function both in space
and in time around the point (x = xi−1/2, t = 0); and τ is the
particle collision time.

τ physically depends on the local macroscopic flow variables
(τ = μ/P). However, due to the finite cell size and time step, the
particle collision time used in the calculation also includes an
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artificial term to account for the fact that the smallest numerical
shock thickness is the cell size instead of the physical shock
thickness (Xu, 1998). The collision time is evaluated according
to the form proposed by Xu (1998) at the interface x = xi−1/2:

τi−1/2 = C1
μi−1/2

pi−1/2
+ C2

|pi−1 − pi|
|pi−1 + pi|�t (29)

where C1 and C2 are constants and are determined from numeri-
cal experimentations. Equation (29) may need to be modified for
water hammer applications. The full discussion of the collision
time modification is given in the next sections for a numerical
test case.

At a non-equilibrium flow state, the numerical cell size is
usually much larger than the thickness of a discontinuity, so
physical quantities changing dramatically in space and flow
properties (ρ and ρu) can experience large variations across a
cell interface, for example across a wave front in water ham-
mer flows. As a consequence, ρ and ρu are discontinuous at cell
interfaces as the left and right velocity-distribution functions
could be two different Maxwellians. Therefore, the splitting of
f0 is required to capture this possible physical reality. The 2nd-
order Taylor series expansions for f0 around xi−1/2− and xi−1/2+

are implemented as follows:

f0 =
{

gl + (
∂g
∂x )l(x − xi−1/2) x ≤ xi−1/2 cx ≥ 0

gr + (
∂g
∂x )r(x − xi−1/2) x > xi−1/2 cx < 0

(30)

where x = xi−1/2 − cxt is the particle location at time t; gl and gr

are the local Maxwellian velocity-distribution functions located
to the left and to the right of the interface x = xi−1/2, respec-
tively. gl and gr are evaluated from Wn

i−1/2− and Wn
i−1/2+ , respec-

tively. (∂g/∂x)l and (∂g/∂x)r can be obtained from macroscopic
flow located to the left and to the right of the interface x =
xi−1/2, respectively. As l = 1/2a2 is constant, the variation of
g with respect to x gives:

∂g
∂x

= (k1 + k2cx)g (31)

where

k1 = 1
ρ

∂ρ

∂x
− 2lu

∂(ρu)

∂x
+ 2lu2 ∂ρ

∂x
,

k2 = −2l
∂(ρu)

∂x
+ 2lu

∂ρ

∂x
(32)

k1 + k2cx in Eq. (31) alternatively is denoted by k and so-
called the corresponding slope of Maxwellian function (g). k
is determined from the corresponding gradients of macroscopic
variables. Particularly, (∂g/∂x)l and (∂g/∂x)r in Eq. (30) (see
the magnified macroscopic region in Fig. 3) are obtained from
corresponding gradients of macroscopic variables in the data
reconstruction step (Eq. (18)). Substituting Eq. (31) into Eq. (30)

leads to:

f0 =
{

gl(1 + kl(x − xi−1/2)) x ≤ xi−1/2 cx ≥ 0

gr(1 + kr(x − xi−1/2)) x > xi−1/2 cx < 0
(33)

where kl = kl1 + kl2cx and kr = kr1 + kr2cx. From Eq. (18), kl1,
kl2, kr1, and kr2 can be calculated for the corresponding gra-
dients of macroscopic variables in the initial reconstruction
stage.

To evaluate the second term in the right hand side of Eq. (28),
an approximate expression for the unique equilibrium velocity-
distribution g0 is required. g for all x and t can be approximated
from the 2nd-order Taylor expansion of g0 around (x = xi−1/2, t)
as follows:

g =
{

g0 + (
∂g0
∂x )l(x − xi−1/2) + ∂g0

∂t t x ≤ xi−1/2 cx ≥ 0

g0 + (
∂g0
∂x )r(x − xi−1/2) + ∂g0

∂t t x > xi−1/2 cx < 0
(34)

where g0 is a local Maxwellian velocity-distribution function
located in the interface x = xi−1/2 which gives W0 (i.e. a local
macroscopic flow variables). (∂g0/∂x)l and (∂g0/∂x)r are the
slope of macroscopic variables between the W0 and Wi−1 and
Wi, respectively. ∂g0/∂t is the temporal gradient and denoted
by Kg0. For determining g0, Xu (1998) suggested:

∫ +∞

−∞

[
1
cx

]
g0cx

[
1
cx

]
dcx =

∫ 0

−∞
glcx

[
1
cx

]
dcx

+
∫ +∞

0
grcx

[
1
cx

]
dcx (35)

where gl and gr are the local Maxwellian velocity-distribution
functions located to the left and right sides of the interface x =
xi−1/2. The underling physical assumption in the above equation
is that the left and right moving particles collapse at the interface
x = xi−1/2 to form an equilibrium state g0 (see Fig. 3). Taking
the zero and first moments of g0 yields an unique macroscopic
variable at the interface x = xi−1/2 (i.e. W0):

W0 =
[

ρ0

ρ0u0

]
=

∫ +∞

−∞
g0

[
1
cx

]
dcx (36)

The reconstruction of the unique velocity-distribution function
(g0) re-establishes the corresponding slope as follows:

(
∂W
∂x

)
0l

=
[

(
∂ρ

∂x )0l

(
∂ρu
∂x )0l

]
=

[
(ρ0 − ρ i−1)/(xi−1/2 − xi−1)

(ρ0u0 − ρi−1ui−1)/(xi−1/2 − xi−1)

]
(37)

(
∂W
∂x

)
0r

=
[

(
∂ρ

∂x )0r

(
∂ρu
∂x )0r

]
=

[
(ρ i − ρ0)/(xi − xi−1/2)

(ρiui − ρ0u0)/(xi − xi−1/2)

]
(38)



344 S. Mesgari Sohani and M. S. Ghidaoui Journal of Hydraulic Research Vol. 57, No. 3 (2019)

Figure 3 Calculation of g0 and W0 in the mesoscopic and macroscopic levels

Therefore, (∂g/∂x)0l and (∂g/∂x)0r can be evaluated as follows:

(
∂g
∂x

)
0l

= klg0 = (kl1 + kl2cx)g0,

(
∂g
∂x

)
0r

= krg0 = (kr1 + kr2cx)g0 (39)

where

kl1 = 1
ρ

(
∂ρ

∂x

)
0l

− 2lu
(

∂(ρu)

∂x

)
0l

+ 2lu2
(

∂ρ

∂x

)
0l

,

kl2 = −2l

(
∂(ρu)

∂x

)
0l

+ 2lu
(

∂ρ

∂x

)
0l

(40)

kr1 = 1
ρ

(
∂ρ

∂x

)
0r

− 2lu
(

∂(ρu)

∂x

)
0r

+ 2lu2
(

∂ρ

∂x

)
0r

,

kr2 = −2l

(
∂(ρu)

∂x

)
0r

+ 2lu
(

∂ρ

∂x

)
0r

(41)

kr and kl, the slopes, shown in Fig. 3 are calculated from
Eqs (37)–(39). Substituting Eq. (39) in Eq. (34), then, gives:

g =
{

g0
(
1 + kl(x − xi−1/2) + Kt

)
x ≤ xi−1/2 cx ≥ 0

g0
(
1 + kr(x − xi−1/2) + Kt

)
x ≥ xi−1/2 cx < 0

(42)

Up to this point, the initial velocity-distribution function f0
(Eq. (33)) and the corresponding equilibrium state g (Eq. (42))
at the interface x = xi−1/2 at time t have been evaluated through-
out two reconstruction stages (see Fig. 3) from which the final
velocity-distribution function f at the interface x = xi−1/2 and

at time t can be expressed:

f (xi−1/2, t, cx)

= α0
[
(1 − cxtkl)H(cx)gl + (1 − cxtkr)(1 − H(cx))gr

] + α1g0

+ α2
[
cxklH(cx)g0 + cxkr(1 − H(cx))g0

] + α3Kg0 (43)

where

α0 = e−t/τ , α1 = 1 − e−t/τ , α2 = τ(−1 + e−t/τ ) + te−t/τ ,

α3 = t − τ + τe−t/τ (44)

H(cx) in Eq. (43) is the Heaviside function. To evaluate K in
Eq. (43), the compatibility constraints are applied on the inter-
face x = xi−1/2 and then the result is integrated over time step
�t as follows:

∫ �t

0

∫ +∞

−∞

(
g(xi−1/2, t, cx) − f (xi−1/2, t, cx)

)[ 1
cx

]
dcx dt = 0

(45)
g(xi−1/2, t, cx) evaluated from Eq. (34) at the point (x = xi−1/2,
t) is:

g(xi−1/2, t, cx) = g0 + Kg0t (46)

Substituting Eqs (43) and (46) into Eq. (45) and exchanging the
order of integration leads to:

∫ +∞

−∞

∫ �t

0
[α0

[
H(cx)gl + (1 − H(cx))gr

]
− α0t

[
cxklH(cx)gl + cxkr(1 − H(cx))gr

] + (α1 − 1)g0
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+ α2
[
cxklH(cx)g0 + cxkr(1 − H(cx))g0

]
+ (α3 − t)Kg0]

[
1
cx

]
dt dcx = 0 (47)

Similar to the variation of g with respect to x (Eq. (31)), the
variation of g0 with respect to t (∂g0/∂t = Kg0) yields:

∂g0

∂t
= Kg0 = (K1 + K2cx)g0 (48)

where

K1 = 1
ρ0

∂ρ0

∂t
− 2lu0

∂(ρ0u0)

∂t
+ 2lu2

0
∂ρ0

∂t
and

K2 = −2l
∂(ρ0u0)

∂t
+ 2lu0

∂ρ0

∂t
(49)

The zero and first moments of Eq. (48) give:

[ ∂ρ0
∂t

∂(ρ0u0)

∂t

]
=

∫ +∞

−∞
Kg0

[
1
cx

]
dcx (50)

Invoking Eq. (50), Eq. (47) finally becomes:

[ ∂ρ0
∂t

∂(ρ0u0)

∂t

]
= 1

β4

∫ +∞

−∞

[
− β0

[
H(cx)gl + (1 − H(cx))gr

]
+ β1

[
cxklH(cx)gl + cxkr(1 − H(cx))gr

] − β2g0

− β3
[
cxklH(cx)g0 + cxkr(1 − H(cx))g0

]] ×
[

1
cx

]
dcx

(51)

where

β0 = −τe−�t/τ + τ , β1 = τ�te−�t/τ + τ 2(1 − e−�t/τ ),

β2 = �t − τ(1 − e−�t/τ )

β3 = −τ�t − τ�te−�t/τ + 2τ 2(1 − e−�t/τ ),

β4 = τ(�t + τ(1 − e−�t/τ ) (52)

where all the above coefficients are local constant. From
Eq. (51), f (xi−1/2, t, cx) can be precisely evaluated at the inter-
face x = xi−1/2. Therefore, the time-variant numerical fluxes at
the interface x = xi−1/2 by implementation of the moments of g
given in the Appendix is:

Fi−1/2 =
∫ +∞

−∞

∫ �t

0
cxf (xi−1/2, t, cx)

[
1
cx

]
dt dcx

= γ0

[
ρl

[〈
c0

x

〉
<0〈

c1
x

〉
<0

]
+ ρr

[〈
c0

x

〉
>0〈

c1
x

〉
>0

]]

− γ1

[
ρlkl1

[〈
c1

x

〉
<0〈

c2
x

〉
<0

]
+ ρrkr1

[〈
c1

x

〉
>0〈

c2
x

〉
>0

]]

− γ1

[
ρlkl2

[〈
c2

x

〉
<0〈

c3
x

〉
<0

]
+ ρrkr2

[〈
c2

x

〉
>0〈

c3
x

〉
>0

]]

+ γ2

[
ρ0

[〈
c2

x

〉〈
c3

x

〉]
]

+ γ3

[
ρ0kl1

[〈
c1

x

〉
<0〈

c2
x

〉
<0

]

+ρ0kr1

[〈
c1

x

〉
>0〈

c2
x

〉
>0

]]

+ γ3

[
ρ0kl2

[〈
c2

x

〉
<0〈

c3
x

〉
<0

]
+ ρ0kr2

[〈
c2

x

〉
>0〈

c3
x

〉
>0

]]

+ γ4

[
ρ0K1

[〈
c0

x

〉〈
c1

x

〉] + ρ0K2

[〈
c1

x

〉〈
c2

x

〉]
]

(53)

where

γ0 = τ(1 − e−�t/τ ), γ1 = −�tτe−�t/τ − τ 2(1 − e−�t/τ ),

γ2 = �t − τ(1 − e−�t/τ )

γ3 = �tτ(1 − e−�t/τ ), γ4 = 1
2
�t2 − τ

(
�t − τ(1 − e−�t/τ )

)
(54)

Similarly, time-dependent fluxes at each interface can be
evaluated.

3 Numerical results validation and discussion

The objective of this section is to investigate the accuracy and
efficiency of the proposed schemes. The test rig consists of a
reservoir-pipe-valve system and a transient is generated by an
instantaneous closure of the valve. For comparison, the analyt-
ical solution, Godunov-type solution (Zhao & Ghidaoui, 2004)
and fixed-grid MOC with linear space-line interpolation solu-
tion (Ghidaoui & Karney, 1994; Ghidaoui, Karney, & McIn-
nis, 1998) are used. The numerical dissipation is quantitatively
measured using (i) the integrated energy method denoted by ξE

(Karney, 1990), and (ii) the L2-norm method denoted by ξL2

(Chaudhry & Hussaini, 1985; Ghidaoui et al., 2005). Physical
friction is set to zero so as not to mask the numerical dissipation.
For objective comparison between the different schemes, CPU
time needed by each scheme to achieve a predetermined level
of accuracy, denoted by tc, is measured, all codes are run on a
personal computer with a quad CPU 2.66 HZ and 4 GB memory,
and all the schemes are coded by the lead author in Fortran lan-
guage and compiled by the Compaq Visual Fortran compiler. It
is worth mentioning that the Compaq Visual Fortran is not com-
patible with multi-core processors, so only a single CPU unit is
involved during the computation.

Below, the accuracy and efficiency of the KFVS and BGK
schemes are investigated for the test case. Note that all fluxes
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at the reservoir and valve interfaces are approximated using a
1st-order technique.

3.1 Classical water hammer test case: a sudden closure of a
downstream valve

Figure 4 shows a classical reservoir-pipe-valve test case, which
consists of a single frictionless pipe connected to an upstream
reservoir and a downstream valve. The test case is designed to
examine the ability of the mesoscopic-based schemes to capture
discontinuous wave fronts induced by a sudden valve closure.
This is important because a scheme that captures discontinuities
means that it can handle high frequencies well.

The relevant geometric and hydraulic parameters for this test
case are given in Table 1 where the initial conditions are:

ρ(x, t) = 1000 kgm−3, U(x, t) = 0.9 ms−1

for x ∈ [0, L], t = 0 (55)

The valve and reservoir conditions are imposed at the down-
stream (x = L) and upstream (x = 0) of the pipe, respectively.

KFVS scheme

The pressure head traces at the valve produced by the 2nd-order
KFVS scheme for Cr = 0.4 are shown in Fig. 5. The 2nd-order
KFVS scheme is oscillatory for Courant numbers larger than
0.4.

The pressure traces for the 2nd-order KFVS scheme are
shown in Fig. 5 with respect to Nx, which is the number of dis-
cretized cells in the pipe. As shown in Fig. 5, when Nx increases,
the pressure traces approach to the analytical solution. In addi-
tion, E/E0 for different schemes is given in Fig. 6, where E is the
total energy (i.e. the sum of kinetic and internal energy) in the
pipe proposed by Karney (1990). In the pipe, the velocity and,
thus, the work at the valve are zero. In addition, the pressure
wave and, thus, the work at the reservoir are zero. Moreover,
the friction and, thus, the energy dissipation are zero. As result,

Figure 4 The system configuration for the classical water hammer test
case

Table 1 The classical water hammer test
casea

Pipe no. L (m) a (m s−1) A (m2)

Pipe 1 1000 1000 1

aThe discontinuous wave is evoked by a
sudden valve closure of the downstream
valve.

Figure 5 Pressure head traces at the valve produced by 2nd-order
KFVS

Figure 6 Energy traces for 2nd-order KFVS

the total energy is invariant with time: E/E0 = 1, where E0 is
the total energy before any disturbance. Thus, any deviation
of E/E0 from 1 is due to numerical dissipations. ξE , shown in
Fig. 6, indicates the errors calculated from the integral energy
equation as follows:

ξE = 1 − E
E0

(56)

BGK scheme

Figure 7 presents the pressure head traces at the valve produced
by the BGK scheme when Cr = 0.4. Even though the numerical
results generated by the BGK scheme converge to the analyti-
cal solution, a slight discrepancy in the form of overshoot at the
discontinuity (see the magnified region in Fig. 7) is observed
immediately after the valve closure and vanishes a few time
steps later. The nature of the slight overshoot is found to be
grid-independent and unaffected by the Courant number. Such
overshoots occur despite the fact that the Van Leer limiter is
used and the collision time is evaluated according to the form
proposed by Xu (1998). To be specific, the collision time τ
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Figure 7 Pressure head traces at the valve produced by BGK

adopted from Xu (1998) at the interface x = xi−1/2 is:

τi−1/2 = C1
μi−1/2

pi−1/2
+ C2

|pi−1 − pi|
|pi−1 + pi|�t (57)

where C1 and C2 are constants and determined from numerical
experiments. Various tests failed to cure the numerical oscil-
lations. Therefore, further investigation is required to obtain a
robust BGK scheme. The valve boundary condition (Eq. (15))
implies that PNx = PNx+1 and, thus, the second term in Eq. (57)
is zero regardless of the value of C2. To cure this problem, a
modified expression for the collision time that takes into account
velocity and pressure discontinuities is proposed and its form is:

τi−1/2 = C1
μi−1/2

pi−1/2
+ C2

|ρi−1Ui−1| − |ρiUi|
|ρi−1Ui−1| + |ρiUi|�t (58)

In Eq. (58), the numerical part (i.e. the second term) is more
physical and is non-zero whenever there is a wave, since a wave
is result of a change in flow rate. The values of C1 and C2 and
determined by carrying out a range of numerical test cases. It
is found that C1 = 1.0 and C2 = 1.0 produce oscillation-free
results for Courant numbers equal or less than 0.5 (Fig. 8). In
addition, it is found that the magnitude of C2 plays a significant
role in preventing the formation of artificial oscillations. For
example, when C2 < 0.5, the collision time is not large enough
to resolve the overshoot at the discontinuity. Figure 8 shows the
pressure head traces at the valve produced by the BGK scheme
when Cr = 0.4, C1 = 1.0 and C2 = 1.0. The pressure traces and
energy norm plots are given in Figs 8 and 9, respectively. It is
found that the BGK scheme is sensitive to the Courant num-
ber and its accuracy improves as the Courant number increases
to 0.5.

Comparison between the mesoscopic-based schemes and the
conventional macroscopic-based schemes

Figure 10 compares the discontinuous wave fronts produced
by the different schemes at t = 0.4 s. Figure 11 shows the

Figure 8 Pressure head traces at the valve produced by BGK with the
modified collision term

Figure 9 Energy traces for BGK with the modified collision term

Figure 10 Discontinuous wave fronts at t = 0.4 s

relationship between numerical dissipation and the number of
grid points at t = 0.4 s. ξE for the 1st-order KFVS scheme, the
2nd-order KFVS scheme, and the BGK scheme at Nx = 320
are 3.58%, 3.12%, and 1.94%, respectively. In addition, both
the 2nd-order KFVS scheme and the 1st-order Godunov scheme
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Figure 11 ξE vs. the number of grids at t = 0.4 s

Figure 12 Comparison of pressure head traces for Nx = 320

Figure 13 Comparison of ξL2

produce similar results for the same grid number. The agreement
between these two schemes can be quantitatively explained by
the consistency of the errors shown in Fig. 13. Particularly, when
t = 0.4 s and Nx = 320, ξE for both schemes is 3.10 ± 0.015%.
The similarity between the 2nd-order KFVS scheme and the

1st-order Godunov scheme was also discussed by Xu (1998).
It is found that the KFVS scheme is more dissipative and causes
more smearing near the wave front than the other schemes. The
diffusivity in the KFVS is largely due to the absence of the
collision term in this model (Xu, 1998).

Figure 12 compares pressure heads produced by the differ-
ent schemes for Nx = 320. The numerical errors measured using
the L2-norm method as a function of grid points is shown in
Fig. 13. These results reveal that the 2nd-order Godunov scheme
performed best in capturing the transient wave followed by the
BGK scheme and then the KFVS schemes.

Figure 14 shows the numerical dissipation versus grid num-
bers and Fig. 15 shows the relation between the computational
time taken by each scheme to reach the solution (tc) and the
number of grid points. Using these figures the CPU time needed
by each scheme to achieve a predefined degree of accuracy
can be estimated. For example, for ξE = 20%, the number of
grids required by the 1st-order KFVS scheme, 2nd-order KFVS
scheme, BGK scheme, 1st-order Godunov scheme, 2nd-order
Godunov scheme and fixed-grid MOC is roughly evaluated 550,

Figure 14 Relation between ξE and the number of grids

Figure 15 Relation between the computational time and the number
of grids
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400, 110, 400, 45 and 400, respectively (Fig. 14). Consequently,
the computational times taken by the 1st-order KFVS scheme,
2nd-order KFVS scheme, BGK scheme, 1st-order Godunov
scheme, 2nd-order Godunov scheme and fixed-grid MOC to
achieve ξE = 20% are approximated 19 , 12 , 1.7 , 2.4 , 0.13 and
0.95 s, respectively (Fig. 15). Note that errors associated with all
schemes represented in Figs 14 and 15 are grid-dependent and
Cr-dependent. However, the results are produced for Cr = 0.4,
which is the maximum Courant number for which all schemes
are stable. It is noted that fixed-grid MOC for Cr = 0.4 are
extremely dissipative; in practice, the performance of fixed-
grid MOC can be drastically improved by halving the grid size
(Cr = 0.8).

The convergence rate of the 2nd-order KFVS is slightly
larger than that of the 1st-order KFVS scheme. The BGK
scheme, however, converges 6–10 times faster than the KFVS
schemes. The 2nd-order Godunov scheme has the best conver-
gence rate of all schemes tested.

4 Conclusion

This study is motivated by the need for a high resolution scheme
for water hammer waves when these waves are being used as
a tool for pipe condition assessment. Boltzmann (mesoscopic)
based schemes (KFVS and BGK schemes) are formulated and
are compared to Godunov-type schemes as well as fixed-grid
MOC. The key results are as follows:

• Two mesoscopic approaches (BGK and KFVS) are success-
fully formulated and applied to a simple pipeline system.

• Comparison between the efficiency of fixed-grid MOC
scheme, Godunov scheme, KFVS scheme and BGK scheme
reveals that the 2nd-order Godunov scheme is the best fol-
lowed closely by the BGK scheme.

• The absence of collision in the KFVS scheme means that this
scheme is more dissipative than the BGK scheme. However,
the KFVS scheme is far easier to derive and code than the
BGK scheme.

• The BGK, KFVS and Godunov schemes are all FV schemes;
thus, mass and momentum conservation are guaranteed by
these techniques.

• It is found that the numerical part of the collision time in the
BGK scheme needs to be modified in order to produce an
oscillation-free solution. The proposed modification is based
on the fact that water hammer waves are generally associated
with a change in flow. Therefore, making the numerical part
of the collision a function of a change in flow guarantees that
this part is non-zero whenever there is a wave.

• The stability of the proposed FV schemes is satisfied when
Cr < 0.5. The restriction on Cr is mainly due to the kinetic
approach where not only the mean velocity plays a role in the
stability condition, but also particle’s velocities, ranging from
−∞ to +∞, contribute to the stability.

The development of one-dimensional FV methods for water
hammer flows is the prerequisite for the progress of high
frequency wave theory in pipes. Indeed, Louati and Ghi-
daoui (2017), the research group of the second author, success-
fully implemented the Godunov and Boltzmann type schemes
for multi-dimensional water hammer flows using directional
splitting. Their results are highly promising and their multi-
dimensional models serve as a tools to study properties of
three-dimensional water hammer waves inside pipes.
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Appendix. Specification of the Gaussian
velocity-distribution function for water hammer problems
and its moments

In this section a Gaussian velocity-distribution function is spec-
ified for water hammer problems using H-theorem. Based on
the H-theorem, entropy (Eq. (2)) monotonically increases with
time, and attains its maximum value at an equilibrium state. The
maximum entropy can be obtained subject to Eq. (7) (i.e. the
constraints) using the Lagrange multipliers method. An arith-
metic combination of Eq. (7), multiplied by σ0, σ1, and σ2,
respectively (i.e. the Lagrange multipliers), and Eq. (2) in the
one-dimensional form gives:

S = −
∫ +∞

−∞

[
f ln( f ) + σ0f + σ1cxf + σ2c2

x f
]

dcx

+ σ0ρ + σ1ρu + σ2ρ

(
u2 + P

ρ

)
(A1)

where P = ρa2 (Eq. (12)). The Lagrange multipliers can be
obtained by analysing a total deviation of S in Eq. (A1) with
respect to f, ρ and u for fixed t, x, and cx around the equilib-
rium state while the Lagrange multipliers are held constant. f,
ρ and u are independent variables, consequently their variations
are independent, so the deviation of the entropy can be written:

δS = −
∫ +∞

−∞
δf

[
ln( f ) + 1 + σ0 + σ1cx + σ2c2

x

]
dcx

+ δρ
[
σ0 + σ1u + σ2(u2 + a2)

] + δu
[
σ1ρ + 2σ2uρ

]
(A2)

In the maximum entropy, variation of entropy at the equilib-
rium state is zero (δS = 0). Therefore, the coefficients of the
independent variations (δf , δρ and δu) in Eq. (A2) should be
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zero:

ln( f ) + 1 + σ0 + σ1cx + σ2c2
x = 0 (A3)

σ0 + σ1u + σ2(u2 + a2) = 0 (A4)

σ1ρ + 2σ2uρ = 0 (A5)

Eq. (A3) can be rewritten:

f = e−1−σ0 e−σ1cx−σ2c2
x (A6)

where f is the one-dimensional Gaussian-typed function. Sub-
stituting Eq. (A6) into Eq. (7) and integrating with respect to
particle velocities (i.e. cx) gives:

ρ =
∫ +∞

−∞
(e−1−σ0 e−σ1cx−σ2c2

x ) dcx = e−1−σ0

(
π

σ2

)1/2

e(σ 2
1 /4σ2)

(A7)

ρu =
∫ +∞

−∞
(cxe−1−σ0 e−σ1cx−σ2c2

x ) dcx

= e−1−σ0
σ1

2σ2

(
π

σ2

)1/2

e(σ 2
1 /4σ2) (A8)

ρ(u2 + a2) =
∫ +∞

−∞
(cxcxe−1−σ0 e−σ1cx−σ2c2

x ) dcx

= e−1−σ0
1

2σ2

(
1 + σ 2

1

2σ2

)(
π

σ2

)1/2

e(σ 2
1 /4σ2) (A9)

A combination of Eqs (A7) and (A9) gives the Lagrange
multiplier coefficients as follows:

σ1 = −ρu
P

, σ2 = − ρ

2P
(A10)

The insertion of σ1 and σ2 into Eq. (A6) leads to:

e−1−σ0 = ρ

(
1/

(
2πP
ρ

))1/2

e−ρu2/2P (A11)

Substituting σ1 and σ2 and Eq. (A11) into Eq. (A6) gives
the velocity-distribution function for one-dimensional problems
below:

f = ρ

√
1

2πa2 e
(
−(cx−u)2/2a2

)
(A12)

In maximum entropy, f approaches g and the mean and the

standard deviation of g (i.e. Maxwellian velocity-distribution
function) are u and a2, respectively.

The moments of the one-dimensional Gaussian velocity-
distribution function specified for water hammer problem

depend on the integration limits are given in the coming part.
For simplicity, let us introduce the moments of g by the
following notation:

ρ
〈
cm

x

〉 =
∫ +∞

−∞
cm

x g dcx, (A13)

where m is an integer. The values of ρ〈cm
x 〉, in different m, for

different integration limits represent below.

(1) ρ〈cm
x 〉 for −∞ < cx < +∞

⎛
⎜⎜⎜⎝
〈
c0

x

〉〈
c1

x

〉
...〈

cn
x

〉

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
u
...

u
〈
cn−1

x

〉 + n−1
2l

〈
cn−2

x

〉

⎞
⎟⎟⎟⎠ (A14)

(2) ρ〈cm
x 〉 for 0 < cx < +∞:

⎛
⎜⎜⎜⎝
〈
c0

x

〉
>0〈

c1
x

〉
>0

...〈
cn

x

〉
>0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1
2 erfc(−√

lu)

u
〈
c0

x

〉
>0 + 1

2
e−lu2
√

πl
...

u
〈
cn−1

x

〉
>0 + n−1

2l

〈
cn−2

x

〉
>0

⎞
⎟⎟⎟⎟⎠ (A15)

(3) ρ〈cm
x 〉 for −∞ < cx < 0:

⎛
⎜⎜⎜⎝
〈
c0

x

〉
<0〈

c1
x

〉
<0

...〈
cn

x

〉
<0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1
2 erfc(

√
lu)

u
〈
c0

x

〉
<0 − 1

2
e−lu2
√

πl
...

u
〈
cn−1

x

〉
<0 + n−1

2l

〈
cn−2

x

〉
<0

⎞
⎟⎟⎟⎟⎠ (A16)

The complementary error function appears in the formulation
when the moments are considered for the positive or negative
half space.

Notation

A = pipe cross-sectional area (m2)
a = transient wave speed (m s−1)
C = particle velocities (m s−1)
C1 = coefficient of collision time (–)
C2 = coefficient of collision time (–)
Cr = Courant number (–)
cx = particle velocities in x-direction (m s−1)
cy = particle velocities in y-direction (m s−1)
cz = particle velocities in z-direction (m s−1)
D = pipe diameter (mm)
E = sum of total kinetic energy and total internal

energy (J)
erfc(·) = complementary error function (–)
F = numerical time-dependent fluxes along x-direction

(kg m−2, kg m−1s−1)
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F′ = external forces (N)
f = non-equilibrium velocity-distribution function (–)
f0 = non-equilibrium velocity-distribution function at

the beginning of each time step (–)
g = equilibrium velocity-distribution function (–)
H = pressure head (m)
H(·) = Heaviside function (–)
i = cell number (–)
Kg0 = temporal gradient of g0 (s−1)
k = corresponding slope of Maxwellian function (m−1)
L = length of pipe (m)
Nx = the number of cells in the space domain (–)
n = time index (–)
P = fluid pressure (Pa)
Q = flow rate (m3 s−1)
S = entropy function (–)
t = time (s)
t′ = dummy variable (s)
tc = computational time (s)
U = average macroscopic flow velocity in x-direction

(m s−1)
u = macroscopic flow velocity in x-direction (m s−1)
W = flow variable (kg m−3, kg m−3 m s−1)
X = position (m)
x = position in x-direction (m)
x′ = trajectory of a particle motion (m)
y = position in y-direction (m)
z = position in z-direction (m)
�t = numerical time step (s)
�x = numerical cell (grid) size (m)
l = 1/2a2 (m−2 s2)
μ = dynamic viscosity (Pa s)
ξE = error calculated from the integrated energy method

(–)
ξL2 = error calculated from the L2-norm method (m)
σ = coefficient of Lagrange multiplier (–)
ρ = density (kg m−3)
τ = collision time (s)
ω = frequency (Hz)
BGK = Bhatnagar-Gross-Krook
FV = finite volume
KFVS = kinetic flux vector splitting
MOC = method of characteristics
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