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Abstract: Eigenfrequency shift in a pipe with a blockage is investigated experimentally. The experimental test rig consists of a reservoir-
pipe-valve (RPV) system that contains a single partial blockage. Blockages with different lengths are considered. The experiments con-
firm the existence of certain frequency bands where waves reflect strongly from the blockage and other bands where waves reflect weakly
(Bragg-type resonance). These bands agree with the theoretically derived Bragg resonance condition. It is found that the values of the resonant
frequencies are highly sensitive to the wave speed. For example, a 4% error in wave speed results in an error in the eigenfrequency estimates
that increases almost linearly from approximately 4% for the first mode to 60% for the seventh mode. A direct and efficient approach
is proposed for using the Bragg resonance condition to detect blockages in pipes. DOI: 10.1061/(ASCE)HY.1943-7900.0001347.
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Introduction

Like many municipal infrastructure systems, water supply systems
(WSSs) are wasteful of both energy and water, with numerous mal-
functioning devices and other undetected faults such as leakage,
partially closed or closed valves, air blocks, and inefficient pump
operation. These defects (sometimes) result in far less than optimal
operation and performance, making these systems less sustainable
by wasting both potable water and energy. The latter may also have
a significant impact on the carbon footprint of water systems
(Coelho and Andrade-Campos 2014; ASCE 2013; Colombo and
Karney 2002).

One of the major factors contributing to the inefficient use of
electrical or other power for operating both treatment plants and
pumping stations in WSSs is pipe (or flow) blockage that occurs
over their lifetime primarily due to physical or chemical processes
[e.g., material deposition, tubercles (rust), scales, plaque, biofoul-
ing and inadvertently throttled inline valves, and air intrusion]. The
buildup of material forming blockages on the inside of a pipe wall
often begins in the form of increased wall roughness at small size,
which grows with time and can eventually block a sizeable portion
of the pipe’s cross-sectional area. Such blockages increase pipe
velocity and turbulent dissipation, resulting in potentially signifi-
cant waste of energy and financial resources, reduction in carrying
capacity, and increased potential for contamination. In addition,

flow in severely blocked pipes can become throttled to such a de-
gree that the flow may be redistributed in the pipe network, thereby
reducing the system’s overall redundancy (reliability). In some
cases, overpressure of some pipes in the system occurs, increasing
the potential for increased numbers of bursts and leakage. Whether
for engineered or natural conduits, it is highly beneficial from both
economic and environmental considerations to detect blockages so
that they are dealt with in a timely manner.

In the last decade, transient test-based techniques have been
used to detect partial blockages by injecting pressure waves and
the analysis of the pressure signals has been executed in the time
domain (e.g., Brunone et al. 2008a, b; Meniconi et al. 2016), fre-
quency domain (e.g., Duan et al. 2011, 2013), and coupled time-
frequency domains (Meniconi et al. 2013). Specifically, previous
work in the frequency domain showed that the eigenfrequencies of
a measured pressure signal vary with the cross-sectional area of the
conduit (e.g., Duan et al. 2011; Qunli and Fricke 1990; Domis
1979, 1980; Schroeder 1967; Mermelstein 1967). Thus, the focus
of past research has been on the inverse problem where mathemati-
cal relations linking the eigenfrequencies to the cross-sectional area
of the pipe are formulated, and algorithms for evaluating blockage
characteristics (location, length, size) from these relationships and
measured eigenfrequencies were proposed (e.g., Duan et al. 2011,
2013; Stephens 2008; De Salis and Oldham 1999; Schroeter and
Sondhi 1994; Qunli and Fricke 1989, 1990; Milenkovic 1984,
1987; Sondhi and Resnick 1983; Domis 1980, 1979; Fant 1975;
Sondhi and Gopinath 1971; Heinz 1967; Mermelstein 1967;
Schroeder 1967).

While this research direction has produced promising results
and has led to proof of concept under idealized laboratory settings,
there are a number of unresolved issues. For example, there is
neither a proof that the inverse problem, which relates the un-
known blockage properties to the measured eigenfrequencies,
has a unique solution nor is there a technique to find it even if
it would exist. In fact, currently proposed solutions of this inverse
problem require that the number of blockages is known a priori,
which is unrealistic in practice. In addition, the computational time
needed to solve the inverse problem grows exponentially with the
number of blockages, and the accuracy of the developed techniques
is still low.
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Earlier research work (Louati and Ghidaoui 2016a, b; Louati
et al. 2016; Stevens 1998; El-Rahed and Wagner 1982) focused on
studying the forward approaches such as understanding the mecha-
nism causing the variation of the eigenfrequencies due to the pres-
ence of blockage in a bounded pipe system. The impetus for this
direction of research is based on the premise that, if this forward
problem is better understood, then ways to address the difficulties
that arise from its inversion can be found.

This paper reviews the basic theoretical features of the eigen-
frequency shift mechanism discussed in Louati and Ghidaoui
(2016a, b) and Louati et al. (2016), and conducts experimental tests
to validate these features. In particular, the effect of Bragg reso-
nance on the eigenfrequency shift (Louati et al. 2016) is validated,
and it is shown that the identification of such effects provides
information on the blockage characteristics. Moreover, the rela-
tions that link the measured zero shifts as well as maximum shifts
(i.e., significant shifts) to the blockage location (Louati and
Ghidaoui 2016b) are also validated.

Brief Review of Eigenfrequency Shift Mechanism

For an intact reservoir-pipe-valve (RPV) system with pipe length L,
the eigenfrequencies (natural resonant frequencies) are given by the
following dispersion relation (Chaudhry 2014):

cosðk0mLÞ ¼ 0 ⇒ w0
m ¼ ak0m

¼ 2π

�
ð2m − 1Þ a

4L

�
; m ∈ Zþ ð1Þ

where k0m ¼ w0
m=a = mth wave number; w0

m = mth eigenfrequency;
and the superscript 0 = intact case.

It is shown that a variation in the cross-sectional area of a pipe
shifts the eigenfrequencies (e.g., Duan et al. 2011; Schroeder 1967;
Domis 1979). This eigenfrequency shift is used as key input in-
formation to determine the cross-sectional area distribution along
the pipe using optimization techniques (e.g., Duan et al. 2011) or
approximated area function (e.g., Mermelstein 1967; Qunli and
Fricke 1990).

Consider a RPV system with a single blockage as shown in
Fig. 1. The blocked pipe system is modeled as the junction of three
pipes in series with different diameters (Fig. 1). The three pipes are
defined as Pipe 1 with length l1 and cross-sectional area A1 ¼ A0;
Pipe 2 with length l2 and cross-sectional area A2 < A0; and Pipe 3
with length l3 and cross-sectional area A3 ¼ A0, where A0 is the
intact cross-sectional area. The ratio of the cross-sectional areas

is α ¼ A2=A0 and the dimensionless lengths are defined by x=L,
η1 ¼ l1=L, η2 ¼ l2=L, and η3 ¼ l3=L, where L ¼ l1 þ l2 þ l3 is
the total length of the blocked pipe system and x is the distance
along the pipe length from the reservoir (Fig. 1). The pipe flow
is assumed to be one-dimensional and frictionless. In what follows,
the case without blockage (i.e., α ¼ 1) is referred to as the intact
pipe case.

The dispersion relation that governs the eigenfrequencies of the
blocked pipe system (Fig. 1) is given by El-Rahed and Wagner
(1982) and Duan et al. (2011)

α cosðkml1Þ cosðkml2Þ cosðkml3Þ
− cosðkml1Þ sinðkml2Þ sinðkml3Þ
− α2 sinðkml1Þ sinðkml2Þ cosðkml3Þ
− α sinðkml1Þ cosðkml2Þ sinðkml3Þ ¼ 0 ð2Þ

which could also be written as

cosðkmLÞ þ
ð1 − αÞ
ð1þ αÞ cos½kmðl1 − l2 − l3Þ�

− ð1 − αÞ
ð1þ αÞ cos½kmðl1 þ l2 − l3Þ�

− ð1 − αÞ2
ð1þ αÞ2 cos½kmðl1 − l2 þ l3Þ� ¼ 0 ð3Þ

where the subscript m ¼ mth natural resonant mode; and km ¼
wm=a = mth wave number, where wm ¼ mth eigenfrequency;
and a = acoustic wave speed. When α ¼ 1, Eq. (3) becomes iden-
tical to the dispersion relation of the intact pipe case in Eq. (1).

The eigenfrequencies of the blocked pipe system are obtained
by solving Eq. (3) graphically. Figs. 2 and 3 show the eigenfre-
quency (wm) variation with length ηb ¼ η3 þ 0.5η2 for the first
five modes and different α values when η2 ¼ 0.15 and η2 ¼ 0.027,
respectively. The cases where α ¼ 1 in Figs. 2 and 3 represent the
eigenfrequencies of the intact pipe case, which are constant and
vary as straight horizontal line with ηb ¼ η3 þ 0.5η2. When α ≠ 1,
the effect of the blockage is introduced, and as a result, the eigen-
frequency at a given mode m (wm) deviates from the intact case
(w0

m) as observed in Figs. 2 and 3. The eigenfrequency shift is
defined asΔwm ¼ ðwm − w0

mÞ, which could take positive, negative,
or zero values (Figs. 2 and 3).

In previous research, blockage detection methods based on the
eigenfrequency shifts are developed. These methods lack the use of
information of the shift sign and how such shift occurs. In fact,

Fig. 1. Single blockage in a reservoir-pipe-valve system (bounded system)
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Fig. 2. (Color) Normalized eigenfrequency variation with length ηb ¼ η3 þ 0.5η2 of the first five modes for different α values when
η2 ¼ 0.15 (Louati and Ghidaoui 2016b)

Fig. 3. (Color) Normalized eigenfrequency variation with length ηb ¼ η3 þ 0.5η2 of the first five modes for different α values when
η2 ¼ 0.027 (Louati and Ghidaoui 2016b)
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these methods are still not accurate and there is no proof that these
methods provide a unique solution. A key advantage from under-
standing the shift mechanism is that it offers additional information
that improves the accuracy and convergence of current blockage
detection.

Bragg Resonance Frequencies

Having an acoustic wave source at the downstream boundary of a
blocked pipe system (Fig. 1) as the frequency of these generated
waves varies, Bragg resonance describes the mechanism of which
waves reflect least and which waves reflect most toward the source.
The frequencies at which maximum reflection and maximum trans-
mission occur are called Bragg resonance frequencies and they are
respectively given by Louati et al. (2016)

cosðkl2Þ ¼ 0 ⇒ wR
n ðl2Þ ¼ 2π

�
ð2n − 1Þ a

4l2

�
; n ¼ 1; 2; 3

ð4Þ
and

sinðkl2Þ ¼ 0 ⇒ wT
n ðl2Þ ¼ 2π

�
2ðn − 1Þ a

4l2

�
; n ¼ 1; 2; 3

ð5Þ
Eq. (4) indicates that if the blockage length (l2) is an odd multi-

ple of the quarter-wavelength, then maximum wave reflection from
the blockage occurs. On the other hand, Eq. (5) indicates that if the
blockage length (l2) is a multiple of the half-wavelength, then the
injected wave is totally transmitted through the blockage. Eq. (5)
is valid for n ¼ 1, however generating a wave with frequency
w ¼ wT

1 ¼ 0 is physically impossible.
It is shown (Louati 2016; Louati et al. 2016) that at modes with

eigenfrequencies close or equal to the Bragg resonance frequencies
of total transmission, the blocked pipe system behaves similarly to
an intact pipe system, and therefore small or no eigenfrequency
shift is observed at those modes. In addition, at modes with eigen-
frequencies close or equal to the Bragg resonance frequencies of

maximum reflection, the blocked pipe system behaves similarly
to a blocked pipe system with a blockage at the boundary with
squared area ratio, and therefore large eigenfrequency shift is
observed at those modes (Louati 2016; Louati et al. 2016). The
eigenfrequency shift mechanism of a blocked pipe system with
a blockage at the boundary was investigated in Louati and Ghidaoui
(2016b), where it is shown that the area ratio for such system is
given by

sin

�
wmax
m

w0
1

π
2

�
� 1−α2

1þα2
¼ 0⇒ α¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1∓ sin

h
wmax
m
w0
1

π
2
ð1− η2Þ

i
1� sin

h
wmax
m
w0
1

π
2
ð1− η2Þ

i
vuuut ≤ 1

ð6Þ
Therefore, Eq. (6) could be used at modes with eigenfrequen-

cies close to wR
n . Figs. 4 and 5 give the eigenfrequency variation

obtained from Eq. (3) for the cases where η2 ¼ 0.15 and η2 ¼
0.027, respectively, and where α ¼ 0.16 for both cases. Figs. 4
and 5 show the effect of Bragg resonance on the eigenfrequency
variation at different modes as discussed previously. The axis of
the blockage location in Fig. 5 is shortened to 1=3 ≤ η3 þ η2=2 ≤
2=3 only for clarity of the curves.

In “Experimental Validation and Discussion of Eigenfrequency
Shift Mechanism,” it is shown how Bragg resonance frequencies
could be identified from the measured frequency response func-
tion (FRF).

Zero Eigenfrequency Shift

Zero eigenfrequency shift occurs when the blockage location is as
follows (Louati and Ghidaoui 2016b):

η3 þ
η2
2
¼

2m̄ − 2
π arccos

n
ð−1Þm̄ ð1−αÞ

ð1þαÞ cos½ð2 m − 1Þ π
2
η2�

o
2ð2 m − 1Þ ð7Þ

Eq. (7) gives the zero-shift locations (m̄) at a given mode m
and for a given area ratio α. For the case of shallow blockage case
(i.e., α ≈ 1), Eq. (7) becomes

Fig. 4. (Color) Normalized eigenfrequency variation with length ηb ¼ η3 þ 0.5η2 of the first 15 modes when α ¼ 0.16 and η2 ¼ 0.15
(Louati et al. 2016)
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η3 þ
η2
2
¼ 2m̄ − 1

2ð2m − 1Þ ð8Þ

which is independent of area ratio (α). Notice that when

cos½ð2m − 1Þπη2=2� ¼ 0 ð9Þ
which gives the Bragg resonance condition for maximum reflection
[Eq. (4)], Eq. (7) becomes Eq. (8). This means that the zero-shift
locations become independent of α at modes where wm ≈ wR

m̄
[Eq. (4)]. The deviation range of Eq. (7) from Eq. (8) is� −1

2ð2m − 1Þ to
1

2ð2m − 1Þ
�

ð10Þ

These deviations become very small at high modes. Therefore
Eq. (7) could be approximated by Eq. (8) at relatively high modes
(m > 3).

Maximum Eigenfrequency Shift

The blockage location is related to the maximum eigenfrequencies
(wmax

m ) as follows (Louati and Ghidaoui 2016b):

η3 þ
η2
2
¼ 1

2

�
1 − 2ðm − m̄Þ − 1

wmax
m =w0

1

�
;

with

8<
:

η2
2
< η3 þ

η2
2
< 1 − η2

2

m̄ ∈ Zþ
ð11Þ

The distinction between maximum (i.e., positive shift) and mini-
mum (i.e., negative shift) eigenfrequency magnitudes is governed
by Louati and Ghidaoui (2016b)

ð−1ÞnTþm̄

�
if > 0 ⇒ maximum shift is negative

if < 0 ⇒ maximum shift is positive
ð12Þ

where nT = integer that gives the number of modes region between
two consecutive Bragg resonance frequencies of total transmission
defined as

nT ¼ Floor

�
ð2m − 1Þ η2

2

�
þ 1 ð13Þ

where Floor = function that gives the largest previous integer.

Low-Frequency Approximation

The first eigenfrequency could be approximated by Louati and
Ghidaoui (2016a)

w1

w0
1

≈ 2

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α

α2η1η2 þ αη1η3 þ η2η3

r
ð14Þ

For severe blockage case (i.e., α ≪ 1), Eq. (14) becomes
(Louati and Ghidaoui 2016b)

w1

w0
1

≈ 2

π

ffiffiffiffiffiffiffiffiffi
α

η2η3

r
ð15Þ

This is identical to the natural frequency of the Helmholtz
resonator system (Stevens 1998). For short blockage case (Fig. 3),
the shift is almost always nearly zero at the lowest mode (m ¼ 1).
Therefore, a significant shift of the lowest eigenfrequency is a good
indication of severe blockage case where Eq. (15) or Eq. (14) could
be used.

Experimental Validation and Discussion of
Eigenfrequency Shift Mechanism

This section discusses the experimental validation of the properties
of the eigenfrequency shift mechanism reviewed in the previous
section.

Experimental Setup

The experimental investigation is carried out at the Water Engineer-
ing Laboratory of the University of Perugia, Italy. The two exper-
imental setups consist of a RPV system that contains a single partial
blockage as shown in Fig. 1; the blockage is simulated by means of

Fig. 5. (Color) Normalized eigenfrequency variation with length ηb ¼ η3 þ 0.5η2 when α ¼ 0.16 and η2 ¼ 0.027 for (a) the first 20 modes; (b) modes
m ¼ 21 to m ¼ 40 (Louati et al. 2016)
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a small bore pipe with a diameter D2 < D0, where D0 is the diam-
eter of the blockage-free pipe and two different lengths l2: for
Setup 1, l2 ¼ 24 m as in the case shown in Fig. 4, and for
Setup 2, l2 ¼ 3.6 m, as shown in Fig. 5. All pipes are horizon-
tal high-density polyethylene (HDPE) pipes (Meniconi et al.
2011a, b). The main characteristics of the experimental setup
are listed in Table 1.

In these experiments, an air vessel is used as a supply tank. To
maintain the value of the supply pressure head, HST ≈ 10� 1 m,
one of three submerged pumps placed in a recycling tank is used.
Due to limited space in the laboratory, it is not possible to use a
long, straight, pipe runs; therefore, a circular pipe setup with long
radius bends is used. A schematic depiction of the experimental
pipe setup is shown in Fig. 6, and part of the laboratory pipe setup
is shown in Fig. 7.

Probing transients are generated using a portable pressure wave
maker (PPWM) device, which can be used to generate sharp pres-
sure waves of small amplitude (Brunone et al. 2008a, b; Meniconi
et al. 2011a, b). The PPWM consists of a cylindrical steel pressure
vessel with a diameter of 0.45 m and a total volume of approxi-
mately 0.20 m3. A small-diameter, initially closed electrovalve
(EV) connects the device to the test pipe as shown in Fig. 8. The
diameter of the electrovalve is 6.35 × 10−3 m (1=4 in:). The small
size of the valve allows the PPWM to be attached to the pipe using
a simple fitting and also improves pressure signal quality. When
being connected to potable water systems, the PPWM device must
be carefully disinfected, cleaned, and filled with water from the test

pipe. A piezometer is installed on the pressure vessel to visually
monitor the water level and air volume in the device.

Pressure signals are measured using piezoresistive transducers
with a full-scale range of 0.2 MPa (2 bar) to minimize reading error
of the small pressures generated during the transient tests. The
maximum measurement error was rated at �0.15% of full scale
and the transducer response time is approximately 1 ms. To min-
imize electronic noise, the pressure transducers are powered by
24 V direct current batteries. Calibration of pressure transducers
(Measurements Specialties, Hampton, Virginia) is checked by
means of a pressure calibrator in accordance with European
Guidelines on the Calibration of Electromechanical Manometers
by European co-operation for Accreditation (EA) (EURAMET
2011) confirming the data in the manufacturer’s certificate.
Pressures are sampled at a frequency of 1,024 Hz using a National
Instruments (Austin, Texas) USB-6008 data acquisition system
(DAQ) with a maximum analogue input single-channel sampling
rate of 10 kS=s. In all tests, pressure signals are acquired simulta-
neously at three separate locations (T1, T2, and T3 in Fig. 6).

Before opening the PPWM connection valve, the initial condi-
tions (subscript 0) in the test pipeline are the static pressure con-
ditions in the pipe, where HT1,0 ¼ HT2,0 ¼ HT3,0 ¼ HST ; and
HP;0 ≈ 43 m in the PPWM.

The opening and subsequent closure of the EV is governed
by an actuator and programmable controller to generate the desired
waveform. In these experiments, an approximately square pulse
waveform is generated and is created by a rapid opening and clos-
ing of the EV, with a wave-pulse duration tp ¼ 50 ms.

Fig. 9 shows a typical differential pressure signal referenced to
the initial hydrostatic conditions and acquired at the various meas-
urement sections during the pulse-generating valve maneuver in
Setup 1. To calculate pressure wave speed, a, the distance between
Sections T1 and T2 is divided by the time interval, Δt12, that it
takes for the pressure pulse to travel the length of the pipe section
between the two transducer locations (Fig. 9).

For each setup, the same test is repeated eight times to check
repeatability of the experiments and obtain an averaged wave speed
value.

The pressure signals are analyzed in the frequency domain after
being processed using the fast Fourier transform implemented
in MATLAB. To provide a baseline modeling reference, the same
transient in an elastic straight pipe with the same partial blockage

Table 1. Main Characteristics of the Experimental Tests

Parameter Setup 1 Setup 2

l1 (m) 52.86 52.86
l2 (m) 24 3.6
l3 (m) 76.75 76.75
L (m) 153.61 133.21
η2 ¼ l2=L ≈0.156 ≈0.027
D1 ¼ D0 (m) 0.0933 0.0933
D2 (m) 0.0383 0.0383
D3 ¼ D0 (m) 0.0933 0.0933
α ¼ D2

2=D
2
0 0.168 0.168

Pipe wall thickness (m) 0.0167 0.0167
Wave speed (a) (m=s) ≈355� 15 ≈355� 15

Fig. 6. (Color) Schematic of the intact pipe system setup for the experimental tests

© ASCE 04017044-6 J. Hydraul. Eng.
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has been simulated using the method of characteristics (MOC)
(Wylie et al. 1993). In the one-dimensional numerical model,
neither unsteady friction nor viscoelasticity effects have been con-
sidered; furthermore, a constant value of the pressure wave speed
has been assumed. To simulate the EV boundary condition in the
one-dimensional numerical code, the experimental pressure signal
(e.g., the one at T1 reported in Fig. 9) is imposed at the downstream
valve location, until the arrival of the first pressure wave reflected

from the blockage (t� in Fig. 9). At t > t�, the downstream boun-
dary condition is modeled as a dead end.

Experimental Results and Discussion

Discussion of Experimental Error
In Fig. 10, the FRF of the pressure signal of Setup 1 (Fig. 9) with
η2 ≈ 0.156 measured at Section T1 is compared with the results of
the numerical model. On the frequency axis in Fig. 10, the dimen-
sionless frequency w=w0

1 is shown with w0
1 = [πa=ð2LÞ] being the

first eigenfrequency for the intact RPV system. Fig. 10 shows that
the first seven experimental eigenfrequencies capture the main fea-
tures of those given by the numerical result. In fact, the mean error,
i.e., the difference between the numerical and experimental dimen-
sionless frequencies, is approximately 5% for the first five modes
and approximately 20% for the sixth and seventh modes. This good
result is obtained notwithstanding the restrictive assumptions of the
numerical model—both unsteady friction and (more important) the
viscoelasticity are not taken into account (Meniconi et al. 2012)—
and some clearly visible differences between the plotted results for
the actual pipe system and the model simulation.

Differences between the experimental and model results arise
first because the pipe has been assumed to be straight without ac-
counting for bend effects. The mean distance between two succes-
sive bends is approximately lbend ≈ 10 m. If wave reflection and
transmission between the bends has a Bragg-type resonance effect,
then the influence of these bends may be expected to become ap-
parent at frequencies close to 2πa=ð4 · lbendÞ�=w0

1 ¼ ½πa=ð2 · 10Þ�=
w0
1 ≈ 15 [Eq. (4)]. Hence this may affect the eigenfrequencies

at the sixth mode and higher. Second, fluid–structure interactions
have been neglected. However, the pipe anchorage effect is likely
small because the applied probing transient pressure signal is small
[less than 1 m (Fig. 9)], and therefore the resulting pipe displace-
ment is also small. Eigenfrequencies at higher modes (>7) are not
as reliable in any case because of the noise and errors and the lim-
ited frequency bandwidth (FBW). Moreover, because the full-scale
pressure probe is still large compared with the maximum value of
the pressure, the accuracy of the acquired pressure signals are not as
high as they might be with a transducer set to an even smaller
measurement range.

The last, and perhaps most significant source of error concerns
the evaluation of the pressure wave speed. Several factors may
influence actual wave speed versus the assumed average or
constant wave speeds used in the analyses presented in this

Fig. 7. (Color) Part of the experimental pipe system setup (image by
Moez Louati)

Fig. 8. (Color) Portable pressure wave maker and its connection to the
pipe via the electrovalve (images by Moez Louati)

Fig. 9. (Color) Pressure signal (ΔH ¼ HT −HT;0) acquired at
Sections T1, T2, and T3

Fig. 10. (Color) Frequency response function of the pressure signal
measured at Section T1 for Setup 1 (blockage length η2 ≈ 0.156):
comparison between experimental and numerical results
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paper: (1) pressure wave speed of the blockage section is different
from that for the blockage-free pipe because of the different diam-
eter and pipe wall thickness, (2) the assumption of constant pres-
sure wave speed in polymeric pipes may be inaccurate and is the
subject of ongoing discussion arising from experimental results
(Covas et al. 2005; Mitosek and Chorzelski 2003), and (3) the mean
wave speed (a ¼ 355 m=s) is based on the average of 16 samples
(repeated experiments) with a standard deviation of 15 m=s. To pro-
vide a reference point about the significant error contribution from
uncertainty in the actual wave speed, it can be stated that an error
of 4% in the value of a produces a corresponding error in the eigen-
frequency estimates that increases almost linearly from 4% at the first
mode to 63% at the seventh mode; whereas an error of 1% in wave
speed produces an error in the eigenfrequency that increases almost
linearly from 0.9% at the first mode to 14% at the seventh mode.

Setup 1: Extended Blockage
Fig. 11 gives the FRF of the pressure signal for the case of block-
age length η2 ≈ 0.156 (see Setup 1 in Table 1) measured at T1
(downstream boundary). Fig. 11 indicates the location of maxi-
mum reflection frequencies (wR

n ) and total transmission frequen-
cies (wT

n ) [Eqs. (4) and (5)]. Fig. 11 shows that the third and
fourth resonant frequencies, located respectively at w=w10 ≈ 4.2
and w=w10 ≈ 8, experience relatively large shift with respect to
the eigenfrequencies of the intact system (indicated by vertical
dashed lines in Fig. 11). This is because these eigenfrequencies
are close to the first Bragg resonance frequency of maximum re-
flection (wR

1 =w
0
1 ≈ 6.4) (Fig. 11) where the blocked pipe system

behaves as if the blockage is located at the boundary with a
modified area ratio ᾱ ¼ α2, and therefore why the shift is quite
large (Fig. 4). On the other hand, the seventh eigenfrequency,
located at w=w0

1 ≈ 13.1, is close to the first Bragg resonance fre-
quency of total transmission (wT

1=w
0
1 ≈ 12.8) (Fig. 11), and there-

fore the seventh eigenfrequency experiences almost zero shift as
expected from Fig. 4.

A special feature occurred in Fig. 11. This feature is that the
second eigenfrequency, although close enough to the first Bragg
resonance frequency of maximum reflection, is not shifted with re-
spect to the second eigenfrequency of the intact pipe case. This is
explained by the fact that the blockage is placed at a zero-shift lo-
cation [Eq. (7)]. In fact, blockage location η3 þ η2=2 ¼ ð76.75þ
24=2Þ=153.61 ¼ 0.5778 is very close to the second shift location
given by Eq. (7) as follows:

η3 þ
η2
2
¼ f0.1048 or 0.5619 or 0.7715g ð16Þ

If Eq. (8), which gives the zero-shift locations for shallow block-
age case, is used instead of Eq. (7), the possible blockage locations
become

η3 þ
η2
2
¼ f0.1667 or 0.5000 or 0.8333g ð17Þ

Eq. (17) shows that the second possible blockage location is
close to the true blockage location (0.5778) with approximately
7.8% error. The error between the possible blockage locations
given by Eqs. (16) and (17) is approximately 6%. This shows that
when a zero shift is observed in the FRF, it gives a narrow set
of possible blockage locations. Such information has never been
exploited before, which actually could improve the efficiency of
inverse transient-based blockage-detection methods.

Fig. 11 shows that significant shifts (i.e., Δwm=w0
1 ≈ 1) occur

at the third and fourth eigenfrequencies, with the third eigenfre-
quency shift being negative and the fourth eigenfrequency shift
being positive. In these cases, assuming that those shifts correspond

to maximum shifts, Eqs. (11) and (12) for maximum shift locations
could be applied, which give

η3 þ
η2
2
∈ f0.1414; 0.6195g; w3=w0

1 ¼ 4.18 ð18Þ

and

η3 þ
η2
2
∈ f0.31; 0.5633; 0.8165g; w4=w0

1 ¼ 7.9 ð19Þ

Eqs. (18) and (19) show that the blockage location, which is
actually at η3 þ η2=2 ¼ 0.5778, is close to the second negative
maximum shift location of the third mode and near the second
positive maximum shift location of the fourth mode. This shows
that, although a significant shift is used, which is not necessary
a maximum shift, Eqs. (11) and (12) could give quite accurate
approximation for the blockage location with an error of approx-
imately 1.4–4.2%. Similar to the zero-shift case, this shows that
additional information on the blockage location could be obtained
from the FRF when a significant shift is observed, which was not
exploited before.

A shift is observed at the first eigenfrequency in Fig. 11, where
w1=w0

1 ¼ 0.72. In this case, Eq. (15) for low-frequency approxima-
tion, could be used to approximate the first eigenfrequency, which
gives

w1

w0
1

≈ 2

π

ffiffiffiffiffiffiffiffiffi
α

η2η3

r
¼ 2

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.168

0.156 × 0.5

r
¼ 0.9343 ð20Þ

There is a large difference between the experimental and the
approximated values (21.4% error). Even based on the numerical
results, which give w1=w0

1 ¼ 0.8, the difference is still large (13%
error). Therefore, Eq. (15) does not provide accurate approxima-
tion. However, if Eq. (14) is used instead of Eq. (15), the first
eigenfrequency is

w1

w0
1

≈ 2

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α

α2η1η2 þ αη1η3 þ η2η3

r
≈ 0.83 ð21Þ

which gives approximately 50% better accuracy (11% error) than
Eq. (15). Consequently, Eq. (15) is probably not reliable for real
applications, whereas Eq. (14) might give enough accuracy because
it produces an error relatively close to the measurement error.

The knowledge of Bragg resonance frequencies informs the
blockage characteristics [e.g., blockage length in Eqs. (4) and (5)].

Fig. 11. (Color) Frequency response function of the pressure signal
measured at T1 for the test case with blockage length η2 ≈ 0.156
(Setup 1 in Table 1 with a ¼ 355 m=s) indicating the Bragg resonance
frequencies
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However, it may not be trivial to identify the Bragg resonance
frequencies from the FRF. Nevertheless, Bragg resonance fre-
quency of maximum reflection could be approximated to be the
intact pipe system’s eigenfrequency at the mode where the first sig-
nificant positive shift occurs. This is because, as discussed in Louati
et al. (2016), positive shift is small at low modes and becomes large
only near Bragg resonance frequency of maximum reflection.
For example, Fig. 11 shows that the first (n ¼ 1) significant pos-
itive shift occurs just above the fourth mode of the intact pipe
(w4=w0

1 ¼ 7.9). Therefore, the fourth eigenfrequency of the intact
pipe system (w0

4) could approximated to be the Bragg resonance
frequency of maximum reflection. In fact, inserting w0

4 into
Eq. (4) gives

η2 ¼
1

w0
4=w

0
1

¼ 1

7
¼ 0.1425 ≈ 0.156 ð22Þ

which is very close to the true blockage length (Table 1) with
approximately ð0.156 − 0.1425Þ × 100 ¼ 1.36% error.

Moreover, as mentioned in “Brief Review of Eigenfrequency
Shift Mechanism,” at modes with eigenfrequency close to the
Bragg resonance frequency of maximum reflection, the blocked
pipe system becomes equivalent to a junction pipe system (where
the blockage is placed at either boundary of the pipe system) with
squared blocked area ratio (α2). Therefore, if a maximum shift at
such modes is measured, then Eq. (6) could be used to determine
the area ratio (α). For example, using the significant positive shift
observed at the fourth mode (w4=w0

1 ¼ 7.9) (Fig. 11), Eq. (6) gives

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin½7.9π=2ð1 − 0.1425Þ�
1 − sin½7.9π=2ð1 − 0.1425Þ�

s
¼ 0.1792 ≈ 0.168 ð23Þ

which is very close to the true area ratio with approximately
ð0.1792 − 0.168Þ × 100 ¼ 1.12% error.

Setup 2: Short Blockage
Fig. 12 gives the FRF of the pressure signal measured at T1 (down-
stream boundary) for the test case with blockage length η2 ≈ 0.027
(see Setup 2 in Table 1). Fig. 12 provides a comparison between
experimental and numerical results and shows relatively good fit-
ting between them. In this case, the Bragg resonance frequencies
are too high (wR

1 =w
0
1 ¼ 37) to be observed in the frequency domain

due to the limitation of the injected FBW. In fact, Fig. 12 shows that
all measured eigenfrequency shifts are either nearly zero or nega-
tive shifts. This because positive shifts start to occur only at modes

with eigenfrequencies close to the Bragg resonance frequency of
maximum reflection (wR

1 =w
0
1 ¼ 37) (Louati and Ghidaoui 2016b).

Zero shift is observed at the second and fourth eigenfrequen-
cies (Fig. 12). Therefore, with known α, Eq. (7) could be applied
to obtain sets of possible blockage locations. A quick calcula-
tion shows that η3 þ η2=2 ¼ ð76.75þ 3.6=2Þ=133.21 ¼ 0.5897,
whereas the sets of blockage locations at the second and fourth
modes from Eq. (7) are

η3 þ
η2
2
¼ f0.0834; 0.5833; 0.7501g ð24Þ

and

η3 þ
η2
2
¼

�
0.0374; 0.2484; 0.3231; 0.5341;

0.6088; 0.8198; 0.8945

�
ð25Þ

respectively.
Eqs. (24) and (25) show that the blockage midlength is located

near the second and fourth zero-shift position of the second and
fourth modes, respectively. Again, If there is no prior knowledge
of the blockage characteristics (i.e., η2 and α), then Eq. (8), which
gives the zero-shift locations for shallow blockage case, is used
instead of Eq. (7), introducing an error between 3.5 and 8.5%.

Fig. 12 shows that significant negative shifts occur at the third
and fifth eigenfrequencies. Assuming these shifts correspond to
maximum shift magnitudes at the given modes, then Eqs. (11)
and (12) could be applied and give

η3 þ
η2
2
∈ f0.1629; 0.6124g;w3=w0

1 ¼ 4.45 ð26Þ

and

η3 þ
η2
2
∈ f0.08; 0.32; 0.56; 0.8g;w5=w0

1 ¼ 8.33 ð27Þ

Eqs. (26) and (27) show that the blockage location, which is
actually at approximately η3 þ η2=2 ¼ 0.59, is close to the second
and third negative maximum shift location of the third and fifth
modes with an error of approximately 2.2 and 3%, respectively.
Again, this shows that Eqs. (11) and (12) could give quite accurate
approximation for the blockage location based on a significant shift
magnitude, which may not be necessarily the exact maximum shift
magnitude.

The first eigenfrequency shift in Fig. 12 is very small and there-
fore the low-frequency approximation [Eq. (14) or Eq. (15)] cannot
be used for short (discrete) blockage even though the blockage is
quite severe.

Unless higher FBW is used to measure eigenfrequency shifts
at high modes, the Bragg resonance frequencies could not deter-
mined, and by consequence, the blockage characteristics (i.e., η2
and α) could not be easily obtained as in the extended blockage
case (Setup 1) [Eqs. (22) and (23)]. This shows the need of high
FBW to obtain better accuracy when detecting multiscale defects in
a pipeline using transient methods as mentioned previously in the
literature (e.g., Louati and Ghidaoui 2015; Lee et al. 2014).

Conclusions

This paper summarizes the basic theoretical features of the eigen-
frequency shift mechanism and validates those features through
experimental tests. The key conclusions are as follows:
1. The effect of Bragg resonance on the eigenfrequency shift is

observed in the experimental tests. It is shown that, if Bragg
resonance frequency of maximum reflection is identified, then

Fig. 12. (Color) Frequency response function of the pressure signal
measured at T1 for the test case with blockage length η2 ≈ 0.027
(Setup 2 in Table 1 with a ¼ 370 m=s) indicating the comparison
between experimental and numerical results
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the blockage length could be approximated accurately with
approximately 1% error. If, in addition, a significant shift is
measured at the Bragg resonance frequency of maximum reflec-
tion, the blockage area could be determined by approximating
the blocked system by a junction system.

2. The relation between zero-shift and blockage location [Eq. (7)]
is validated experimentally. The results show that the occurrence
of zero shift in the FRF yields a discrete set of possible blockage
locations. Identification of this set of feasible blockage loca-
tions enormously reduces the search domain space for inverse
optimization techniques used for transient-based blockage
detection. Shallow blockage approximation [Eq. (8)] could be
used for the zero-shift location with an error of approximately
6% at low modes (e.g.,m ¼ 2). This error is lower for zero-shift
locations at high modes.

3. The experimental results show that even for shifts that may
not necessarily be the maximum shift magnitude, the relation
between maximum shift magnitude and blockage location
[Eq. (11)] still gives accurate results with an error of approxi-
mately 1–4%.

4. Low-frequency approximation is tested experimentally. The
results show that the Helmholtz resonance frequency [Eq. (15)]
is probably not reliable for real applications (>20% error),
whereas Eq. (14) might provide better accuracy because it pro-
duces an error relatively close to the measurement errors
(approximately 10% error).

5. Conclusions 1–4 show how an improved understanding of
the eigenfrequency shift mechanism provides a direct means for
extracting additional information from the FRF. This additional
information can significantly improve the efficiency of the ex-
isting transient-based techniques for blockage detection in pipe
systems.

6. Probably the most important error affecting the experimental
results is the measurement error of wave speed. It is found that
an error of 4% in wave speed produces an error in the eigen-
frequency estimates that increases almost linearly from 4% at
the first mode to 63% at the seventh mode.
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Notation

The following symbols are used in this paper:
A0 = area of intact pipe (m2);
A2 = area of Pipe 2 (the blocked region in the pipe) (m2);
a = acoustic wave speed in water (m s−1);

HP;0 = initial pressure head in the PPWM (m);
HST = supply pressure head (m);

HT1,0 ¼ HT2,0 ¼ HT3,0 = initial pressure head at Transducers
T1, T2, T3, respectively (m);

k = wave number (m−1);
L = whole pipe length (m);
l1 = length of Pipe 1 (m);
l2 = length of Pipe 2 (m);
l3 = length of Pipe 3 (m);
m = resonant mode number for pipe system of length L;
t = time (s);
t� = arrival time of the first pressure wave reflected by the

blockage;
w = angular frequency (rad s−1);

wm = mth resonant frequencies in the blocked pipe case
(rad s−1);

wmax
m = maximum eigenfrequency measures at the mth mode

(rad s−1);
wR
n = Bragg resonance frequency of maximum reflection

(rad s−1);
wT
m = Bragg resonance frequency of maximum reflection

(rad s−1);
w0
m = mth resonant frequencies in the intact pipe case (rad s−1);
x = axial coordinate (m);
α = area ratio between A2 and A0;

Δwm = mth eigenfrequency shift; and
ηj = lj=L dimensionless length.
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