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Abstract: Recent studies of measured transient pressure signals showed that eigenfrequencies shift with changes in cross-sectional area of
the conduit and used this fact to develop blockage-detection algorithms. However, an understanding of the physical basis for eigenfrequency
shift-based algorithms is currently lacking. This paper shows heuristically, analytically, and numerically that a blockage in either unbounded
or bounded pipe systems interacts strongly with waves at specific frequencies. These specific interacting frequencies conform precisely to
Bragg’s resonance condition. The frequency interval between consecutive Bragg frequencies is proportional to the wave speed divided by
the blockage length. In addition, it is found that pipe blockage imposes a distinct signature through Bragg resonance phenomena on the
unbounded and bounded pipe systems in exactly the same manner (i.e., they exhibit the same variation pattern). It is further shown that
the eigenfrequency shift, currently used without physical basis or explanation in many published papers as a basis for blockage detection
methods, is because of the Bragg resonance effect. Examples are used to show how this physical insight into the nature and cause of the
eigenfrequency shifts can be advantageously used to design direct blockage detection techniques. DOI: 10.1061/(ASCE)HY.1943-
7900.0001383. © 2017 American Society of Civil Engineers.
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Introduction

Analytical, numerical and experimental studies of measured
transient pressure signals show that system eigenfrequencies vary
with the cross-sectional area of the conduit (e.g., Duan et al. 2011;
Qunli and Fricke 1990; Domis 1980; Schroeder 1967; Mermelstein
1967). This observation was instrumental in developing blockage-
detection algorithms using inverse formulations to link measured
eigenfrequencies with cross-sectional area (or degree of block-
age) of the pipe (e.g., Duan et al. 2011, 2013; Stephens 2008;
De Salis and Oldham 1999; Schroeter and Sondhi 1994; Qunli
and Fricke 1990; Domis 1980; Mermelstein 1967; Schroeder
1967).

The use of eigenfrequency shift to detect blockages is promising
and has led to proof of concept under idealized laboratory settings,
but there are several unresolved issues. Foremost is the fact that the
physical basis for this wave-blockage interaction is currently not
known or understood.

This paper studies the forward problem so that a direct explan-
ation for the mechanism responsible for the observed eigenfre-
quency shifts in the presence of a blockage in a bounded pipe

system can be sought. Once the physical basis for the forward
problem is established and adequately understood, one may hope
to address the challenging computational issues that arise in con-
nection with its inversion and solution. The foundational relation-
ship between wave-blockage interactions and eigenfrequency shift
is investigated in two steps.

First, this work considers an unbounded pipe system with
changes in the cross-sectional area. This permits (1) direct exami-
nation of the interactions between waves and blockage without
interference from other effects or reflections from boundaries;
and (2) an investigation of those wave frequencies that minimally
propagate (transmit) through a blockage section. Conversely, one
may examine without external influences those waves that are max-
imally reflected back toward the source (Louati 2013). Understand-
ing the reasons for maximal wave transmission and maximum
wave reflection provides insight into the coupling mechanism
between the upstream and downstream regions of the blockage.
It will be seen that these insights are useful in the design of effective
probing signals. For example, Duan et al. (2015) swept the fre-
quency bandwidth (FBW) of the probing signal to obtain the high-
est reflection coefficient that leads to accurate detectability of the
blockage. It will be shown heuristically, analytically, and theoreti-
cally that this mechanism is directly related to Bragg resonance
effects (Bragg and Bragg 1913).

The second step considers a blockage in a bounded pipe sys-
tem [e.g., a reservoir-pipe-valve (RPV) system] and relates wave
transmission and reflection (Bragg resonance) to the observed var-
iations in system eigenfrequencies. Finally, some implications of
Bragg resonance phenomena for practical blockage detection are
discussed at the end of the paper.

Heuristic Approach

Before providing analytical and numerical details, it is useful to
preface any discussion of the complex interaction between waves
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and conduit nonuniformities by introducing the reader to the Bragg
resonance condition (Bragg and Bragg 1913).

Bragg and Bragg (1913) introduced a mathematical condition to
explain why crystals, at certain specific wavelengths and incident
angles, produced intense peaks of reflected radiation. Bragg and
Bragg (father and son) received a Nobel prize for this work, and
their derived condition is now called Bragg’s law or Bragg reso-
nance. It is widely found to apply in many fields of engineering
and science. In hydraulics, Mei (1985) applied Bragg’s condition
to explain resonant reflection of surface waves by periodic sand-
bars. To date, however, Bragg resonance phenomena have not been
studied in water supply pipelines.

To see how Bragg’s condition arises in transient waves in pipes,
consider a train of incident monochromatic waves with wavelength,
λ, propagating from the right end toward the left (Fig. 1). These
waves reflect partially from Junctions 1 and 2. Seen from the in-
cident waves, there is a reduction in cross-sectional area at Junc-
tions 1 and 2, and, therefore, Junctions 1 and 2 preserve the sign of
the incident wave. The wave reflected from Junction 2 propagates a
distance 2 l2 more than the wave reflecting from Junction 1.
Because both waves are positive, the waves reflecting from
Junctions 1 and 2 experience constructive interference when the
nλ ¼ 2l2 and destructive interference when ð2nþ 1Þλ=2 ¼ 2l2,
where n ¼ 1,2; 3; : : : This is precisely Bragg’s resonance condi-
tion. When nλ ¼ 2l2 (called Bragg’s resonance or condition of
maximum reflection), the reflected wave acquires maximum
amplitude because of constructive interference. Conversely, when
ð2nþ 1Þλ=2 ¼ 2l2 (called Bragg’s resonance or condition of total
transmission), the reflected wave acquires minimum amplitude
because of destructive interference; thus, the transmitted wave is
maximum.

Next, Bragg resonance for an unbounded pipe (Fig. 2) is con-
sidered. The main difference between the systems in Figs. 1 and 2
is that Junction 2 of the latter is an increase in diameter and,
therefore, changes the sign of the incident wave (i.e., a positive
wave is reflected as negative and vice versa). Consequently, the
waves reflecting from Junction 1 and Junction 2 experience
constructive interference when ð2nþ 1Þλ=2 ¼ 2l2 and destruc-
tive interference when nλ ¼ 2l2 where n ¼ 1,2; 3; : : : That is,
Bragg’s resonance (condition of maximum reflection) is
ð2nþ 1Þλ=2 ¼ 2l2, and Bragg’s resonance or condition of
maximum transmission is nλ ¼ 2l2. Notice that Bragg’s reso-
nance condition is thus related also to the length of the blockage.
Thus, for Bragg resonance to occur, the incident wavelength must
be short enough to be close to 4l2.

Analytical Approach

The mathematical foundation of the heuristic approach described in
the last section is provided here. Consider a wave train generated by
a hydrophone, a hydraulic device, or an acoustic transmitter that
propagates in pipe 3 toward Junction 1 in Fig. 1 or 2. Suppose that
this incident wave train has a wave number, k, and an angular fre-
quency, w, and amplitude p0. Its form is p0 expðikx − iwtÞ with
i ¼ ffiffiffiffiffiffi−1p

. This wave field is governed by the water hammer equa-
tions (Ghidaoui 2004). Classical water hammer equation for a fric-
tionless pipe using the coupling of continuity and momentum
equations (e.g., Chaudhry 2014; Ghidaoui 2004) is consid-
ered here.

Realizing that water supply systems are low Mach number
flows, the classical water hammer equation in a frictionless pipe
has the following form (Ghidaoui 2004)

∂2P
∂t2 ¼ a2

A
∂
∂x

�
A
∂P
∂x

�
ð1Þ

where a = acoustic wave speed; and AðxÞ and A0 = cross sectional
area of the conduit in both the nonuniform and uniform region,
respectively. The lowMach number assumption is justified because
typical flow velocities in water supply systems are of the order of
1 m=s, whereas the wave speed is of the order of 1,000 m=s; thus,
the Mach number is of the order 0.001.

Using the method of separation of variables, the solution to
Eq. (1) is of the form pðx;wÞ expð−iwtÞ, where w and pðx;wÞ
are the radian frequency and the amplitude of the propagating wave
in the pipe, respectively. Noting that the cross-section A varies from
pipe to pipe but is constant for each pipe section, Eq. (1) for each
pipe “j” (=1, 2, 3) (Figs. 1 and 2) becomes

d2pj

dx
þ k2jpj ¼ 0 ð2Þ

where kj ¼ w=a = wave-number of the jth pipe segment. For sim-
plicity but without loss of generality, the wave speed a is assumed
to be the same for all segments. The solution of Eq. (2) is

pj ¼ pref
j expðikjxÞ þ ptr

j expð−ikjxÞ ð3Þ

where ptr
j and pref

j = transmitted and reflected wave amplitudes in
pipe j, respectively.

In this case, j ¼ 1 is the pipe section to the left of Junction 2;
j ¼ 2 is the pipe section between Junctions 1 and 2 (which may be
thought of as a blockage in Fig. 2); and j ¼ 3 is the pipe section to
the right of Junction 1. The conditions of pressure and flow con-
tinuity at the Junction of segments j and jþ 1 (i.e., junctions 1 and
2) are8<
:

pj ¼ pjþ1

Aj
dpj

dx
¼ Ajþ1

dpjþ1

dx

at x ¼ −ljþ1 þ
Xj

1

ljþ1;

where j ¼ 1; 2; 3; : : : ð4Þ

where Aj and lj = area and length of the jth pipe. Eqs. (3) and (4)
can be solved for any number of blockages. For simplicity, only
the case of single blockage (Fig. 2) is discussed in this work.
The extension to multiblockages is algebraically involved
but can be performed using software packages such as MATLAB.
The case of periodic multiblockages is considered in Louati (2013).
Assuming no reflections from the upstream and downstream boun-
daries and an amplitude of the incident wave p0 (i.e., pref

1 ¼ 0 and
ptr
3 ¼ p0), Eqs. (3) and (4) give

Fig. 1. Sketch of a pipe system with nonuniformities

Fig. 2. Pipe system with one blockage
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8>>><
>>>:

pref
3

p0

¼ 2ð1 − α2Þ½ð1þ α2Þsin2ðkl2Þ þ 2iα cosðkl2Þ sinðkl2Þ�
2ð1þ α4Þsin2ðkl2Þ þ 4αðcos2ðkl2Þ þ 1Þ

ptr
1

p0

¼ 1

cosðkl2Þ þ i 1þα2

2α sinðkl2Þ
ð5Þ

where

α ¼ A2=A0 ð6Þ

Minimum transmission occurs when the norm of ptr
1 is normal-

ized by p0 ����ptr
1

p0

����2 ¼ 1

cos2ðkl2Þ þ
h
1þα2

2α

i
2
sin2ðkl2Þ

ð7Þ

is minimum. Minimization of Eq. (7) gives

cosðkl2Þ ¼ 0 ⇒ wR
n ðl2Þ ¼ 2π

�
ð2n − 1Þ a

4l2

�
; n ¼ 1; 2; 3

ð8Þ
which provides the frequencies (wavelengths) of the source at
which minimum transmission (i.e., maximum reflection) occurs.
This is precisely the condition that was arrived at heuristically
in the previous section and is the Bragg’s resonance or condition
of maximum reflection.

Maximization of Eq. (7) gives

sinðkl2Þ ¼ 0 ⇒ wT
n ðl2Þ ¼ 2π

�
2ðn − 1Þ a

4l2

�
; n ¼ 1; 2; 3

ð9Þ
which provides the frequencies (wavelengths) of the source at
which maximum transmission occurs. As in the previous case, this

is precisely the Bragg’s resonance or condition of maximum
transmission.

Eq. (8) indicates that if the blockage length is an odd multiple of
the quarter wavelength, then maximum wave reflection from a
blockage occurs. On the other hand, Eq. (9) indicates that if the
blockage length is a multiple of the half wavelength, then the in-
jected wave is totally transmitted through the blockage. For exam-
ple, Duan et al. (2015) used a blockage detection technique that
relies on measuring the reflection coefficient. In the experimental
work, Duan et al. (2015) varied the central frequency of the gen-
erated wave to determine which wave frequencies reflect maxi-
mally, which results in maximum reflection (and accuracy)
according to the Bragg resonance condition. In the experiments,
Duan et al. (2015) found that for blockage lengths equal to odd
integer multiples of the quarter wavelength, the power reflection
ratio becomes maximum. Again, this is precisely the condition
of Bragg resonance frequency of maximum reflection [Eq. (8)].

Figs. 3 and 4 show the variation of transmitted, ptr
1 , and reflected

amplitude, pref
3 , with respect to the frequency (w) for two different

blockage lengths l2 (=3.6 and 24 m), respectively. Moreover, to
investigate the effect of the blockage radial extent, α ¼ 0.64,
α ¼ 0.36, and α ¼ 0.16 are considered in Figs. 3(a–c) and 4(a–c),
respectively.

To improve readability and visual comparison of the graphs in
Figs. 3 and 4, the dimensionless amplitude and frequency are pre-
sented by dividing ptr

1 and pref
3 by the incident wave amplitude, p0,

and w by wR
1 ðl2 ¼ 24 mÞ defined by

wR
1 ðl2Þ ¼ 2π

a
4l2

ð10Þ

obtained from Eq. (8) for n ¼ 1.
The existence of Bragg-type resonance, in which there are fre-

quency bands exhibiting full transmission and others exhibiting
(near) complete reflection is clearly seen in Figs. 3 and 4 and occurs
for all α. This implies that occurrence of Bragg resonance depends

Fig. 3. Transmission amplitude variation with frequency: (a) α ¼ 0.64; (b) α ¼ 0.36; (c) α ¼ 0.16
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on pipe and blockage length scale but not on its radial scale. How-
ever, the radial scale does affect the severity of Bragg resonance
(see amplitude variation for different α in Figs. 3 and 4). The
frequencies at which maximum reflection and maximum transmis-
sion occur correspond to Eqs. (8) and (9), respectively. The near-
complete reflection is because of multiple wave reflections from the
Junction boundaries of the blockage. For instance, consider the
wave impinging on the blockage in Region 2 (Fig. 2), upon reach-
ing Junction 1, part of the incident wave is reflected, and part is
transmitted. The transmitted part of the wave propagates to the left
and splits into a reflected part and a transmitted part upon reaching
Junction 2. The reflected part is split into reflected and transmitted
wave components upon reaching Junction 1. The transmitted part,
having the same phase as the impinging wave, resonates with the
incident wave in Region 3 (Fig. 2).

The smallest frequency for which an incident wave experiences
maximum reflection toward the source (i.e., minimum transmission
through the blockage) is given by Eq. (10). That is, an incident
wave whose wavelength is 4l2 interacts with the blockage in such
a way that maximum reflection toward the wave source occurs. An
analogous result is found in shallow water waves propagating in a
channel that contains a shelf (Mei 1985). Eqs. (8) and (9) may be
physically understood as follows. Consider a train of waves gen-
erated at the source (Fig. 2). Any wave in this train arriving at the
blockage (x ¼ l2) experiences scattering, whereby a part of the in-
cident wave is reflected back toward the source, and a part is trans-
mitted toward the other end of the blockage (x ¼ 0). Once the
transmitted part of the wave arrives at x ¼ 0, it becomes scattered
such that a part of the incident wave is reflected toward x ¼ l2. The
result is that each wave in the train experiences multiple scattering
at the two ends of the blockage x ¼ l2 and x ¼ 0 and, thus, interacts
with waves both ahead of it and after it in the wave train.

Waves with frequencies given by Eq. (9) exhibit destructive in-
terference at x ¼ l2, whereas waves with frequencies given by
Eq. (8) exhibit constructive interference at x ¼ l2. It is precisely

this type of interaction that transient-based defect detection meth-
ods (TBDDM) exploit to identify defects. For example, measuring
the frequency spectrum of ptr

1 (Fig. 3) allows the identification of
the system blockage properties. The blockage length is determined
by reading the lowest frequency at which the amplitude of the spec-
trum is minimum and plugging this value into the left-hand side
of Eq. (10). The radial extent of the blockage is inferred by reading
the height of the first minimum of the frequency spectrum of ptr

1 ,
then plugging it into Eq. (7) and keeping the physically meaningful
solution for which α < 1. The result is

α ¼
���� p0

ptr
1 ðwR

1 Þ
���� −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����� p0

ptr
1 ðwR

1 Þ
���� − 1

�s
ð11Þ

Figs. 3 and 4 show that longer blockage (extended blockage)
leads to narrower frequency bands of Bragg resonance. Moreover,
Figs. 3 and 4 show that the maximum reflection and transmission
amplitudes depend on the radial extent α and that these amplitudes
increase with severity of blockage (as α decreases). For severe short
blockage cases, Figs. 3(c) and 4(c) show that the frequency bands
of maximum reflection become wider than the frequency bands
for maximum transmission. This means that severe short blockage
(e.g., a malfunctioning valve slightly open) reflects most of the
waves and allows only narrow frequency bands to transmit through.
In other words, the likelihood of Bragg resonance occurrence is
higher as the blockage becomes more severe. These features are
discussed in more depth in the section on bounded pipe systems.
Practical implications of Bragg resonance are discussed toward the
end of the paper.

Numerical Investigation

Numerical tests are conducted using the method of characteristic
(MOC) (Chaudhry 2014) to study the interaction of wave

Fig. 4. Reflection amplitude variation with frequency: (a) α ¼ 0.64; (b) α ¼ 0.36; (c) α ¼ 0.16

© ASCE 04017056-4 J. Hydraul. Eng.

 J. Hydraul. Eng., 2018, 144(1): 04017056 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

M
oe

z 
L

ou
at

i o
n 

10
/2

7/
17

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



reflections and transmissions in an unbounded pipe system with a
blockage of length l2 ¼ 3.6 and α ¼ 0.16. The waveform of the
incident wave in Region 3 (Fig. 2) is given by

8>><
>>:

PI
3ðtÞ ¼ p0 exp

�
−4w

2
c

β2
logð10Þ

�
t − β

wc

�
2
�
sin

�
wc

�
t − β

wc

��

where 0 < t ≤ twave ¼
β
wc

with β ¼ 100π

ð12Þ

where wc = central frequency; and β = coefficient that controls the
FBW. Fig. 5 shows both time and frequency domains of the gen-
erated waveform. This particular waveform is chosen because it
limits the FBW and the central frequency generated. As shown
in Fig. 5, a very narrow FBW is considered to study waves of
approximately single frequency. TFlow in the pipe is initially

zero. PI
3 and PR

3 , respectively, denote the incident and reflected
pressure waves in Region 3, and P1 is the pressure wave in
Region 1.

Fig. 6 shows the time and frequency domains of the pressure
signal at Regions 1 and 3 in which the central frequency of the
generated wave is wc ¼ wR

1 [Eq. (8)]. Maximum reflection is ex-
pected to occur at w ¼ wR

1 . Indeed, Fig. 6(a) shows that most of the
wave energy is reflected as seen in Fig. 6(c). In fact, Fig. 6(b) shows
that the amplitude of the reflected wave is of the order of the ini-
tially generated wave; conversely, Fig. 6(d) shows the amplitude of
the transmitted wave is much smaller.

Fig. 7 shows the case in which the central frequency is wc ¼
wT
2 ¼ 2wR

1 [Eq. (9)]. In this case, maximum transmission is ex-
pected to occur. Figs. 7(a–d) show that the amplitude of the re-
flected wave (PR

3 ) is much smaller than the transmitted wave
(P1). Fig. 7(b) shows that the wave propagating at exactly wT

2 is
totally transmitted as expected from Fig. 3.

Fig. 5. Input signal as transient source for numerical investigation

Fig. 6. Pressure measurement in Region 1 (upstream) and Region 3 (downstream) of the blocked pipe system (Fig. 2) when wc ¼ wR
1 [Eq. (8)]

© ASCE 04017056-5 J. Hydraul. Eng.
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The results in Figs. 6 and 7 show the occurrence of Bragg res-
onance when the Bragg’s conditions [Eqs. (8) and (9)] are satisfied.

Wave-Blockage Interaction in a Bounded Pipe and
Bragg Resonance

For an intact (i.e., defect free) reservoir-pipe-valve (RPV) system
with pipe length L, the eigenfrequencies (natural resonant frequen-
cies) are given by the following dispersion relation (Chaudhry
2014)

cosðk0mLÞ ¼ 0⇒w0
m ¼ ak0m ¼ 2π

�
ð2m−1Þ a

4L

�
; m¼ 1;2;3 : : :

ð13Þ
where k0m ¼ w0

m=a = mth wave number; w0
m = mth eigenfrequency;

and the superscript “0” denote intact case. For a RPV system with a
single blockage as shown in Fig. 8, the eigenfrequencies are

governed by the following dispersion relation (El-Rahed and
Wagner 1982; Duan et al. 2011)

α cosðkml1Þ cosðkml2Þ cosðkml3Þ
− cosðkml1Þ sinðkml2Þ sinðkml3Þ
− α2 sinðkml1Þ sinðkml2Þ cosðkml3Þ
− α sinðkml1Þ cosðkml2Þ sinðkml3Þ ¼ 0 ð14Þ

where the subscript m = mth natural resonant mode; and km ¼
wm=a = mth wave number, where wm = mth eigenfrequency;
and a = acoustic wave speed. The blocked pipe system in Fig. 8
is modeled as the Junction of three pipes in series with different
diameters (Fig. 8). The three pipes are defined as pipe 1 with length
l1 and cross-sectional area A1 ¼ A0; pipe 2 with length l2 and
cross-sectional area A2 < A0; and pipe 3 with length l3 and
cross-sectional area A3 ¼ A0, where A0 is the intact cross-sectional
area. The ratio between the cross-sectional areas is α ¼ A2=A0, and

Fig. 7. Pressure measurement in Region 1 (upstream) and Region 3 (downstream) of the blocked pipe system (Fig. 2) when wc ¼ wT
2 [Eq. (9)]

Fig. 8. A single blockage in a reservoir-pipe-valve system (bounded system)

© ASCE 04017056-6 J. Hydraul. Eng.
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the dimensionless lengths are defined by x=L, η1 ¼ l1=L, η2 ¼
l2=L and η3 ¼ l3=L, where L ¼ l1 þ l2 þ l3 = total length of
the blocked pipe system, and x = distance along the pipe length
from the reservoir (Fig. 8). The pipe flow is assumed one dimen-
sional and frictionless. When α ¼ 1, Eq. (14) becomes identical to
the dispersion relation of the intact pipe case in Eq. (13).

It is interesting and important to note that Bragg’s resonance
conditions [Eqs. (8) and (9)], derived for the unbounded pipe sys-
tem, could be imposed on the dispersion relation Eq. (14) to show
the effect of Bragg resonance on the eigenfrequency shift. Inserting
Eq. (9) into Eq. (14) gives

α cosðwT
nl2=aÞ½cosðwT

n l1=aÞ cosðwT
n l3=aÞ

− sinðwT
nl1=aÞ sinðwT

nl3=aÞ� ¼ 0 ð15Þ

which leads to

cosðwT
n ðl1 þ l3Þ=aÞ cosðwT

nl2=aÞ ¼ 0 ð16Þ

Considering the following manipulation, which uses Bragg’s
condition of maximum transmission [sinðwT

n l2=aÞ ¼ 0]:

cosðwT
n ðl1 þ l3Þ=aÞ cosðwT

n l2=aÞ
− sinðwT

nl2=aÞ cosðwT
n ðl1 þ l3Þ=aÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

¼ 0 ð17Þ

yields

cosðwT
nL=aÞ ¼ 0 ð18Þ

which is the dispersion relation for intact pipe case [Eq. (13)] at
wm ¼ wT

n . That is, at Bragg’s condition of maximum transmission,
the wave passes through the blockage unaffected, and the blocked
pipe system behaves as if it were intact.

Similarly, inserting Eq. (8) into Eq. (14) gives

sinðwR
n l2=aÞ½α2 sinðwR

n l1=aÞ cosðwR
n l3=aÞ

þ cosðwR
n l1=aÞ sinðwR

n l3=aÞ� ¼ 0 ð19Þ

which leads to

α2 sinðwR
n l1=aÞ cosðwR

n l3=aÞ þ cosðwR
n l1=aÞ sinðwR

n l3=aÞ ¼ 0

ð20Þ

Eq. (20) corresponds to the dispersion relation of either a res-
ervoir-pipe-reservoir (RPR) system with length (l1 þ l3) having a
blockage at the downstream boundary with a blockage length l3
and an area ratio ᾱ ¼ α2, as shown in Fig. 9(a); or a valve-
pipe-valve (VPV) system with length (l1 þ l3) having a blockage
at the upstream boundary with a blockage length l1 and an area
ratio ᾱ ¼ α2, as shown in Fig. 9(b). This means that at modes with
eigenfrequencies equal or close to the Bragg resonance frequency
of maximum reflection (wm ¼ wR

n ), the eigenfrequency shift be-
haves similarly to the shift in a blocked pipe system with a blockage
at the boundary with squared area ratio (Fig. 9). The eigenfre-
quency shift mechanism for such simple blocked pipe system with
a blockage at the boundary is well studied and understood in pre-
vious work by Louati and Ghidaoui (2016).

To test the findings of the effect of Bragg’s resonance conditions
on the eigenfrequency behavior, the following two blockage cases
are studied: (η2 ¼ 0.15, α ¼ 0.16) and (η2 ¼ 0.027, α ¼ 0.16).
The eigenfrequencies of the blocked pipe system are obtained
using Eq. (14), and the results are plotted in Figs. 10 and 11.
These figures show the eigenfrequency (wm) variation with length

ηb ¼ η3 þ 0.5η2 for the first 15 and 40 modes for η2 ¼ 0.15 and
η2 ¼ 0.027, respectively. The eigenfrequencies of the intact pipe
case (α ¼ 1) are the straight horizontal lines in Figs. 10 and 11.
Clearly, the presence of the blockage causes an eigenfrequency
shift of most but not all modes. The nonshifted eigenfrequencies
correspond to Bragg resonance frequencies of maximum transmis-
sion [Eq. (9)]. For example, Figs. 10 and 11 show that the eigen-
frequencies of the blocked and intact pipe system are the same for
wm=w0

1 around 13 and 27 for (η2 ¼ 0.15) and around 74 for
(η2 ¼ 0.027). These are precisely the Bragg’s resonance of maxi-
mum transmission. To verify this, for the blockage case with length
η2 ¼ 0.15, the Bragg’s resonance condition of maximum transmis-
sion requires wml2=a ¼ mπ. This gives wm=w0

1 ¼ 2m=η2 ¼ 2m=
0.15¼ 13.33m = (13.33, 26.66, : : : ), which agree with the
values in Fig. 10. For the blockage case with length η2 ¼ 0.027,
the Bragg’s resonance condition of maximum transmission gives
wm=w0

1 ¼ 2m=η2 ¼ 2m=0.027¼ 74.07m = (74.07, : : : ), which
agrees with the value in Fig. 11(b).

In addition, Figs. 10 and 11 show that, at modes m ¼ 4
(i.e., 2m − 1 ¼ 7) and m ¼ 11 (i.e., 2m − 1 ¼ 21) for η2 ¼ 0.15;
and m ¼ 19 (2m − 1 ¼ 37) for η2 ¼ 0.027, the eigenfrequency
shift has regular variation with equal positive and negative shift
magnitude variations. This shift behavior is similar to the shift
behavior for the case of blocked pipe system with a blockage at
the boundary (Louati and Ghidaoui 2016). In fact, in Figs. 12(a
and b) and 13, the eigenfrequency shift at modes m ¼ 4
(i.e., 2m − 1 ¼ 7) and m ¼ 11 (i.e., 2m − 1 ¼ 21) for η2 ¼ 0.15,
and m ¼ 19 (2m − 1 ¼ 37) for η2 ¼ 0.027, are compared with the
eigenfrequency shift of a blocked RPR system with blockage at the
downstream boundary [Fig. 9(a)]. The results show good
agreement between both blocked pipe systems when the blockage
area ratio in RPR is α ¼ ð0.16Þ2. The eigenfrequencies at these
modes correspond very closely the Bragg resonance frequencies
of maximum reflection. To verify this, for the blockage case with
length η2 ¼ 0.15, the Bragg’s resonance condition of maximum
reflection requires wml2=a ¼ ð2m − 1Þπ=2. This gives wm=w0

1 ¼
ð2m − 1Þ=0.15 ¼ 6.66ð2m − 1Þ = (6.66, 20, : : : ), which agree
with the values in Fig. 10. For the blockage case with length
η2 ¼ 0.027, the Bragg’s resonance condition of maximum
reflection gives wm=w0

1 ¼ ð2m − 1Þ=0.027 ¼ 37.03ð2m − 1Þ =
(37.03, : : : ), which agrees with the value in Fig. 11. Although
not shown here, similar results were found for different α values.

Fig. 9. Equivalent blocked pipe system with length (l1 þ l3) and di-
mensionless blocked area α2 corresponding to the dispersion relation
in Eq. (20); (a) RPR system with a blockage of length l3 at the down-
stream boundary; (b) VPV system with a blockage of length l1 at the
upstream boundary

© ASCE 04017056-7 J. Hydraul. Eng.
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Does Bragg Resonance Arise in Practice?

Bragg resonance and its effects in closed-conduit flows are neither
emphasized nor directly addressed in previous water supply re-
search. This lack of reference to the Bragg phenomena does not
mean that Bragg resonance and its effects do not occur. The fact
that eigenfrequency shifts are observed in experiments and are
recorded and discussed in the literature (Meniconi et al. 2013;
Stevens 2000) makes clear that Bragg resonance is important.
This work clearly shows that Bragg resonance governs the magni-
tude and sign of these observed eigenfrequency shifts. However,
Bragg resonance is less likely to be observed in real pipe
systems for two primary reasons, as discussed in the following
paragraphs.

First, it is clear in Figs. 3(a) and 4(a) that at low frequency
[w=wR

1 ðl2Þ < 0.2], the Bragg resonance effect is weak. This is

important because most transient waves arising in practice are rel-
atively low frequency: (1) deliberately generated transient waves
are slowly executed (that is, the length of pipe traversed by the
wavefront in the time taken to complete the control action) maneu-
vers such as pump start-up or shutdown, and thus are quite low
frequency; (2) accidental transient waves such as those generated
by a pump failure or improper maneuver of a valve are also of rel-
atively low frequency because of the small inertia of these devices;
and (3) probing transient waves for defect detection (e.g., Brunone
et al. 2014) are also generated at low frequency. It is, therefore, not
surprising that significant effects of Bragg resonance are not evi-
dent in systems responses at these low wave frequencies.

For example, in defect detection practice, probing transient
waves are usually generated by mechanical devices (e.g., manual
valve closure or intentional pump stops) with closure times of a few
seconds. For example, with a typical wave speed for nonplastic

Fig. 11. Normalized eigenfrequency variation with length ηb ¼ η3 þ 0.5η2 when α ¼ 0.16 and η2 ¼ 0.027 along with the asymptotic solutions for
(a) the first 20 modes; (b) modes m ¼ 21 to m ¼ 40

Fig. 10. Normalized eigenfrequency variation with length ηb ¼ η3 þ 0.5η2 of the first 15 modes when α ¼ 0.16 and η2 ¼ 0.15 along with the
asymptotic solutions
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pipes in water systems of circa 1,000 m=s, the generated wave-
length for a 5-s maneuver (wave-generating action) is around
λ ≈ 5;000 m. Therefore, Bragg resonance would only be expected
to occur (and be potentially detectable) for blockages with lengths
around l2 ¼ λ=4 ¼ 1,250 m [Eq. (10)] or longer. Recently, faster
maneuvers are being used to generate probing transient waves
(e.g., use of fast solenoid valves) with closure times as low as
50 ms to increase the accuracy of transient-based defect detection
methods (e.g., Meniconi et al. 2011). In this case, Bragg resonance
could occur with blockages as short as l2 ¼ λ=4 ¼ 12.5 m.

In another paper (Louati et al. 2017), the authors conducted exper-
imental laboratory tests to study and demonstrate the effect of
Bragg resonance in a blocked pipe system.

Second, in real systems, blockages may be multiple with vari-
able sizes (e.g., severe random roughness). In this case, the effects
of Bragg resonance could become weaker, because when an inci-
dent wave of a given wavelength encounters random blockages,
some blockages with lengths satisfying Bragg’s condition of maxi-
mum reflection would enhance reflection of the wave, whereas
others with lengths satisfying Bragg’s condition of maximum

Fig. 12. Comparison of eigenfrequency shifts of blocked RPV system with interior blockage (for η2 ¼ 0.15) and RPR system with blockage at the
boundary; (a) at mode m ¼ 4 (i.e., 2m − 1 ¼ 7); (b) at mode m ¼ 11 (i.e., 2m − 1 ¼ 21)

Fig. 13. Comparison of eigenfrequency shifts of blocked RPV system with interior blockage (for η2 ¼ 0.027) and RPR system with blockage at the
boundary at mode m ¼ 19 (i.e., 2m − 1 ¼ 37)
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transmission would have the opposite effect. Thus, the effect of
Bragg resonance may be averaged out (Lu et al. 2011).

Implications of Bragg Resonance to Blockage
Detection in Pipes

It is logical that stronger interactions between a wave and a block-
age give clearer indications of the presence of the blockage.
For cases with stronger Bragg resonance effects, eigenfrequency
shifts may provide better indicators of pipe blockage in terms of
both magnitude and location. Thus, identifying Bragg resonance
frequencies and their effects is important in developing transient
defect detection algorithms, including blockage and leaks. Ongoing
work in other papers submitted by the authors describes in more
detail the techniques being developed to identify Bragg resonance
frequencies from the frequency response function and how Bragg
resonance phenomena could be used for blockage detection. Note
that the previous sections of this paper show that the frequency in-
terval between consecutive Bragg resonance frequencies are pro-
portional to the ratio of wave speed to blockage length. Hence,
a wide FBW produced by the probing transient generator is re-
quired to capture the signature of a short blockage (i.e., a discrete
blockage with length less than 2 m). This is pointed out in previous
work by the authors (e.g., Louati and Ghidaoui 2015; Lee et al.
2014). For example, for a blockage with length 1 m and a pipe
system wave speed of 1,000 m=s, the frequency interval between
two consecutive Bragg frequencies is of the order of 1 kHz; accord-
ingly, the injected signal must have a FBW of the order of several
kHz. Injection of such wide bandwidth signals cannot be accom-
plished by current, mechanical, wave-generator technology such
as valves. In fact, the current work is part of a research project
(http://smartuws.ust.hk/) that aims to make use of high-frequency
(≫kHz) acoustic waves for defect detection in water supply
pipelines.

Another interesting feature of Bragg resonance is that its effects
are also related to the characteristics of the blockage (i.e., blockage
length and area), a fact that may also be useful for blockage
identification. For example, the Bragg resonance frequency of
maximum reflection (wR

1 ) is a function of the blockage length
[Eq. (10)]. If wR

1 is identified, then the blockage length can be de-
termined by l2 ¼ 2πa=ð4wR

1 Þ. Moreover, if maximum shift is mea-
sured at the Bragg resonance of maximum reflection, then the
blockage area ratio (α) could be determined using the simplified
blockage model located at a boundary (Louati and Ghidaoui
2016). This is possible because Eq. (20) shows that, at a resonant
mode with eigenfrequency near or equal to the Bragg resonance
frequency of maximum reflection, the blocked pipe system
(Fig. 8) behaves like a simplified pipe system with blockage at
the boundary (Fig. 9).

Conclusions

This work constitutes a first step in understanding how wave-
blockage interaction (i.e., Bragg resonance) relates to the variation
in observed eigenfrequency shifts for a simple, blocked pipe sys-
tem. This is done in two stages. First, the transmission and reflec-
tion of injected pressure waves in unbounded pipe containing a
blockage are studied, which allows the direct examination of inter-
actions between waves and blockage sections without interference
from other effects (boundaries) and the investigation of which
waves transmit least, and conversely which waves reflect most
toward the source (Bragg resonance). Second, the knowledge of
which waves transmit and which do not is used to study and

understand the mechanism of eigenfrequency shift induced by a
blockage in a bounded pipe system. It is found that the variation
of maximum shift magnitudes at different resonant modes is related
to the Bragg resonance frequencies. The key conclusions are sum-
marized as follows:
1. If the blockage length is a multiple of the half wavelength, then

the injected wave is totally transmitted through the blockage.
The frequencies of such waves are called Bragg resonance fre-
quencies of total transmission (wT

n ). On the other hand, if the
blockage length is an odd multiple of the quarter wavelength,
then maximum wave reflection from the blockage occurs.
The frequencies of these waves are called Bragg resonance
frequencies of maximum reflection (wR

n ).
2. A zero or nearly zero eigenfrequency shift occurs at modes

with eigenfrequencies equal or close to the Bragg resonance fre-
quencies of total transmission (wT

n ). This is because at wm ¼ wT
n ,

total transmission occurs, and, therefore, the blocked pipe sys-
tem behaves as an intact pipe system.

3. Maximum eigenfrequency shift occurs at modes with eigenfre-
quencies equal or close to the Bragg resonance frequencies of
maximum reflection (wR

n ). This is because at wm ¼ wR
n , the

blockage reflects most of the impinging waves, and, therefore,
the blockage effect is enhanced.

4. At modes with eigenfrequencies equal or close to the Bragg
resonance frequency of maximum reflection (wm ¼ wR

n ), the
eigenfrequency shift behaves similarly to the shift in a blocked
pipe system with a blockage at the boundary with squared area
ratio. The eigenfrequency shift mechanism for this simple
blocked pipe system with a blockage at the boundary is well
studied and understood in previous work (Louati and Ghidaoui
2016).

5. The smaller the blockage length is, the smaller the eigenfre-
quency shifts are at low modes. This is because, for short
(discrete) blockages, the Bragg resonant frequencies occur only
at high-resonant modes (high frequencies). Therefore, if an in-
jected FBW contains only lower frequencies, the blockage sig-
nature is reduced and may become unclear. The FBW should be
either large enough or should sweep a large enough frequency
range to include frequencies close to the Bragg resonance fre-
quency of maximum reflection. However, short blockages with
large radial protrusion induce large Bragg resonance FBW of
maximum reflection, which increases the shift at lower modes.

6. For small blockages (e.g., η2 ¼ 0.027 in Fig. 11), the Bragg
resonant frequencies [Eqs. (8) and (9)] could be at very high-
resonant modes (high frequencies), and the transient flow plane
wave assumption (for a one-dimensional model) may no longer
be valid. If such high frequencies are to be used, then the be-
havior of high-frequency (dispersive and nonplane) waves
needs to be investigated. The authors have studied this subject
in another paper.

7. Some practical implications of Bragg resonance effects are
discussed. In particular, Bragg’s condition is directly related to
the characteristics of blockages; therefore, knowledge of the
Bragg resonance frequencies provides information on the block-
age size.
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Notation

The following symbols are used in this paper:
A = acoustic wave speed in water (ms−1);
A0 = area of intact pipe (m2);
A2 = area of pipe 2 (the blocked region in the pipe) (m2);
i =

ffiffiffiffiffiffi−1p
;

j = pipe number;
k = wave number (m−1);
L = whole pipe length (m);
l1 = length of pipe 1 (m);
l2 = length of pipe 2 (m);
l3 = length of pipe 3 (m);
lj = length of pipe j ¼ 1,2 or 3 (m);
m = resonant mode number for pipe system of length

L;
m1 = mode number for subsystem 1;
m2 = mode number for subsystem 2;

Pðx; tÞ = pressure (Pa);
P0 = initial pressure in the pipe (Pa);

pðx;wÞ = amplitude of the harmonic pressure (Pa);
p0 = maximum pressure amplitude injected at the source

(Pa);
pref
j = reflected pressure amplitude at pipe region j (Pa);

ptr
j = transmitted pressure amplitude at pipe region j (Pa);
t = time (s);
w = angular frequency (rad s−1);

wm = mth resonant frequencies in the blocked pipe case
(rad s−1);

w0
m = mth resonant frequencies in the intact pipe case

(rad s−1);
ws
m = mth resonant frequencies in the shallow blockage case

(rad s−1);
wR
n = Bragg resonance frequency of maximum reflection

(rad s−1);
wT
m = Bragg resonance frequency of maximum reflection

(rad s−1);
x = axial coordinate (m);
α = area ratio between A2 and A0;

Δwm = mth eigenfrequency shift;
ηj = lj=L dimensionless length;

η02 = zero shift blockage positions; and
λ = probing wave length (m).
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