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Abstract
Shallow turbulent flows are omnipresent in hydrosystems. Examples include flows past 
islands, in river confluences and longshore currents. A characteristic feature of a shallow 
flow is the existence (under certain conditions) of two-dimensional coherent structures 
(2DCS). This paper discusses and illustrates the usefulness and limitations of reduced 
dimensionality models in conjunction with hydrodynamic stability theories in illuminating 
the onset and subsequent dynamics of 2DCS in shallow flows. The paper follows closely 
the keynote lecture given by the second author on the 4th International Symposium on 
Shallow Flows which took place in Eindhoven in 2017. The paper gives the reader a com-
prehensive review of the reduced dimensionality models and hydrodynamic stability theo-
ries used in analyzing the dynamics of shallow flows.

Keywords Shallow flows · Coherent structures · Stability theories

1 Introduction

Shallow turbulent flows are flows with horizontal turbulent lengthscale far greater than the 
water depth. Turbulence development is vertically constrained by the water depth but is 
horizontally unconstrained. Such a confinement separates the turbulent flow into large-scale 
two-dimensional turbulence and small-scale three-dimensional turbulence. In an environ-
mental hydraulics setting, the thin water layer is usually bounded by a frictional bottom and 
a free surface. Horizontal velocity gradients, which generate horizontal turbulence, are also 
usually present in the flows. Jirka and Uijttewaal [35] define shallow flows as “largely uni-
directional, turbulent shear flows occuring in a confined layer of depth scale H. This con-
finement leads to a separation of turbulent motions between small scale three-dimensional 
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turbulence, L3D < H , and large scale two-dimensional turbulent motions, L2D > H with 
mutual interaction.” A characteristic feature of shallow flows is the presence of horizontal 
two-dimensional coherent structures (2DCS). 2DCS are defined [36] as “connected large-
scale turbulent fluid masses that extend uniformly over the full water depth and contain 
a phase correlated vorticity (with the exception of a thin near-bottom boundary layer)”. 
Jirka [36] proposed three 2DCS generating mechanisms:

• Type A (topographic forcing) Topographic features (e.g. headlands and islands) leading 
to local flow separation, giving rise to strong horizontal shear layers.

• Type B (internal transverse shear instabilities) Velocity variations in the flow (e.g. 
source flows having a momentum excess or deficit, horizontal changes in bottom rough-
ness) resulting to a gradual growth of 2DCS.

• Type C (secondary instabilities of the base flow) Formation of 2DCS due to the imbal-
ance of boundary layer type turbulence caused by e.g. localized roughness zones.

Among the mechanisms, type A is the strongest and type C is the weakest with limited 
experimental evidence. Chan [8] showed that the effect of topographic features is to gener-
ate a horizontal shear layer, which is the fundamental driving force of 2DCS. The dissipa-
tive force is the bed friction. The ratio of the dissipative force to the driving force plays 
an important role in the development of instability. 2DCS are formed if this ratio is much 
smaller than unity. As 2DCS travel downstream this ratio increases gradually, eventually 
leading to a stable flow.

Shallow turbulent flows are omnipresent in hydrosystems. Two examples of such flows 
are shallow wakes and shallow mixing layers. Shallow wakes are flows past obstacles, e.g. 
islands, under water depth confinement and bed friction. For example, the horizontal scale 
of the eddies in the wake of Rattray Island in northeast Australia is of the order of 1000 m, 
while the water depth is of the order of 20 m [75]. In addition, the horizontal scale of the 
eddies in the wake of islands in Rupert Bay in northern Canada ranges from 100 to 3000 m, 
while water depth ranges from 1 to 4 m [34]. Shallow mixing layers are flow configurations 
in which two streams with different velocities come into contact under water depth confine-
ment. For example, the horizontal scale of the eddies in the mixing layer downstream of a 
junction of the Mekong river is of the order of 1000 m, while the water depth ranges from 
5 to 10 m [37].

Shallow flows exhibit features of two-dimensionality. For example, experimental inves-
tigation of plane turbulent jets in a bounded fluid layer [19] suggests that the flow is largely 
two-dimensional beyond a streamwise distance of ten fluid layer depths. The subsequent 
development of 2DCS is described by the theory of two-dimensional turbulence (see [46, 
50]). Thus, researchers usually employ reduced dimensionality models to study shallow 
flows. Simulations by reduced dimensionality models of shallow flows have been con-
ducted in [25, 73]. Features of shallow shear flows, e.g. 2DCS size and frequency of flow 
oscillations, were successfully reproduced. Hydrodynamic stability theories based on two 
dimensional models have also been used to illuminate key physics of shallow flows with 
good success [11, 16, 25, 45, 72].

The paper is based on the keynote presentation of the second author on the 4th Interna-
tional Symposium on Shallow Flows which took place in Eindhoven in 2017. The objective 
of the paper is to give the reader a comprehensive review of the methods and theories used to 
analyse the dynamics of shallow flows. The paper is organized as follows. Governing equa-
tions are presented in Sect. 2 where the limitations and domains of validity of reduced dimen-
sionality models are discussed. Section 3 is devoted to hydrodynamic stability theory in the 



Environmental Fluid Mechanics 

1 3

context of shallow flows. A review of linear and weakly nonlinear theories is given. In addi-
tion, the mean field theory and secondary instability theory are presented. Sections 4, 5 and 6 
are devoted to the application of the methods and theories discussed above. Application to 
shallow wakes are discussed in Sect. 4. Concepts of absolute and convective instabilities in 
the context of the classification of flow patterns behind obstacles as well as frequency selec-
tion criteria are analyzed. Section 5 is devoted to the analysis of shallow mixing layers from 
a hydrodynamic stability point of view. Linear theory as well as secondary instability theory 
and mean field theory are applied to analyze the dynamics of shallow mixing layers. Finally, 
in Sect. 6 the effect of the Froude number on the stability and development of shallow mixing 
layers is analyzed. This paper provides an overview to the topic. Readers are referred to the 
references for details.

2  Governing equations and reduced dimensionality models

Some phenomena observed in shallow flows resemble flow structures that occur in two-
dimensional hydrodynamics for small Reynolds numbers. Wolansky et  al.  [75] and Ingram 
and Chu [34] observed large scale two-dimensional vortex street and unsteady bubbles in the 
lee of islands under a Reynolds number of 107 . Vortex merging, spatial growth of dominant 
length scale and a -3 spectral slope is observed in shallow jets, mixing layers and dipoles in 
shallow water (e.g., [1, 2, 19, 69, 70]). These observations suggest that large scale motion in 
shallow water can be described by reduced dimensionality models (2-D shallow flow models 
or integral models). Such models usually well describe the large scale physics, for example, 
spreading, velocity profiles, oscillation frequencies, eddy structures, etc (see [7, 11, 30, 41, 53, 
57, 72]). Two dimensional linear stability analysis explain well the transition between different 
observed flow regimes [11, 12, 16, 23, 25, 45, 47, 72].

2.1  Reduced dimensionality model for a shallow and small Froude number flow

Consider the three-dimensional Navier Stokes equations and their boundary conditions in free 
surface flows:
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where x, y and z are the two horizontal and the vertical coordinates respectively; u(x, y, z, t), 
v(x, y, z, t), w(x, y, z, t) are the velocity along x, y and z; p(x, y, z, t) is pressure; �(x, y, t) 
is free-surface elevation; g is gravitational acceleration; � is viscosity. Equation (1) is the 
mass conservation equation; Eqs.  (2–4) are the momentum equations; Eq.  (5) is the kin-
ematic boundary condition at the free-surface; and Eq. (6) represent the zero flux and no-
slip conditions at the bed.

Let L be the horizontal lengthscale, H the water depth, U the horizontal velocity scale, 
W the vertical velocity scale, and T = L∕U the time scale. Equation (1) dictates that W is of 
order UH/L. Combining this result, the fact the wave amplitude scale is U

√
gH

g
 [17] and 

Eq. (5) gives

superscript ∗ denotes dimensionless quantities and Fr = U∕
√
gH . Therefore, W → 0 as 

Fr → 0 implying that the free-surface becomes a rigid lid when Fr → 0 . Imposing W = 0 
at the free surface, integrating the Navier–Stokes equations with respect to depth, neglect-
ing the shear stresses at the free surface and assuming the bed shear stresses are modeled 
by the quadratic friction formula gives the following rigid-lid shallow water equations

where the overbar denotes depth-averaged quantities and cf  is the friction coefficient. The 
effect of sub-depth motion on the depth averaged flow field, which emerges because of the 
non-uniformity of the veclocity field with respect to depth, is lumped into the eddy viscos-
ity terms as in [30] and �t is eddy viscosity.

2.2  Reduced dimensionality model for a shallow flow with important Froude 
number effects

As the Froude number increases, the vertical velocity at the free-surface may not be neg-
ligible. The hydrostatic pressure distribution emerges from the shallowness assumption 
H∕L ≪ 1 together with Eq. (4). Integrating the mass and horizontal momentum equations 
vertically and combining with the kinematic free surface condition and the boundary con-
ditions at the bed lead to the classical shallow water equations (see e.g. [74]):
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where h is water depth. For convenience, the overbar is dropped from here onwards.
While reduced dimensionality models capture key physics in shallow shear flows, water 

quality predictions in such flows require three-dimensional models due to the presence of 
secondary circulations and other three-dimensional effects [1, 2, 7].

3  Hydrodynamic stability theory

The onset and growth of 2DCS in shallow shear flows have been explained under the 
context of hydrodynamic stability theory [25, 36, 45]. Hydrodynamic stability theory is 
a branch of fluid mechanics that explains the transition from laminar to turbulent flows. 
Perturbations always exist in any real flow. In the framework of linear stability theory it 
is assumed that perturbations are small. Under certain conditions, the perturbations can 
grow and reach at some time sufficiently large amplitude to change the base flow. The base 
flow is said to be unstable under such conditions. As a result of instability of the base flow 
one can observe either a laminar flow with more complicated structures (as in the case of 
Taylor–Couette flow between two rotating cylinders) or rapid transition to turbulence (as in 
the case of a pipe Poiseuille flow). Considering spatially developing flows, e.g. mixing lay-
ers and wakes, the base flow is not uniform in the streamwise direction. However, in most 
of such flows streamwise variations of the mean flow are slow over a typical instability 
wavelength. It is thus reasonable to consider a local velocity profile at a particular (usually 
upstream) station under the assumption that this profile stays self-similar for all stations 
downstream (parallel flow assumption). If a localized disturbance (or mode) is growing 
while travelling in the flow domain, the base flow becomes unstable. There are two dif-
ferent scenarios of the behavior of the unstable perturbation. If the growing perturbation 
is eventually convected away and leaves the flow domain the flow is said to be convec-
tively unstable. On the other hand, if the unstable perturbation occupies the whole domain 
the flow is said to be absolutely unstable. Figure  1 illustrates the concept of absolute/
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Fig. 1  Perturbation dynamics of absolutely unstable flow (a); and convective unstable flow (b). Note that 
in a the perturbation grows and spreads both upstream and downstream; in b the perturbation grows but is 
washed to the downstream
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convective instability. These concepts were introduced by Bers [6] and readers can also see 
[33] for a review.

Hydrodynamic stability theory is successful for free shear flows, e.g. mixing layers [32], 
wakes [62]. For shallow shear flows, the bed friction turbulence can be simplified as an 
eddy viscosity and a quadratic bed friction terms by the virtue of scale separation. Two-
dimensional stability theory is thus invoked to investigate the onset of 2DCS. The approach 
has some success in characterizing flow stability and explaining the size and amplitude of 
2DCS [3, 11, 16, 72]. Attempts have also been made to associate different flow regimes in 
shallow wakes in experiments (see, for example, [10]) with absolute and convective insta-
bilities. As the ratio of the dissipative force to the driving force decreases, three different 
flow patterns are identified experimentally: Steady Bubble (SB), Unsteady Bubble (UB), 
and Vortex Street (VS). From a linear stability point of view the transition from SB to UB 
represents the transition from linearly stable to linearly unstable flow. Attempts to describe 
the transition from UB to VS using concepts of absolute and convective instabilities are 
made in [11, 25, 45] with a certain success. In particular, the transition from UB to VS is 
associated with the transition from convective to absolute instability. This section intro-
duces several stability theories and their relevance to shallow flows.

3.1  Linear stability theory

To determine the stability characteristics of a flow, linear stability analysis is invoked. The 
method is described as follows: (1) define a base flow; (2) linearize the equations of motion 
in the neighborhood of the base flow; (3) solve the linearized eigenvalue problem and find 
the critical values of the parameters and the region of linear stability and instability; (4) 
analyze the development of perturbations in unstable region. Base flow in the analysis is 
obtained as a steady one-dimensional solution of the equations of motion. Assuming that 
the flow is moving in the x-direction it would be natural to follow the classical theory and 
assume that the base flow velocity vector has the form

Substituting (14) into (8), (9), (10) we obtain

Solution of equation 15 is U(y) = U0 where U0 is a constant, which is not interesting since 
the velocity gradient is the crux for shear instability. There are several ways to overcome 
this difficulty. Additional empirical parameters (such as eddy viscosity) can be used to 
derive the base flows velocity distribution. This approach is used, for example, in [52, 65] 
for mixing layer flows generated by vegetation. Asymptotic expansions for two dimen-
sional laminar wake flows are obtained in [5, 68]. Finally, model base flow profiles (such 
as a hyperbolic tangent profile for mixing layers or a hyperbolic secant profile for wakes) 
which resemble the velocity distribution obtained in experiments are also widely used in 
practice. This approach is used, for example, in [10–13, 23, 25, 44, 45, 72].

Consider a perturbed solution of the system (8),(9),(10) of the form
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where the quantities with primes represent small unsteady perturbations. Substituting (16) 
into (8),(9) and (10), linearizing the resulting system in the neighborhood of the base flow, 
eliminating the pressure perturbation, introducing the stream function by the relations

and dropping the primes we obtain the linearized equation for the perturbation of the 
stream function in the form

where the subscripts indicate the partial derivatives with respect to the independent 
variables.

The method of normal modes is used next to analyze the linear stability of the base flow 
(see, for example, [20]). The perturbation of the stream function is assumed to be of the 
form

where �(y) is the amplitude of the normal perturbation, k is the wave number and c is the 
phase speed of the perturbation. Substituting (19) into (18) we obtain

where S = cf b∕H is the bed friction number and b is the lengthscale of the transverse shear 
layer. The boundary conditions are (assuming that fluid layer is infinite in the transverse 
direction):

Problem (20), (21) is an eigenvalue problem. Thus, for a fixed S a nontrivial solution of 
(20), (21) exists only for certain values of the parameters k and c.

Problem (20) and (21) can be solved with a chosen U(y) numerically using a collocation 
method based on the Chebyshev polynomials (see, for example, [23] for details). There 
are two approaches to the solution of the eigenvalue problem (20) and (21): (a) temporal 
stability analysis and (b) spatial stability analysis. In the temporal case we assume that the 
wave number k is real while the phase speed c is complex: c = cr + ici . As can be seen 
from Eq. (20), the corresponding eigenvalue problem is linear with respect to c. As a result, 
a generalized eigenvalue problem obtained after discretization of Eq.  (20) is linear in c 
and can be solved using standard routines, say, in Matlab. The base flow is linearly stable 
if all ci are negative and linearly unstable if at least one ci > 0 . For the given base flow a 
marginal stability curve in the (k,  S)-plane corresponds to the case ci = 0 and separates 
the regions of stability and instability of the base flow. In the spatial case the parameter c 
is assumed to be real while the wave number k is complex: k = kr + iki . The base flow is 
linearly stable if all ki > 0 and linearly unstable if at least one ki < 0 . The corresponding 
eigenvalue problem (20), (21) is nonlinear in k. Thus, from a computational point of view 
it is more difficult to solve the spatial stability problem. In order to overcome this difficulty 
in a vicinity of a marginal stability curve a transformation is proposed (see [22]) which 
allow one to calculate spatial growth rates if temporal growth rates are known. However, 
such a transformation is valid only in a small neighborhood of the marginal stability curve 
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(in other words, it is applicable only for small spatial and temporal growth rates). This fact 
is supported by linear stability calculations in [26]. The absolute/convective stability char-
acteristics of the flow can also be determined by solving (20) and (21) with both k and c 
are complex. The solution for complex k and c is sought by a saddle point search technique 
[27].

3.2  Weakly nonlinear analysis

Linear stability theory can answer the following questions: (1) When does a particular base 
flow become unstable? (2) What are the critical values of the parameters at the stability 
boundary (wave number, wave speed, bed friction number)? The “fate” of unstable pertur-
bation above the threshold cannot be predicted by linear stability theory. Assuming that the 
bed friction number S is slightly smaller than the critical value Sc (in other words, assuming 
that the growth rate of the unstable perturbation is small) one can apply weakly nonlinear 
theory in an attempt to analyze the development of instability (at least at the initial stage). 
The perturbed stream function in (19) is modified by introducing an unknown amplitude 
function A(�, �):

where � = �(x − cgt) and � = �2t are the “slow” longitudinal coordinate and time, respec-
tively, and cg is the group velocity. The idea of using the method of multiple scales comes 
from the fact that the amplitude A varies slowly in comparison with the change of the phase 
of the unstable perturbation. Such an approach is used, for example, in [45] for the analysis 
of wake flows. Expanding the stream function in powers of � , using solvability conditions 
(see [45]) and rescaling the amplitude function we obtain the complex Ginzburg–Landau 
equation of the form

where the values of the real coefficients c1 and c2 are obtained in closed form in terms of 
integrals containing the characteristics of the linearized problems. It is shown in [45] that 
Eq. (23) can be used to explain some characteristics of shallow wake flows (see Sect. 4).

3.3  Nonlinear mean‑field theory

While the weakly nonlinear Ginzburg–Landau equation is suitable for S → Sc [8, 45], the 
equation may not be applicable under S ≪ Sc where Sc is the critical value of S from the 
linear theory. In this case, the mean field theory provides a promising alternative. In phys-
ics, mean field theory refers to the use of a mean field to represent the interaction of a 
molecule with its neighbor molecules instead of modeling every interaction between the 
molecule and all its neighbors. Similarly, in stability analysis, the interaction between the 
mode of interest and the mean field rather than the interactions of this mode with every 
other mode is represented [4, 54]. One example is the interaction between the fundamental 
mode and the mean flow field via Reynolds stresses. The interaction distorts the mean flow 
field and this distortion becomes more significant as the Reynolds stress of the fundamen-
tal mode becomes sufficiently large. This distortion changes the base flow field and thus its 
stability characteristics. For example, for base flows that are linearly unstable, the distor-
tion of the mean flow may cause a decrease in the growth of the fundamental mode by the 
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mean flow. When the production of the fundamental mode energy decreases to an extent 
that the magnitude of the production is similar to other dissipative mechanisms, a finite 
amplitude equilibrium state is reached. The interaction between the fundamental mode and 
the mean flow field can in some cases be destabilizing. For example, linear stability calcu-
lations show that pipe Poiseuille velocity profile is linearly stable for all Reynolds numbers 
while the critical values of the Reynolds number for plane Poiseuille flow are much larger 
than the corresponding experimental values. On the other hand, mean field theory has been 
successful in showing that the distortion of the mean base flow renders the flow unstable 
for finite and realistic Reynolds numbers ( Re = 2500−3000 [28, 55]). The results of the 
mean field theory for shallow mixing layers are presented in Sect. 5 of this paper.

3.4  Secondary linear stability theory

Secondary linear stability theory investigates if the coherent structures that result from the 
primary instability are themselves unstable to small perturbations. Such theory has been 
instrumental in deep mixing layers (e.g., [56, 61]). Kelly [40] investigated the stability of 
a base flow comprised of the most unstable mode superimposed on a hyperbolic tangent 
velocity profile and found good consistency between theory and experiments. Pierrehum-
bert and Widnall  [61] added complexity to the secondary stability analysis in Kelly [40] 
by choosing the base flow to be the Stuart vortex. The Stuart vortex is the exact solution 
of the two dimensional Euler equations discovered by Stuart [67] representing fully devel-
oped coherent structures in deep mixing layers. Pierrehumbert and Widnall  [61] showed 
that the Stuart vortex is unstable to a perturbation with a wavelength double the length 
of a Stuart vortex. Vortex merging occurs as the result of instability. Metcalfe et al.  [56] 
tested the secondary instability of coherent structures in deep mixing layers with direct 
numerical integration of the flow equations. The subharmonic perturbations added onto 
the coherent structures were shown able to trigger the pairing of the coherent structures. 
Klaassen and Peltier [42] showed that there are two instability modes in viscous, moder-
ately stratified Stuart vortex; they are namely (1) the orbital mode; and (2) the draining 
mode. The orbital mode advects the coherent structures up and down in an alternate man-
ner, which is consistent with the vortex pairing motion observed in deep mixing layers 
(e.g. [31, 58]). The draining mode strengthens and weakens the coherent structures in an 
alternate manner, which is consistent with the vortex shredding of coherent structures in 
stratified and unstratified deep mixing layers simulated in Patnaik et al. [58] and Riley and 
Metcalfe [63]. In shallow flows, the results in Ghidaoui et al. [25] indicate the presence of 
secondary instability in vortex shedding and unsteady bubble flows. The use of secondary 
linear stability theory in shallow mixing layers is illustrated in Sect. 5.

4  Application 1: Shallow wakes

Figure 2 shows the vorticity contours of numerically simulated shallow wakes in the lee of 
cylindrical bluff bodies in [25]. Figure 2a shows that when S = 0.17, the cylinder wake is 
characterized by a pronounced vortex shedding mechanism, leading to the establishment of 
a vortex street pattern. Figure 2b shows the cylinder wake for S = 0.35. An unsteady bub-
ble, characterized by a re-circulating flow region, emerges in the near wake of the cylinder. 
Downstream of the unsteady bubbles, a sinuous wake is observed. For both flow regimes, 
vortices shed from the cylinder at frequencies referred to as the shedding frequencies. 
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Further increase in S (> 0.5) results in a steady bubble flow in which the flow ceases to 
oscillate.

The results of linear and weakly nonlinear theories are compared to the results of non-
linear simulations in [29] ([45, 25]). First, the critical values of the local (i.e. at a particular 
downstream location of the flows) stability parameter S are in good agreement—numeri-
cal model predicts Sc = 0.2 (beyond which the flow is in SB regime) while linear stability 
theory (temporal analysis) gives Sc = 0.196 . Second, the real part of the constant in front 
of the term |A|2A in nonscaled Ginzburg–Landau equation is negative (thus, a finite ampli-
tude saturation is possible, Fig. 3). Third, the saturation amplitude of the unstable perturba-
tion in a convectively unstable region is predicted reasonably well by the weakly nonlinear 
theory. It is shown in [29] that for S = 0.14 the saturation amplitude A is about 0.14. Under 
some simplifying assumptions (along-stream evolution as � → ∞ and � → ∞ ) the Ginz-
burg–Landau equation gives A = 0.13 for the case S = 0.196 . Thus, the results of weakly 
nonlinear model compare reasonably well with numerical simulations in [29]. Fourth, it is 
shown in [25] that the Benjamin–Feir instability condition

is satisfied for shallow wake flows. This condition implies that plane wave solutions of (23) 
are unstable (and, therefore, are not observable in experiments). This fact is supported by 
experimental data in [11].

Absolute and convective instability analyses are used in [25] to establish a link between 
the shedding frequency and the characteristics of the absolute and convectively unstable 
flows. It is shown, in particular, that in the VS regime the criterion proposed by Koch [43] 
compares well with nonlinear simulations: the global frequency of oscillations (the 

(24)1 + c1c2 < 0

Fig. 2  Shallow wake flow patterns. Vortex shedding (VS), S = 0.17 (a); unsteady bubble (UB), S = 0.35 
(b). From Journal of Fluid Mechanics[25]. Reprint with permission

Fig. 3  Perturbation dynamics 
described by the Ginzburg–Lan-
dau equation. For a linearly 
unstable flow, the perturbations 
grow at the upstream. When the 
perturbation amplitude becomes 
non-negligible, nonlinearity 
reduces the perturbation growth 
rate, causing the perturbation 
amplitude to saturate
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Strouhal number) from the nonlinear simulations is St = 0.217 while the local frequency 
of oscillations calculated at the transition point from convective to absolute instabilities is 
St = 0.208 . Good match between the two results can be partially explained by the fact that 
the base flow profile in [25] is the time-averaged flow in the VS regime. On the other hand, 
the comparison based on the Koch criterion gives rather poor results in the UB case. How-
ever, the criterion proposed in [59, 60] compares better to the results from nonlinear simu-
lations. Thus, the wave-maker mechanism proposed in [59, 60] seems to be valid also for 
shallow flows. The proposed mechanism is based on the assumption that the perturbations 
pile up at the location xca , where the transition from convective to absolute instability takes 
place. This process triggers the VS motion at the frequency which is equal to the frequency 
obtained from the linear analysis at xca.

In many linear stability analyses of shallow wake flows with bottom friction the base 
flow is represented by model velocity profiles obtained either from experiments or from 
time-averaged velocity profiles from numerical simulations. The wake generating obsta-
cle is not taken into account in this case. It is shown in [9] that the structure of wake flow 
remains similar in both cases: (a) when the actual obstacle is present and (b) when the 
obstacle is absent. Thus, such an analysis supports the use of model velocity profiles in 
linear stability analysis of shallow wake flows.

5  Application 2: Shallow mixing layers

The onset and development of 2DCS in shallow mixing layers depends also on the ratio 
between friction and horizontal velocity shear. However, there are two velocity scales in a 
mixing layer, the velocity difference between the two streams ΔU and the average veloc-
ity of the two streams U respectively. Thus the stability parameter is defined as S =

cf �

2H

U

ΔU
 

where � is the mixing layer thickness. Figure 4 displays the vorticity field of a shallow mix-
ing layer, illustrating the spatial development of flow instability. From the inflow boundary 
and to about x = 2.0 m, the perturbation is small and wavy, but spatially growing if S < Sc . 
In the region from about x = 2.0 m to about 3.0 m, the perturbation changes from wavy to 
large scale vortical structures. From about x = 3.0 m to about 12.0 m, the vortical struc-
tures merge with other structures, forming larger vortical structures. Within this region, 
from x = 3.0 to 5.0 m, the vortices experience slight lateral displacement and the mecha-
nism of vortex induction commences. The process of first vortex merging appears to begin 
around x = 5.0  m and is complete around x = 9.0  m. The second vortex merging takes 
place in the region x = 9.0 m to about x = 12.0 m. Beyond x = 12.0 m, the mechanism of 
vortex merging appears to become suppressed. In fact, a reduction in strength of the large 
scale vortices is clearly seen in Fig. 4 just after x = 14 m.

Shallow mixing layers are convectively unstable flows [66]; the perturbations are usu-
ally considered to be subjected to the instability of local base flows as the perturbations 

Fig. 4  Numerically simulated shallow mixing layer Adopted from Liang [51]
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are convected downstream. Chu and Babarutsi  [15] chose the base flow to be the local 
parallel mean velocity profiles implicitly by suggesting the stability parameter S varies 
with downstream position x. At a location where S(x) = Sc , perturbations cease to grow and 
the flow is stable downstream of the location. van Prooijen and Uijttewaal [72] conducted 
linear stability analysis explicitly with the local parallel mean velocity profiles being the 
base flow. The upstream growth and cessation of growth at certain downstream locations in 
their experiments were successfully reproduced. However, the success is attributed to the 
fact that nonlinear effects are accounted for in the mean velocity profile used a base flow. 
The approach of using base flows derived from experiments or nonlinear models in linear 
analysis more likely to rediscover the flow dynamics from which they were derived than to 
explain the underlying instability. Lam et al. [49] sought a fundamental explanation to the 
onset, formation and growth of 2DCS by using a sequence of stability theories, namely the 
linear theory, nonlinear mean field theory and secondary stability theory, in the context of 
convectively unstable flows [18].

5.1  The linear region

At the upstream (or linear region) of the mixing layer, perturbations are selectively ampli-
fied. To illustrate the idea, linear stability analysis of shallow mixing layers is conducted. 
Suppose that the velocities of undisturbed flow are U1 and U2 at y = −∞ and y = ∞ , respec-
tively. The base flow velocity profile U(y) is chosen to be in the form [72]

where � is the parameter characterizing the lengthscale of the velocity gradient. Choosing 
the velocity scale of the form (U2 − U1)∕2 we rewrite (25) in the dimensionless form

where B = (U2 + U1)∕(U2 − U1) is the velocity ratio.
A sample calculation of the marginal stability curve for the case B = 2 is shown in 

Fig. 5. The region of instability is above the curve. The bed friction parameter required 
for stabilization depends on the wavenumber k of the modes. The maximum point on the 
marginal stability curve defines the critical values of the parameters of the problem; S = Sc 
is the critical stability parameter; k = kc and cr = cc are wavenumber and phase speed of 
the most unstable mode. The analysis here gives Sc ∼ 0.1 , which agrees with the transi-
tion between stable and unstable flow in experiments [15, 69]. The modal turbulent energy 
obtained from the linear stability analysis also agrees with experiments [72].

5.2  Beyond the linear region

The relevance of stability theories in shallow mixing layers beyond the linear region is 
illustrated by numerical simulations with hydraulic parameters of the experiment case 
42 in [72]. The experiment was conducted in a shallow flow facility in the Delft Univer-
sity of Technology. Two incoming flows, U1 = 0.11 m/s and U2 = 0.25 m/s respectively, 
came into contact. The water depth was 0.042 m and cf = 0.0064 . The mixing layer thick-
ness was estimated to be � = 0.05 m at a location where the two streams start coming into 
contact. The simulation is conducted in a moving frame of reference. The velocity of the 
frame of reference is that of the inflexion point of the mixing layer velocity profile U . The 

(25)U(y) =
U2 + U1

2
+

U2 − U1

2
tanh(�y),

(26)U(y) = B + tanh(�y),
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resulting Galilean transformed shallow water equations are solved numerically by the 
Boltzmann–Gross–Krook (BGK) finite-volume scheme [24]. The periodic boundary con-
ditions are used in streamwise boundaries, and the transmissive (zero-gradient) boundary 
conditions are used in spanwise boundaries. The initial base velocity profile U(y, t = 0) is

with ΔU0 = U2 − U1 being the initial velocity difference between the fast and slow streams 
and �0 = 2∕� being the initial mixing layer thickness. Two numerical simulations, both 
perturbed with the fundamental and the subharmonic modes of equal energy, are con-
ducted. In one of the simulations, the phase angle difference between the fundamental and 
subharmonic modes is zero. The simulation is referred to as “Simulation 2–0”; “2” means 
the flow is perturbed with mainly two modes; “0” means the phase angle difference is zero. 
In the other simulation, the phase angle difference is �/2. The simulation is referred to as 
“Simulation 2-�/2”. Readers are referred to [48] for the details of the simulations.

Figure  6a shows that the initial condition is in the form of a perturbed vortex line 
which is susceptible to KH instability in all simulations (only simulation 2–0 is shown 
here). The modal growth rate agrees with the linear theory up to Ut = 0.3  m. While 
the perturbation amplitude becomes sufficiently large, nonlinear self-interaction of the 
fundamental mode causes the change of flow structure from a plane wave type to fully 
developed 2DCS as shown in Fig.  6b. Such change is consistent with the change in 
the flow field of the fundamental mode in the mean-field theory, which is discussed in 
Sect.  5.2.1. Beyond the full formation of 2DCS, such structures merge to form larger 
ones. However, the 2DCS merging mechanism is sensitive to the phase-angle differ-
ence. 2DCS in simulation 2–0 merge via the pairing mechanism. In this mechanism, 
the 2DCS arrange in pairs and the 2DCS in each pair twist around one another for some 
time then merge into larger 2DCS. In simulation 2-�/2, the 2DCS merge via the shred-
ding of 2DCS. In this mechanism, each of the weaker 2DCS is located between two 

(27)U(x, y, t = 0) =
ΔU0

2
tanh

(
2y

�0

)
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Fig. 5  Marginal stability curve for shallow mixing layers
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stronger 2DCS and vice versa. The weaker 2DCS are then deformed in the flow fields 
of the stronger 2DCS as shown in Fig.  7. The vorticity of the weaker 2DCS is then 
absorbed into the stronger 2DCS. The merging of 2DCS is a consequence of secondary 
instability of the 2DCS. The idea is further discussed in Sect. 5.2.2.

Fig. 6  The vorticity contours for simulation 2–0 at Ut = 0  m (a), Ut = 1.03  m (b), Ut = 1.93  m (c) and 
Ut = 7.49 m (d)

Fig. 7  The vorticity contours for 
simulation 2-� /2 at Ut = 1.93 m
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5.2.1  Analysis for mean‑field theory

To illustrate correspondence between the roll-up of 2DCS and the mean-field theory, an 
initial value problem (IVP) that accounts for the interactions between the mean flow, the 
fundamental mode and the first harmonic mode is formulated in a frame of reference mov-
ing with the coherent structures. Considering flows with low Froude numbers, the rigid-lid 
assumption is applied. The equations are further decomposed into Fourier modes where 
only the mean flow field, the fundamental mode, the first harmonic mode and their interac-
tion are retained. The result is an initial value problem (IVP) and is referred to as “2-mode-
mean-field”. For comparison, another IVP is formed with the first harmonic mode also 
removed from the Fourier decomposed shallow water equations. This IVP is referred to as 
“1-mode-mean-field”. The solution scheme for the IVPs is described in [48]. The IVP uses 
the eigenfunctions obtained from linear stability analysis as the initial conditions. This is 
different from the dynamical system approach which relies on proper orthogonal decompo-
sition (POD) to determine the basis function from experiments or numerical results.

The IVP is solved for the flow case 42 in [71]. Figure 8 shows the development of the 
fundamental mode in “1-mode-mean-field” during the formation of 2DCS. The flow field 
gives a large modal energy production at the centerline of the mixing layer because of its 
large −u�v� at the centerline. As the fundamental mode grows, the flow field of the funda-
mental mode changes in shape, resulting in smaller modal energy production. When the 
flow field of the fundamental mode further changes such that the modal energy production 

Fig. 8  The velocity field (vectors) and the normalized production (color contour) of the fundamental modal 
energy in “1-mode-mean-field” at Ut = 0 m (a), Ut = 0.54 m (b) and Ut = 1.09 m (c)
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is balanced by other dissipative mechanisms, namely eddy viscosity and bed friction, the 
flow reaches a finite-amplitude equilibrium state. This is consistent with the change of flow 
structure from a plane wave type to fully developed 2DCS in numerical simulations.

5.2.2  Secondary stability analysis

As for shallow wakes (see Sect.  4), the coherent structures are susceptible to secondary 
instability if the Benjamin–Feir instability condition is satisfied. Indeed, such a criteria is 
satisfied for the problem under consideration. Therefore, secondary stability analysis can 
be conducted by using the Stuart vortex (Fig. 9) as the base flow. The Stuart vortex is the 
exact solution of the two-dimensional Euler equations derived by [67], which reads

Here Us(x, y) , Vs(x, y) are the streamwise and cross-stream velocities of the Stuart vortex; 
ΔUs is the velocity difference across the Stuart vortex; L is the vortex size. The base flow 
should be chosen at the finite amplitude equilibrium (i.e. full formation of 2DCS) where 
the 2DCS themselves do not change rapidly.

Similar to the primary linear stability analysis, the method of normal modes is applied 
to the secondary linear stability analysis. For a periodic base flow, Floquet theory suggests 
that the form of solutions for the perturbed flow quantities should be chosen as [42, 64]

where � is the Floquet parameter; � = �r + i�i is a complex growth rate; and ̂̂u𝛼 , ̂̂v𝛼 and ̂̂h𝛼 
are periodic functions in x with period equals to the one in the base flow. The governing 
equations are then linearized and are solved as an eigenvalue problem with a pseudo-spec-
tral collocation method.

Figure  10 shows the growth rate of the pairing mode and the shredding mode. As 
expected from the observed pairing of two 2DCS into a larger coherent structure in shallow 
mixing layers [51] and shallow jets [19], the most unstable Floquet parameter for both the 
pairing and shredding modes is �∕kfun = 0.5 , corresponding to the dimensional wavenum-
ber of the subharmonic mode ( k = 2 ). The presence of two modes of instability and the 
fact that the most unstable mode is at the subharmonic wavenumber is consistent with the 
numerical simulations.

Further research can be directed to answer the questions below with three-dimensional 
numerical simulations; (1) validity of the hydrodynamic stability theories; and (2) the 
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respective roles of hydrodynamic stability theories and inverse energy cascade in 2DCS 
development.

6  Application 3: Froude number effect

Shallow shear flows with low Froude numbers are discussed in Sects. 4 and 5. With higher 
Froude numbers, the effect of gravity wave on shear instability needs consideration. Grav-
ity waves are known to stabilize the flow, but such stabilizing effect is only obvious under 
higher Froude numbers ( Fr > 0.6). Numerical study of longshore currents in [21] and lin-
ear stability analysis in [23] show that the stabilizing effect of gravity waves is not impor-
tant when Fr < 0.6. Linear stability analysis of shallow wakes in [45] shows that the dif-
ference in Sc between linear stability analyses with and without gravity wave effect is less 
than 10% when Fr < 0.6. However, since the velocity gradients govern the formation of 
2DCS, the convective Froude number ( Frc = ΔU∕(2

√
gH) ) is a more appropriate param-

eter, where ΔU is the velocity difference across the shallow layer [38, 39]. In a shallow 
mixing layer with high Frc , gravity waves emanate from the coherent structures in the form 
of shock waves. Part of the energy in the shear layer is radiated with the waves, leaving less 
energy for the KH instability. The result is that gravity waves play a stabilizing effect on 
shallow shear flows [14].
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Fig. 9  The streamfunction of Stuart vortex

Fig. 10  Growth rate versus 
Floquet parameter � for the sec-
ondary instability of the Stuart 
vortex
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To illustrate the effect of gravity waves, numerical simulations with temporal shallow 
mixing layers with Frc = 0.4 and Frc = 1.2 are conducted. A natural choice of initial per-
turbations for the simulations Frc = 0.4 and Frc = 1.2 are their respective most amplified 
modes obtained from linear stability analysis without the rigid-lid assumption. However, 
the resulting eigenfunctions for the two cases are different. Linear and nonlinear growth 
simulated with such initial conditions shows only the combined effect of the flow dynam-
ics and the difference in initial conditions. To isolated the effect of the dynamics from the 
difference in initial conditions, the initial perturbation used here for both Frc = 0.4 and 
Frc = 1.2 simulations is the superposition of the most amplified eigenfunctions of the fun-
damental and subharmonic modes for incompressible mixing layers obtained from linear 
stability analysis with the rigid-lid assumption.

Table 1 shows the initial modal growth of the fundamental and subharmonic modes, 
the time at which the fundamental modal energy is at its peak ( t∗

p
 ), and the energy ampli-

fication at t∗
p
 . Figure 11 shows the water depth and vorticity for Frc = 0.4 and Frc = 1.2 

respectively. At the start, the modal growth rate in the two simulations agree well with 
the linear stability results. This is expected as the initial amplitude and form of pertur-
bations in the simulations are obtained from the eigenfunctions of the linear stability 

Fig. 11  a Water depth and b Vorticity contours of numerical simulation with Fr
c
= 0.4 at t = 9�

0
∕ΔU ; c 

water depth and d Vorticity contours of numerical simulation with Fr
c
= 1.2 at t = 9�

0
∕ΔU
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analysis. At later times, the fundamental mode of Frc = 1.2 simulation stops growing at 
an earlier time than the one of Frc = 0.4 simulation. Thus, the maximum amplitude of 
the fundamental mode in Frc = 1.2 simulation is far less the one in Frc = 0.4 simulation. 
Waves are observed to radiate from the shear layer for Frc = 1.2 , but not for Frc = 0.4 . 
The vortical structures for Frc = 1.2 are more elongated. Such features are known to 
arise in compressible mixing layer with a high convective Mach number [14, 50]. A 
promising future research direction would be to to investigate the interaction of wave-
large scale turbulence interaction in shallow flows, in particular, (1) the physical mecha-
nism responsible for the formation of wave radiation or shocks; and (2) the development 
of flow instability, both linear and nonlinear, under high convective Froude number. In 
fact, [38, 39] has attempted in such directions.

7  Conclusion

The paper discusses the use of reduced dimensionality models and hydrodynamic stability 
theories to illuminate the large scale 2DCS dynamics of shallow shear flows. The onset of 
2DCS for both wakes and mixing layers is well explained by the linear stability theory. For 
shallow wakes, the spatio-temporal perturbation dynamics is instrumental in further classi-
fying the instabilities as being of absolute or convective type. In addition, for shallow flows 
with S → Sc , weakly nonlinear theory is employed, where the Ginzburg–Landau equation 
is derived from the reduced dimensionality model and used to investigate the initial growth 
of the instability. For shallow mixing layers with S ≪ Sc , the nonlinear mean-field theory is 
found to reveal the interaction between the coherent structures and the basic flow field and 
explain the formation of such structures. Once developed, the coherent structures in shal-
low mixing layers are themselves unstable and their dynamics is governed by secondary 
linear stability theory, which leads to the merging of the structures.

The role of gravity waves on the stability of shallow shear flows is best represented by 
the convective Froude number. When Frc is large, gravity wave radiation has a stabilizing 
effect on the shear instability. This is analogous to the way compressibility wave radia-
tion is known to stabilize shear compressible flows when the convective Mach number is 
large. The coherent structures are elongated and small shocks (hydraulic jumps) occur near 
the saddle point of coherent structures. Such little shocks are called “shocklets” in the gas 
dynamics literature.

Further research can be directed to understand the respective roles of inverse energy 
cascade and hydrodynamic stability theories in 2DCS development. It is also worthwhile to 
investigate the development of flow instability in high convective Froude numbers and the 
physical mechanism responsible for the formation of wave radiation or shocks.

Table 1  Initial dimensionless growth rate of the fundamental mode ( �∗
fun

 ) and subharmonic modes ( �∗
sub

 ), 
the time when fundamental energy reaches its peak ( t∗

p
 ) and the amplification of energy at t∗

p
 ( Efun,tp

∕Efun,0 ). 
The time scale for normalization is �

0
∕ΔU

Simulation �∗
fun

�∗
sub

t∗
p

Efun,tp
∕Efun,0

Fr
c
= 0.4 0.1528 0.1187 12.0 3.874

Fr
c
= 1.2 0.1597 0.1186 2.5 1.825

Linear stability theory 0.1430 0.1230 N/A N/A
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