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High-frequency acoustic wave properties in a water-filled pipe. Part 1: dispersion
and multi-path behaviour
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ABSTRACT
Defect resolution using transient-based detection methods (TBDDM) improves as frequency bandwidth of injected signals increases. High-frequency
waves (HFW) excite radial and azimuthal modes, however, making the 1D water-hammer ineffective for these phenomena. This paper focuses on
idealized HFW in inviscid, slightly compressible fluid in rigid, unbounded, circular conduits. HFW waves are generated by an axisymmetric wave
source. High-order 2D finite volume scheme is developed for HFW. Results show that injected probing waves containing a cut-off frequency exhibit
significant wave dispersion, and group velocity varies over a wide range of speeds, resulting in wave-energy spatial spreading with large amplitude
reduction. Injected signals without any cut-off frequency remain spatially separated. Size of wave source significantly affects energy distribution
within wave modes. Practical implications are that probing wave and defect resolution effectiveness may be increased using (i) probing HFW
without cut-off frequencies contained in the bandwidth of the injected probing signal, and (ii) larger power sources for the injection of probing wave
signals.

Keywords: High-frequency waves; high modes; numerical investigation; pipe system; wave dispersion

1 Introduction

The use of high-frequency acoustic waves (HFW) as a prob-
ing tool to provide high-resolution non-destructive and non-
invasive defect detection in water supply systems (WSS) is a
new research area being investigated for potential use by the
authors of this paper together with a large team of international
researchers (see http://smartuws.ust.hk/). Owing both to its nov-
elty for use in transient-based defect detection schemes and
to the unfamiliarity of most researchers in the TBDDM field
to the use of higher frequency transient (acoustic) waves, this
introduction is extended to provide a better basis for readers to
understand the theoretical underpinnings both for its study and
its well-developed theoretical basis in the field of acoustics. This
paper deals mainly with preliminary explorations and conclu-
sions regarding the behaviour of idealized HFW and suggests
some implications regarding their potential use in water sup-
ply systems (WSS). Where necessary for clarity and context,

additional details about transient-based defect detection and its
limitations in general are discussed.

The studies of water-hammer (WH) phenomena in pipe flows
have been undertaken since the middle of the nineteenth century
(Chaudhry, 2014). WH arises in a wide range of pipeline appli-
cations, including water distribution systems, energy pipelines,
power plants, and many others. In the 1990s, researchers
became aware that transient (WH) waves in pipelines con-
tained information arising from wave alteration whenever the
wave is affected by changes in conduit or boundary properties.
The abnormal or anomalous information thus recorded in the
altered wave signals became the basis for interpreting changes
to the wave signal that could be caused by defects, hence the
name given to this approach, i.e. transient-based defect detection
methods.

The majority of existing WH models are one-dimensional
(1-D), which assumes that the pipe pressure does not vary
with radius and that the radial velocity is negligible compared
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to the axial velocity (Ghidaoui, 2004). Such models are the
workhorses of WH analysis and pipeline design. In the last two
decades, quasi-2-D transient models were developed to exam-
ine the validity of existing unsteady friction relations and guide
the development of new ones (e.g. Eichinger & Lein, 1992;
Pezzinga, 1999; Pezzinga, 2000; Silva-Araya & Chaudhry,
1997; Vardy & Hwang, 1991; Zhao & Ghidaoui, 2003). These
2-D models also assume that pipe pressure is not a function
of radius. To the authors’ knowledge, the only numerical work
using a complete 2-D model in which the radial variation of
pressure is included is by Mitra and Rouleau (1985), who
employed an implicit numerical scheme based on matrix factor-
ization. Specifically, they used a finite difference method (FDM)
for space discretization and a three-backward-point scheme for
time marching. A predictor-corrector technique was used to
sweep along the axial and radial directions simultaneously. They
reported that classical 1-D WH theory for laminar flows is
invalid in the vicinity of devices (e.g. valves) and singularities.
However, their test cases were limited to relatively low wave
frequencies. The radial waves in Mitra and Rouleau (1985) are
due to the Hagen–Poiseulle velocity, which, if arrested by a
valve, produces a WH pressure that varies with radius. In fact,
the pressure rise at the centreline is about twice that predicted
by the classic Joukowsky expression.

Theoretically, the assumption that the pressure is not a func-
tion of radius is valid provided that the frequency of the WH is
of the order of a/D or smaller, where a is the wave speed and D
is the pipe diameter (e.g. see Rienstra & Hirschberg, 2004 and
the brief review provided in Section 2). For example, taking an
approximate but typical real-world value of a for steel or con-
crete pipe ( ≈ 1000 m s−1) and D ( ≈ 0.1 to 0.5 m) shows that the
classical WH models are valid if the wave frequency, f, is of the
order of 2 to 10 kHz or smaller. In the past, this neglect of radial
wave velocity, and by implication the classical 1-D WH theory,
has been useful and valid because WH waves are generated by
mechanical devices such valves and pumps whose frequency is
well below 1 kHz. This is not necessarily true for transient-based
defect detection methods.

Since the pioneering work of Liggett and Chen (1994),
transient-based defect detection methods (TBDDM) were devel-
oped in which a known (generally 1-D plane) wave signal
is injected into the conduit, and the response (waveform of
the propagated and reflected signals) is measured at selected
location(s) is processed. TBDDMs are now a useful general
approach for defect detection of blockages, leaks, and for overall
pipe wall condition assessment (e.g. Brunone & Ferrante, 2001;
Covas, Ramos, Brunone, & Young, 2004; Duan et al., 2013;
Lee, Duan, Ghidaoui, & Karney, 2013; Lee, Vítkovský, Lam-
bert, Simpson, & Liggett, 2008; Liggett & Chen, 1994; Meni-
coni et al., 2013; Sattar, Chaudhry, & Kassem, 2008; Vítkovský,
Simpson, & Lambert, 2000; Wang, Lambert, & Simpson, 2005;
Zhao, Duan, & Ghidaoui, 2016) (the list of important papers
is long and is included in the reference section although not
all papers are cited here). The basic principle involved is that

a measured wave signal in a fluid-filled conduit is modified
by, and thus contains information about, the conduit’s proper-
ties and state. In fact, wave theory is widely used to probe and
characterize various media and to convey information in vari-
ous applications (e.g. non-destructive material testing, medical
diagnostics, and underwater communications), where it is well
known that higher frequency probing waves produce better res-
olution of the system state, including its identifiable defects.
Unsurprisingly, similar conclusions are found for TBDDM (e.g.
Lee, Duan, Tuck, & Ghidaoui, 2015; Louati & Ghidaoui, 2015).
In fact, probing waves cannot resolve pipe properties, condition
or defects at scales smaller than a/f. For example, simulated sud-
den pipe bursts could only be located to within ± 45 m (i.e. 90 m
range) even though a sensor was located only 20 m away from
the defect (Allen et al., 2011). The wave resolution in Allen’s
case is a/f ≈ 900/10 ≈ 90 m. In addition, a simulated burst in
Hong Kong could only be located to within ± 42 m (Hong Kong
Water Supplies Department (WSD), private communication).
The minimum wave resolution in this case is a/f ≈ 1200/10
which is close to 90 m. In Milan, Italy, leaks could only be
located to within 800 m (Meniconi et al., 2015). The wave
resolution in this case is a/f ≈ 900/1 ≈ 900 m.

High-frequency piezoelectric actuators are widely used in
underwater acoustics applications, but are rarely used in the
study of fluid transients. Currently, the authors are conducting
preliminary WH tests generated by piezoelectric actuators with
a frequency bandwidth up to 100 kHz, which is well beyond the
scope of this paper but will be discussed in future work. Such
frequencies excite radial waves and are beyond the range of
validity of the classical WH theory. Although the theory of high-
frequency WH waves is not presently developed, the physics
of acoustic waves in gas/air flows is already advanced and is
founded on many early notable works (e.g. Anderson & Barnes,
1953; Hartig & Swanson, 1938; Miles, 1944; Rochester, 1941).
A good summary of key analytical treatment of acoustic wave
propagation in cylindrical gas-filled tubes is given in Tijdeman
(1975). A recent experiment conducted by Kokossalakis (2006)
for the purpose of communication system design for in-pipe
wireless sensor network injected high-frequency waves and col-
lected the propagated signals at separate locations in a variety
of test pipe set-ups. Although the experiment was conducted in
air-filled pipes, the parameters in the experiment were scaled to
mimic wave propagation in a water-filled pipe.

In Part 1 of this work (this paper), fundamental theoretical
and numerical results for high-frequency waves in a water-
filled pipe are briefly reviewed. Additionally, a two-dimensional
model for high-frequency WH waves is developed and applied
to water-filled pipe flow to study the fundamental, idealized
behaviour of high-frequency waves in water pipes. This paper
focuses on the analysis and description of dispersion behaviour
in HFW and considers only inviscid flow in a single infinite
pipe system with initial condition of zero (stagnant) flow. Part
2 (this issue) studies the effect of fluid viscosity and focuses
on the propagation range of HFW. It gives preliminary insights
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into the physical and behavioural factors that practitioners may
need to take into account if HFW are to be successfully used for
TBDDM.

2 Review of the basic properties of the wave solution

2.1 2-D pressure wave solution

Let x and r denote the axial and radial coordinates in a cylin-
drical coordinate system; t is the time; P denotes the fluid
pressure; and a is the speed of sound in the fluid. If the convec-
tive terms (i.e. the analysis for small Mach number), the body
forces and the viscous forces can be neglected, the following
wave equation is given (Rienstra & Hirschberg, 2004):

∂2P
∂t2

− a2∇2P = 0 (1)

where ∇2 is the Laplace operator. For steady oscillatory (stag-
nant) flow in a straight rigid pipe, Eq. (1) has the following
analytical solution (details of the solution can be found in
Rienstra & Hirschberg, 2004):

P =
∑

n

Pn =
∑

n

[ϕn exp(ikxnx − iwt)

+ γn exp(−ikxnx − iwt)]J0(rkrn) (2)

where

kxn =
√

(w/a)2 − k2
rn and krn = αrn

R
(3)

αrn is the nth zero of ∂J0(rkrn)/∂r = 0 (at r = R) which results
from imposing the no-flux condition at the pipe wall and gives
αrn = 0, 3.8317, 7.01556, . . . , etc. In the above, J 0 is the
Bessel function of the first kind of order 0; R is the pipe radius;
w = 2π f is the angular frequency (in rad s−1) with f the fre-
quency (in Hz); and ϕn and γn are respectively the amplitudes of
the nth mode of the left and right going waves along the pipe.

2.2 Basic properties of the wave solution

The pressure of the left going nth mode wave is:

Pn = ϕn exp (ikxnx − iwt)J0(rkrn) (4)

It is clear from Eqs (3) and (4) that:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

if k2 > k2
rn ⇒ √

k2 − k2
rn is real

⇒ Propagating mode

if k2 < k2
rn ⇒ √

k2 − k2
rn is imaginary

⇒ Evanescent mode

(5)

The zeroth mode wave (n = 0 and αr0 = 0) is:

P0 = ϕ0 exp (ikx − iwt) (6)

which is the classical one-dimensional (1-D) WH solution and
is referred to as M0 hereafter. The first radial mode (n = 1 and
αr1 = 3.8317), hereafter referred to as M1, is excited if:

k2 ≥ k2
r1 ⇒ w

a
≥ kr1 = αr1

R
≈ 3.83

R
⇒ wR

a
≥ 3.83 (7)

From Eq. (7), the cut-off frequency (Rienstra & Hirschberg,
2004) beyond which the classical one dimensional WH theory
is no longer valid is:

f > f1 = αr1

π

a
D

≈ 3.83
π

a
D

(8)

For a later discussion, the cut-off frequency beyond which the
second mode (M2) is excited is:

f > f2 = αr2

π

a
D

≈ 7.01
π

a
D

(9)

From Eqs (3) and (4), the phase velocity υn can be determined
from the phase of the solution in Eq. (4) as follows:

υn = w
kxn

= w√
(w/a)2 − k2

rn

≥ a (10)

and the group velocity Vgn of the nth mode is:

Vgn = dw
dkxn

=
d
[
a
√

k2
xn + k2

rn

]
dkxn

= akxn√
k2

xn + k2
rn

=
a
√

(w/a)2 − k2
rn

(w/a)
= a2

υn
≤ a (11)

Figure 1 plots group velocity Eq. (11) for the first four modes
and shows that waves at frequencies close to the cut-off fre-
quencies propagate at very low speed. Figure 1 aids later
discussions.

The total energy per unit wavelength ln in the nth mode is
(Rienstra & Hirschberg, 2004):

En = 1
ln

∫ 2π

0

∫ R

0

∫ ln

0

1
2

(
ρV2

xn + ρV2
rn + P2

n

ρa2

)
r dr dx dθ

= ϕ2
nπR2

2ρa2 J 2
0 (αrn) (12)

and the energy flux (i.e. power) is:

EFn = 1
tp

∫ 2π

0

∫ R

0

∫ tp

0
(PnVxn)r dr dθ dt

= ϕ2
nπR2

2ρa2 J 2
0 (αrn)︸ ︷︷ ︸

En

a2 kxn

w︸ ︷︷ ︸
Vgn

= EnVgn (13)

where tp = 2π /w. For n > 0, Eq. (11) and Fig. 1 reveal that
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Figure 1 Group velocity for the first four modes

Figure 2 A descriptive sketch of multi-path effect (zigzag-type of
path) in axisymmetric pipe flow

the group velocity is smaller than the WH wave speed a. The
fact that energy propagates at a speed slower than a is due to
the fact that modes with n > 0 do not travel parallel to the
pipe axis; instead, they take a zigzag-type path (Rienstra &
Hirschberg, 2004). Figure 2 provides a sketch of the path of dif-
ferent wave modes where the direction wave travel is dictated
by the following wave number vector relation:

−→
k = krn

−→
i + kxn

−→
j (14)

where
−→
i and

−→
j are unit vectors along the r and x directions,

respectively. The speed along each path is given by the phase
velocity (Eq. (10)), which shows that higher wave modes travel
faster but take longer paths. The zigzag path type is dictated
from Eq. (14) where the direction of the wave is normal to the

wave front (Fig. 2). The high-frequency waves will propagate
along a diagonal direction with a certain angle (θkn) from the
pipe centreline when krn �= 0 in Eq. (14). Only M0 waves travel
in straight paths along the pipe for which kr0 = 0 in Eq. (14).
The fact that different wave modes take different paths is referred
to as the multi-path process and is the primary reason that high-
frequency waves are dispersive. The angle of propagation θkn is
defined as follows:

θkn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

tan−1
(

krn

kxn

)
= tan−1

⎛
⎝ krn√

(w/a)2 − k2
rn

⎞
⎠

or

cos−1
(

kxn

k

)
= cos−1

(
akxn

w

) (15)

and its variation with frequency for the first three higher modes
is given in Fig. 3. Figure 3 shows that, at the cut-off frequencies,
θkn is 90° (i.e. at a cut-off frequency a wave propagates radially,
not axially). Therefore, waves at cut-off frequencies are standing
waves and do not propagate along the pipe. For waves propagat-
ing at frequencies near (but not at) the cut-off frequencies, their
angle of propagation is slightly less than 90°; hence, they prop-
agate along the pipe but take a (much) longer path. On the other
hand, Fig. 3 shows that the farther away the wave frequency is
from the cut-off, the smaller is its angle of propagation. There-
fore, the smaller is the angle, the shorter is the path taken by the
wave, and the faster is its speed of propagation.
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Figure 3 Variation in propagation angle (Eq. (15)) with frequency for the first three higher modes

Figure 4 A sketch of a pipe and the coordinate system

3 Governing equation

Let Vx and Vr denote the macroscopic velocity components in x-
and r-directions (Fig. 4), respectively; and ρ, and P denote the
fluid density and the pressure, respectively. The 2-D axisymmet-
ric continuity and Navier–Stokes equations for a compressible
fluid in cylindrical coordinates are (Ghidaoui, 2004):

∂U
∂t

+ ∂F
∂r

+ ∂G
∂x

= S (16)

U =
⎛
⎝ ρ

ρVr

ρVx

⎞
⎠ ; F =

⎛
⎝ ρVr

ρV2
r + P

ρVrVx

⎞
⎠ ; G =

⎛
⎝ ρVx

ρVrVx

ρV2
x + P

⎞
⎠ (17)

S =

⎛
⎜⎝

−ρVr/r

−ρV2
r /r

−ρVrVx/r

⎞
⎟⎠ (18)

The terms in Eq. (18) are due to the cylindrical coordinate
formulation. The state equation relating the pressure to the fluid

density is:

∂P
∂ρ

= K
ρ

(19)

where K is the bulk modulus and ρ is the density. Equation (19)
is for a rigid pipe. If the fluid is water, and the pipe is per-
fectly rigid, the wave speed a is about 1440 m s−1. Equation
(19) can also be applied to slightly deformable pipes, where
an effective bulk modulus of elasticity, which depends on pipe
thickness, diameter, and Young’s modulus of elasticity, is used.
For simplicity of calculation in this paper, a is taken to be
1000 m s−1.

4 Proposed numerical solution for the system of Eqs
(16)–(18)

In this paper, the behaviour of high-frequency waves in a
fluid-filled pipe is studied numerically. In a finite volume (FV)
discretized numerical domain, these high-frequency waves lead
to severe discontinuities at the cell interface. As a result, such
waves require subtle techniques to faithfully represent the phys-
ical characteristics of the propagating waves and to avoid
numerical anomalies such as dispersion and high dissipation
rate (Ohwada, Adachi, Xu, & Luo, 2013). Since high-frequency
waves are dispersive (Eqs (10) and (11)), their physical dis-
persion requires high precision in the numerical results; and
to control errors numerical dispersion must be minimized. For
this reason, finite difference methods (such as Lax–Wendroff
schemes) are avoided due to their dispersive behaviour (Hirsch,
2007), and instead, a FV shock-capturing scheme is used. The
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Figure 5 A sketch of the numerical pipe set-up

Figure 6 Source waveform. (a) time domain variation; (b) frequency domain variation

numerical dissipation mechanism of FV Godunov-type schemes
is complex and depends on the grid resolution, flux evolution
and the projection stage (Xu & Li, 2001). In order to mini-
mize numerical dissipation and, at the same time, achieve an
acceptably rapid convergence, higher order accuracy is required.
For the current work, a fifth order two-dimensional (2-D) FV
numerical scheme based on the Riemann solver (Toro, 2009)
is developed and used. The fifth order accuracy is achieved
by using a weighted essentially non-oscillatory (WENO) recon-
struction (Jiang & Shu, 1996). Details of the developed schemes
can be found in Louati (2016).

4.1 Numerical and physical parameters and initial and
boundary conditions

The simple numerical system being modelled comprises a pipe
with diameter D = 0.4 m and length L (Fig. 5). Flow is con-
sidered inviscid and initially stagnant. The wave form at the
source is given in Fig. 6. The wave is generated at x = L and
its mathematical form is:

⎧⎪⎪⎨
⎪⎪⎩

PF (t) = Ps exp

(
−2

wc
2

β2 log (10)

(
t − β

wc

)2
)

sin
(

wc

(
t − β

wc

))
where 0 < t ≤ twave = β

wc
with β = 16π ; 0 ≤ r ≤ Ds

2

(20)

where wc = 2π fc is the angular central frequency (in rad s−1)
with fc the central frequency (in Hz); PF is the transient pressure
at the source; Ps = 0.1P0 is the maximum transient pressure at
the source with P0 the initial pressure in the pipe; twave is the
duration of the wave generated at the source; and β is a coef-
ficient that controls the frequency bandwidth (FBW); Ds is the
source diameter (Fig. 5). The source is circular in shape with
diameter Ds and is located at the pipe centreline (r = 0) at x = L
(Fig. 5). The wave form given by Eq. (20) allows the modeller to
select a desired FBW. For example, Fig. 6 shows an input signal
that has a FBW of [0.5fc to 1.5fc].

Since the pipe system is assumed to be axisymmetric, the
numerical domain is a rectangular region that extends from
r = 0 to r = R and from x = 0 to x = L. The boundary con-
ditions at r = 0 and r = R are:

∂P
∂r

∣∣∣∣
r=0

= 0; Vr|r=0 = 0;
∂Vx

∂r

∣∣∣∣
r=0

= 0 (21)

and

∂P
∂r

∣∣∣∣
r=R

= 0; Vr|r=R = 0;
∂Vx

∂r

∣∣∣∣
r=R

= 0 (22)

A Taylor series expansion is used to discretize the above bound-
ary conditions and ghost cells are employed at the boundaries.
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At x = 0 and at x = L a non-reflective boundary condition is
used, and Eq. (20) is imposed. The non-reflective boundaries are
modelled using the characteristic boundary condition (Thomp-
son, 1987; Thompson, 1990). Note that numerical reflections are
thus minimized but cannot be eliminated completely (Louati,
2016; Richards, Zhang, Chen, & Nelson, 2004). Therefore, the
pipe length for all test cases is selected to be long enough
so that the domain of interest is not contaminated by artificial
reflections during the duration of the simulation.

Based on a non-parallelized algorithm, the considered grid
mesh is NR × NX = 20 × 5000, which results in a CPU time of
about 12 h for L = 50 m and with wave whose central frequency
fc = 4000 Hz. For the case fc = 6800 Hz (used in Section 5.2), a
finer mesh of NR × NX = 40 × 10,000 is required and the CPU
time is about 51 h.

5 Results and discussion

5.1 High-frequency wave behaviour under resonating source

In this section, the FBW is chosen to include the cut-off frequen-
cies of excited higher modes. In this way, the resonant response
is studied, and the results could be compared to the properties of
the 2-D inviscid wave theory (Section 2) where the natural cut-
off frequencies are well defined. While the analytical solution
is for the homogeneous case, the numerical solution is forced
with a pressure source described by Eq. (20). Therefore, the

eigenvalues and their associated features such as wave path, dis-
persion, cut-off and cut-on modes can be compared, but pressure
and velocity amplitudes cannot.

5.1.1 Dispersion and behaviour of higher wave modes

Three tests are conducted using three different central fre-
quencies fc = 1000 Hz, 3000 Hz and 5000 Hz and using a
source diameter Ds = 0.1D. The upper bound frequency con-
tent (UBFC) in these three test cases is 1500 Hz, 4500 Hz and
7500 Hz, respectively. Results are given in Figs 7 and 8. Fig-
ures 7a and 8a are for a frequency range of 500–1500 Hz, Figs
7b and 8b are for a frequency range of 1500–4500 Hz, and Figs
7c and 8c are for a frequency range of 2500–7500 Hz. These
figures show both time and frequency domain plots of the pres-
sure at x = L − 7 m = 3 m (i.e. 7 m from the wave source) and
x = L − R/2 m = 9.9 m (i.e. 0.1 m from the wave source) along
the pipe centreline. The dashed lines in Fig. 8 indicate the posi-
tion of the relevant cut-off frequencies. According to Eq. (8) and
Fig. 1, if the frequency is higher than f1 = 3050 Hz, the first
higher mode (M1) is excited and the classical 1-D WH theory
is no longer valid. This is in good agreement with the numer-
ical tests in Figs 7 and 8. The signals with fc = 3000 Hz and
fc = 5000 Hz are dispersive and do not conform to the classi-
cal 1-D WH theory as the wave form of the signal is distorted
due to the dispersion of the signal (Fig. 7b and 7c). On the
other hand, the signal with fc = 1000 Hz (Figs 7a and 8a) is
non-dispersive and behaves according to the classical 1-D WH

Figure 7 Dimensionless pressure variation with time measured near the source and at 7 m away from the source. (a) fc = 1000 Hz; (b) fc = 3000 Hz,
(c) fc = 5000 Hz. For all cases Ds = 0.1 D, r ≈ 0 and L = 10 m
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Figure 8 Dimensionless amplitude in the frequency domain corresponding to the pressure signals in Fig. 7 measured near the source and at 7 m
away from the source. (a) fc = 1000 Hz; (b) fc = 3000 Hz, (c) fc = 5000 Hz. For all cases Ds = 0.1D and r ≈ 0

theory. The frequency axis in Fig. 8a is extended to show that
no higher modes are excited. Figure 8b (fc = 3000 Hz) shows
that both M0 and M1 are excited, which agrees with Eq. (8). In
Fig. 8c (fc = 5000 Hz), the second mode (M2) is also excited as
predicted from Eq. (9).

The dispersion of the waves along the pipe is associated
with radial waves. Therefore, it is important to analyse the
behaviour of these radial waves. Figure 9 shows the surface plot
(along r and x) of the pressure waves for the three tests (i.e.
fc = 1000 Hz, 3000 Hz and 5000 Hz). The pressures are sam-
pled at t = twave = 8/fc, t = 0.66L/a and t = 0.9L/a (Fig. 9).
The study domain in this case is of length L = 50 m. For the
case with fc = 1000 Hz (UBFC = 1500 Hz < f1 = 3050 Hz),
the classical 1-D WH theory holds (Fig. 9a, 9d and 9g). How-
ever, for the case where fc = 3000 Hz (Fig. 9b, 9e and 9h),
both M0 and M1 are excited, but the amplitude of M0 is much
smaller than M1. For the case with fc = 5000 Hz, M0, M1 and
M2 are excited as can be seen from Figs 9c, 9f, 9i and 10. For
better visualization, an enlarged version of Fig. 9i is given in
Fig. 10. The region occupied by M2 is indicated in Fig. 10.
It is clear that M2 propagates at slower speed than the two
other modes as it is lagging behind M1 and M0 which is as
expected from Eq. (11) and Fig. 1, confirming that the speed
at which M2 propagates is slower. In addition, it is seen that
M1 spreads over a longer region for the case with fc = 5000 Hz
(Fig. 9i) than for the case with fc = 3000 Hz (Fig. 9f). The wave

source with fc = 5000 Hz excites M1 waves in the range 3050–
7500 Hz. The speed of energy of the M1 excited modes in this
case ranges from 0 to 913 m s−1 (Fig. 1). The wave source with
fc = 3000 Hz excites M1 waves in the range 3050–4500 Hz.
The speed of energy propagation of the M1 excited modes in
this case ranges from 0 to 735 m s−1. The computed results in
Fig. 9h (fc = 3000 Hz) show that the leading M1 wave propa-
gates at a speed of 0.65/(0.9/a) ≈ 722 m s−1. On the other hand,
the computed results plotted in Fig. 9i (fc = 5000 Hz) indicate
that the leading M1 wave travels at 0.81/(0.9/a) ≈ 900 m s−1.
Both speeds agree well with the theoretical speeds in Fig. 1. The
differences between computed and theoretical values are likely
due to the fact that the leading M1 waves carry little energy and
therefore do not appear clearly in Fig. 9h and 9i. This agree-
ment in energy propagation speed at all excited frequencies is
strong evidence that the numerical scheme has minimal disper-
sion and dissipation errors – a conclusion that is important for
the remaining analysis in this paper.

The analytical solution Eq. (2) shows that at any given x,
the nth mode (n = 1, 2, . . . ) is given by a Bessel function of
zero order. The nodes of nth mode are located at J 0(krnr) = 0.
For example, M1 has one node at krnr ≈ 2.4048 which gives
r ≈ 0.627R. In addition, M2 has two nodes: one at r ≈ 0.3427R
and the other at r ≈ 0.787R. These nodes are clearly shown in
Fig. 10. Figure 10 shows that there is a region where the node
of M1 is clear, which implies that M2, if it exists, is negligible
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Figure 9 Dimensionless pressure variation (in colour) in the r–x space plane when different central frequencies are used: (a–c) fc = 1000 Hz, (d–f)
fc = 3000 Hz and (g–i) fc = 5000 Hz. For all cases Ds = 0.1D and L = 50 m

Figure 10 An enlarged portion of Fig. 9i for pressure distribution in the r–x space plane when fc = 5000 Hz, Ds = 0.1D and t = 0.9L/a to show
more detail of pressure nodes and mode forms

in this region. Conversely, there is a region where the nodes of
M2 are clear, which implies that M1 is negligible in that region.
Knowledge of the locations of these nodes could have impor-
tant implications in locating sensors for TBDDM and/or for

experimental investigation of the behaviour of high-frequency
waves in pipes. For example, locating a sensor at the nodes
of M1 means that the measured pressure would be dominated
by noise. Knowing where to measure to maximize the signal
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Figure 11 Energy flux computed numerically for the case of fc = 3000 Hz and Ds = 0.1D showing energy spread with distance from the source:
(a) at x = L − R/2, (b) at x = L − 1 m and (c) at x = L − 7 m. For all cases L = 10 m (see Fig. 5)

strength is important in both research and any eventual field
applications.

5.1.2 Multi-path effect

Figure 11 shows the energy flux (Eq. (13)) with time at three
different locations along the pipe (x ≈ L – R/2 m, x ≈ L – 1 m
and x ≈ L – 7 m) where fc = 3000 Hz, the FBW is [1500 Hz,
4500 Hz] and Ds = 0.1D. Waves with frequency in the range
[1500 Hz, f1 = 3050 Hz] are WH waves and propagate as M0
at the WH wave speed which is 1000 m s−1 (see Fig. 1). Fre-
quencies in the range [f1 = 3050 Hz, 4500 Hz] excite both M0
and M1 waves, where the group (energy) velocity of M0 is the
same as the WH wave speed (Fig. 1) while that of the M1 varies
continuously with frequency from 0 m s−1 to about 700 m s−1

(see Fig. 1). That is, the M0 wave leads the M1 for frequency
in the range [f1 = 3050 Hz, 4500 Hz]. The spatial separation
between the fast propagating mode M0 and the slow propagat-
ing mode M1 is small near the wave source (Fig. 11a) and grows
with distance from the source (Fig. 11b and 11c). In addition,
due to variation with frequency in the propagation angle of M1
waves (Eq. (15) and Fig. 3) and group velocity (Fig. 1), these
waves experience significant spatial spread with time (Fig. 11b
and 11c). This spreading occurs because M0 travels parallel to
the pipe axis while M1 waves travel along a zigzag (oblique)
path (Fig. 2). This multi-path process results in wave dispersion.
Such dispersion is absent in classical WH studies because only
the axially propagating M0 mode is excited in those studies.

In practice, if one is to use HFW for defect detection by
injecting these waves at one location and collecting pressure
measurements at another location, it is important to know how
the multi-path process and its associated dispersion influence
the measurements. In addition, it is important to understand
the wave dispersion process to ensure that it is not miscon-
strued as energy dissipation. Figure 11a shows that close to
the source most of the energy is propagating as a coherent unit
(Fig. 9d). However, in Fig. 11b and 11c, the energy exhibits
temporal spread with a pronounced tail that grows longer and
becomes more uniformly distributed as distance from the source
increases. It is observed in Figs 1 and 3 that, for a given
mode, the further away wave frequencies are from the cut-off
frequency, the more uniform is the group velocity and the propa-
gation angle. This uniformity in group velocity and propagation
angle for certain ranges of frequencies means that the energy
of these waves travels in a group down the pipe (Fig. 11b and
11c). However, over time the energy packet becomes spread
over a longer distance. As a result, the amplitude of the packet
is reduced and could eventually reduce to the same order as the
noise or even lower.

Note that if the injected FBW contains a cut-off frequency,
the speed at this frequency is zero, implying that the energy tail
of the energy packet does not travel to the measurement station,
which is located away from the source. A long measurement
in time is needed to ensure that a significant portion of a wave
packet passes the sampling location. Therefore, it is important to
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Figure 12 Dimensionless pressure variation with time measured near the source and at 7 m away from the source. (a): Ds = D; (b): Ds = 0.5D,
(c): Ds = 0.1D. For all cases fc = 3000 Hz, r ≈ 0 and L = 10 m

take energy spread into account when conducting experiments
by ensuring that measurements are taken (i) over a long enough
time to ensure that the whole wave packet passes the sampling
point; and (ii) close enough to the source to ensure they do not
become “buried in the noise”.

5.1.3 Effect of transient source size

In all previous test cases, the source diameter is fixed at
Ds = 0.1D. In what follows, the effect of the source size on
the wave dispersion behaviour is studied. This is an important
consideration in the selection of a wave generator. In Figs 12
and 13, three tests are conducted using different source diam-
eters, namely, Ds = D, 0.5D and 0.1D. The central frequency
is fixed to fc = 3000 Hz. The total energy (potential and kinetic
energy) along the pipe for these tests is given in Fig. 14. The
results show that when Ds = D (Figs 12a and 13a), the signal
propagates as a plane wave (M0) despite the fact that the waves
with frequencies in the range [f1 = 3050 Hz, 4500 Hz] exceed
the cut-off frequency f1. The reason is that the wave generator,
having the same diameter as the pipe, transmits signals that are
independent of radius; thus, radial wave modes are not excited.
However, if the M0 waves with frequencies higher than f1 meet
any non-uniformity in the pipe, the M1 mode becomes excited.
For the cases where Ds = 0.5D and Ds = 0.1D (Figs 12b, 12c,
13b and 13c), the M1 mode is excited. In the Ds = 0.5D case,
more energy is carried by M0 (Fig. 14b) in comparison with

the Ds = 0.1D case (Fig. 14c). Therefore, the size of the radial
scale of the wave source has a potentially significant influence
on how the input energy is distributed over the different excited
modes. Figure 14 shows that the smaller the source diameter,
the less energy is carried by M0. In fact, as seen from Fig. 15a
and 15b, which are magnified versions of Fig. 12b and 12c, the
amplitude of M0 for the Ds = 0.1D case (Fig. 15b) is about
10 times smaller than the amplitude for Ds = 0.5D case (Fig
15a). The strong dependence of the amplitude of the M0 mode
on the size of the wave source has important implications for
TBDDM that are based on the plane wave assumption (e.g.
Duan et al., 2013; Lee et al., 2013; Louati & Ghidaoui, 2015).
If a wave source capable of generating high frequencies is used,
and if the modeller develops a TBDDM based on the measure-
ment on M0 waves alone, using a small diameter source seems
not advisable because the amplitude of the M0 waves become
negligibly small, making the signal to noise (or error) ratio
small.

5.2 Mode separation

The FBW of the test cases studied so far in this paper include at
least one cut-off frequency. This section considers a FBW that
does not contain any cut-off frequency. The pipe diameter D and
length L are 0.4 m and 100 m, respectively. The source has a
cylindrical shape with diameter Ds = 0.2D located at the pipe
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Figure 13 Dimensionless amplitude in the frequency domain corresponding to pressure signals in Fig. 12 measured near the source and at 7 m away
from the source. (a) Ds = D; (b) Ds = 0.5D, (c) Ds = 0.1D. For all cases fc = 3000 Hz, (r ≈ 0) and L = 10 m

Figure 14 Dimensionless energy distribution along the pipe axis for different source size; (a) Ds = D, (b): Ds = 0.5D and (c): Ds = 0.1D. For all
cases fc = 3000 Hz and L = 10 m
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Figure 15 Magnified versions of Fig. 12b and 12c showing the separation of the plane mode (fundamental mode M0) from the higher mode about
7 m away from the source

Figure 16 Input signal with narrow FBW: (a) time domain; (b) frequency domain

centreline (r = 0) and at x = L (Fig. 5). Figure 16 shows the
time and frequency domain response of the injected waveform
where β = 80π (see Eq. (20)) and shows that the FBW is within
about [0.9fc to 1.1fc].

Figure 17 shows the pressure variation for fc = 6800 Hz
where M0, M1 and M2 are excited as expected from Fig. 1. The
energy of higher mode waves travels at the group velocity (Fig.
1), which is bounded within the interval [Vmin

gn , Vmax
gn ] where Vmin

gn
and Vmax

gn are the minimum and maximum group velocity of the
nth excited high mode and could be evaluated from Eq. (11). In
particular, Vmin

gn is evaluated by inserting the smallest value of

the FBW into Eq. (11) and Vmax
gn is evaluated by inserting the

largest value of the FBW into Eq. (11).
From Eq. (11) and Fig. 1, M1 waves propagate at speeds

within the interval [Vmin
g1

≈ 865 m s−1, Vmax
g1

≈ 910 m s−1]
which are close to the plane wave speed (1000 m s−1). On the
other hand, M2 waves propagate at much lower speeds within
the interval [Vmin

g2
≈ 410 m s−1, Vmax

g2
≈ 670 m s−1]. Therefore,

although the different modes are injected simultaneously, they
quickly become separated with the fastest mode (M0) leading,
followed by M1, etc. Figure 17 illustrates this process for the
case of M1 and M2 modes.
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Figure 17 Variation of the pressure signal at the centreline with time for the case fc = 6800 Hz where M0, M1 and M2 are excited: (a) at x ≈ L
(near the source); (b) at 15 m away from the source; (c) at 50 m away from the source

Figure 18 (a) Total area-averaged energy distribution along pipe at the time t = 0.7L/a; (b) Energy flux variation with time for the case of
fc = 6800 Hz measured at 50 m away from the source
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The position at which the nth mode separates from mode
n − 1 can be estimated as follows:

xs
n

Vmax
gn

=
(

xs
n

Vmin
gn−1

+ twave

)
(23)

This equation provides the position xs
n at which the fastest prop-

agating wave of the nth mode is overtaken by the slowest
propagating wave of the (n − 1)th mode. Equation (23) can be
re-written as:

xs
n = twave

((1/Vmax
gn

) − (1/Vmin
gn−1

))
(24)

where twave (see Eq. (20)) is the duration of the injected
transient wave at the source, which is about 0.005 s when
measured from Fig. 16. Equation (24) provides the mini-
mum distance from the source at which the energy packet
of mode n and mode n – 1 become separated. Applying Eq.
(24) to M2 gives xs

2 = 0.005/(1/670 − 1/865) ≈ 15 m. In fact,
Fig. 17a shows that M2 gets separated from M0 and M1 at
about 15 m away from the source. For M1, Eq. (24) gives
xs

1 = 0.005/(1/910 − 1/1000) ≈ 50 m, which agrees with Fig.
17c in which M1 is separated from M0 about 50 m from the
source.

Figure 18 gives the total area-averaged energy distribution
along the pipe at the time t = 0.7L/a (Fig. 18a) and the energy
flux variation with time for the case of fc = 6800 Hz measured
at 50 m away from the source (Fig. 18b). Figure 18a shows the
three energy packets after they are separated from one another.
The leading edge of the energy packet of the nth excited mode
travels at Vmax

gn while the trailing edge travels at Vmin
gn . The width

of the base of each packet in Fig. 18b provides the time it
takes for that packet to pass through the measurement station.
Mathematically, this time is given by xmes/Vmin

gnh
where xmes is

the measurement location away from the source and nh is the
highest excited mode number. Consider fc = 6800 Hz and the
wave is sampled at 50 m from the source; thus mode M2 takes
about 50/410 ≈ 1.22 L/a to completely travel through this mea-
surement station. This is in contrast to the case of a resonating
probing wave (see Section 5.1) where the tail of the energy
extends from the source location to the measurement location
(Fig. 14) because the group velocity near cut-off frequency is
small and at the cut-off frequency it is zero (Fig. 1). In this
case, the required duration to observe the full packet at a certain
measurement position tends to infinity.

In Fig. 17c, the M2 waveform is more elongated to the right
side (tail of the packet) than to the left side (head of the packet)
whereas M0 and M1 waveforms are not. To explain this obser-
vation, consider the group velocity plots in Fig. 19. With the
FBW of interest, the group velocity for M0 is constant, the group
velocity for M1 is close to being linear and changes very little

Figure 19 Group velocity variation with the non-dimensional fre-
quency (f/fc; where fc = 6800 Hz) showing how the M2 group velocity
variation is steeper to the left side of the central frequency than to the
right side, whereas the variation slope is almost the same for M1

with frequency, but the group velocity of M2 varies strongly
with frequency. In addition, the rate of variation with frequency
is zero for M0, small but nearly constant for M1 and nonlinear
for M2. In fact, the slope of the group velocity for M2 is steep for
frequencies below fc = 6800 Hz, but becomes very mild from
frequencies larger than this central frequency. The asymmetry of
the M2 wave packet seen in Fig. 17 is due to the large variability
in group velocity with the FBW being investigated.

To further illustrate the role of group velocity on the shape
of a wave packet, another test case with fc = 4000 Hz is shown
in Fig. 20. It is clear that M1 is not symmetric with respect to
fc in this case. Again, this is because the M1 group velocity
exhibits larger variability within the FBW centred at 4000 Hz.
In practice this implies that a mode excited by frequencies that
are substantially larger than its cut-off frequency experiences
little dispersion but needs to propagate over a large distance
before it becomes separated from the other modes. Conversely,
a mode that is excited by frequencies larger than but close to its
cut-off frequency experiences large dispersion; its packet is not
symmetric with respect to the central frequency and propagates
only a short distance before becoming separated from the other
modes.
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Figure 20 Variation of the pressure signal at the centreline with time for the case fc = 4000 Hz where only M0 and M1 are excited. (a) at x ≈ L
(near the source); (b) at 25 m away from the source; (c) at 50 m away from the source

6 Conclusions

The physics of acoustic wave behaviour in ducts containing
gas/air is well understood, but there is little literature relevant
to high-frequency waves in water-filled pipes. The current work
studies the propagation of acoustic waves in water pipes to anal-
yse the behaviour of high radial modes when high-frequency
waves are injected in a water-filled pipe. When these high-
frequency waves are used for multi-scale defect detection in full
conduit flow water pipe systems, this study and its insights could
help in the effective design of probing signals and the selection
or evaluation of signal processing techniques used to analyse
the propagating wave signals. Key conclusions of this work are
given below:

(1) A Riemann solver scheme provides good accuracy in mod-
elling high-frequency waves. It is able to preserve the
physical dispersion of the waves with minimal numerical
dissipation.

(2) The resonant response of high-frequency waves is studied
and results compare favourably with the properties of 2-D
inviscid wave theory where the natural cut-off frequencies
are well defined.

(3) At a given location x, the pressure nodes of standing radial
waves located at J 0(krnr) = 0 are accurately observed from
the numerical results. At these pressure nodes, the pressure
is constant, the wave-induced axial velocity is zero and the

wave-induced radial velocity is maximal. Knowledge of the
locations of these nodes could be useful for locating sensors
to maximize information extraction in TBDDM.

(4) The dispersion and multi-path effect of higher modes is
analysed. It is shown that the energy contained in higher
modes becomes distributed along the pipe in the form of an
energy tail that grows longer and more uniform with dis-
tance from the source. As a result, when high-frequency
waves are injected as probing signals for pipe condition
assessment or defect detection, the further the measurement
locations are from the source, the longer the measurement
time must be to observe the full signal. In addition, it is
important to measure close enough to the source to ensure
that the wave signal does not become “swamped by noise”.

(5) If the injected FBW contains the cut-off frequency for a
given mode n, the energy tail of the nth mode is theoretically
infinite because the group velocity near the cut-off fre-
quency is very small near, and zero at, the cut-off frequency.
However, when the cut-off frequency is not included in the
injected FBW, the nth excited mode may be separated from
all other excited modes with a finite length of energy tail
and the degree of spreading (separation) with distance from
the source will depend on its group velocity variation within
the injected FBW.

(6) It is found that the size of the radial scale of the wave
source (i.e. its diameter relative to the pipe diameter) has
a potentially significant influence on the distribution of
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input energy across the various excited modes, and, there-
fore, affects how much energy is carried by the plane (M0)
waves. Indeed, it is shown that a small-sized source could
reduce the amplitude of the M0 waves, resulting in a reduc-
tion in its range of propagation before the signal is no
longer discernible. When high-frequency waves are used
for TBDDM, and if these methods rely on measuring the
plane (M0) waves, then the source size could play a signifi-
cant role in establishing the distance over which the probing
signals might provide useful information about defects.
Results of further study into the influence of source size on
propagation distance will be provided in a future work.
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Notation

A = area integration constant (m2)
a = acoustic wave speed in water (m s−1)
B = integration constant (Pa)
D = pipe diameter (m)
Ds = source diameter (m)
EFn = energy flux of the nth mode (J s−1)
En = total energy per unit wavelength of the nth mode

(J m−1)
f = frequency (Hz)
f1 = cut-off frequency of the first mode (Hz)
f2 = cut-off frequency of the second mode (Hz)
fc = central frequency (Hz)−→
i = unit vector along the radial direction−→
j = unit vector along the axial direction

J 0 = Bessel function of order 0 (–)
k = wave number (rad m−1)
krn = radial wave number of the nth mode (rad m−1)
kxn = axial wave number of the nth mode (rad m−1)
L = length of the pipe (m)
n = radial mode number (–)
NR = number of discrete finite volumes along the radial

direction (–)
NX = number of discrete finite volumes along the axial

direction (–)
P = pressure (Pa)
Pn = pressure of the nth radial mode (Pa)
PF = transient pressure at the source (Pa)
Ps = pressure amplitude of the generated source (Pa)

r = radial coordinate (m)
R = radius of the pipe (m)
S = vector of terms due to cylindrical coordinate

system (–)
t = time (s)
t mes = measurement time (s)
tp = time period (s)
twave = duration of the generated transient wave (s)
Vgn = group velocity of the nth mode (m s−1)
V max

gn
= maximum group velocity of the nth mode (m s−1)

V min
gn

= minimum group velocity of the nth mode (m s−1)
Vr = radial velocity (m s−1)
Vrn = radial velocity of the nth mode (m s−1)
Vx = axial velocity (m s−1)
Vxn = axial velocity of the nth mode (m s−1)
w = angular frequency (rad s−1)
wc = central angular frequency (rad s−1)
x = axial coordinate (m)
xs

n = position at which the nth mode is separated from all
other excited modes.

αrn = nth zero of Bessel function of order 1 (–)
β = constant defining the FBW (rad)
γn = nth pressure amplitude of the left going wave (Pa)
�r = radial length of the discrete finite volume (m)
�x = axial length of the discrete finite volume (m)
θ = azimuthal coordinate (rad)
θkn = propagation angle of the nth mode
ln = wavelength of the nth mode (m)
ρ = density (kg m−3)
υn = phase velocity of the nth mode (m s−1)
ϕn = nth pressure amplitude of the left going wave (Pa)
χ = norm function used to obtain the numerical scheme

accuracy (–)
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