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ABSTRACT
Eigenfrequency (i.e. natural resonant frequency) shift due to variation in the cross sectional area of a conduit is observed in different applications
such as vocal tracts, musical instruments and water supply systems. In the context of water supply systems, past research focused on developing
inverse problem techniques that use shifts in eigenfrequencies to identify blockages. The goal of this paper is to understand the mechanisms that
cause this eigenfrequency shift. Application of the principle of action invariance to a small blockage shows that the eigenfrequency shift is directly
related to the change in energy. For a severe blockage, the pipe system is decoupled into two independent subsystems: a subsystem that involves the
blockage and another that involves the intact pipe section. The decoupling is lost when the blockage length is such that the fundamental frequencies
of the two subsystems are close or equal, resulting in resonance where perturbation theory is successfully used to derive a simple frequency relation.

Keywords: Asymptotic approach; blockage-detection in pipe system; eigenfrequency shift mechanism; energy approach; transient
flow; pipe system

1 Introduction

The possibility of using a measured pressure trace to infer the
internal shape of a conduit is of interest to vocal tract and
water supply researchers. In particular, it is found that the eigen-
frequencies (i.e. natural resonant frequencies) of a measured
pressure signal vary with the cross sectional area of the con-
duit (De Salis & Oldham, 1999; Domis, 1980, 1979; Duan,
Lee, Ghidaoui, & Tung, 2012; Fant, 1975; Heinz, 1967; Mer-
melstein, 1967; Milenkovic, 1987, 1984; Qunli & Fricke, 1990,
1989; Schroeder, 1967; Schroeter & Sondhi, 1994; Sondhi &
Gopinath, 1971; Sondhi & Resnick, 1983; Stevens, 1998). The
interrelation between eigenfrequencies and the cross sectional
area of a conduit has been recently used to formulate algorithms
for defect detection in water supply systems (e.g. Zhao, Ghi-
daoui, Louati, & Duan, in press; Duan et al., 2012; Duan et al.,
2013; Lee, Duan, Ghidaoui, & Karney, 2013; Lee, Vítkovský,
Lambert, Simpson, & Liggett, 2008; Louati, 2013; Louati &
Ghidaoui, 2015; Meniconi et al., 2013; Mohapatra, Chaudhry,
Kassem, & Moloo, 2006; Sattar, Chaudhry, & Kassem, 2008;
Wang, Lambert, & Simpson, 2005). These research activities

are motivated by the fact that blockages are ubiquitous in
water supply systems and their presence is costly and wastes
energy.

The importance of developing detection algorithms for
blockages meant that the focus of past research is on the inverse
problem where mathematical relations that link the eigenfre-
quencies to the cross sectional area of the pipe are formulated
and algorithms for how these relationships can be used to infer
blockages from measured eigenfrequencies are proposed (e.g.
Duan et al., 2012; Duan et al., 2013; Lee et al., 2013; Meni-
coni et al., 2013). While this research direction is promising
and has led to proof of concept under idealized laboratory set-
tings, there are a number of unresolved issues. For example,
there is no proof that the inverse problem, which relates the
unknown blockage properties to the measured eigenfrequencies,
has a unique solution, nor is there a technique to find it even
if it exists. In fact, current solutions of this inverse problem
require that the number of blockages is known a priori, which
is unrealistic in practice. In addition, the computational time
needed to solve the inverse problem grows with the number of
blockages.
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The area of vocal tract reconstruction, which shares many
similarities, including the governing equations, with the prob-
lem of blockage detection in pipes, has made progress instead
by seeking to better understand the forward problem, using this
improved understanding to develop robust inversion techniques.
For example, Mermelstein (1967) showed that the eigenfre-
quency (i.e. natural resonant frequency) shift of the mth pressure
mode is directly linked to the amplitude of the mth term in
the Fourier series expansion of the cross sectional area func-
tion of the conduit with respect to longitudinal distance, and
showed how this relationship can be imposed as a constraint
that guarantees uniqueness of the inverse problem. In addition,
Schroeder (1967) showed that the Ehrenfest theorem (Ehrenfest,
1916) can be used to formulate an algorithm for determining
the geometry of the vocal tract from measured values of the
eigenfrequencies of the acoustic pressure wave. Schroeder’s
(1967) results formed the basis of a number robust algorithms
to solve the inverse problem in the vocal tract field (e.g. Fant,
1975; Schroeter & Sondhi, 1994; Sondhi & Gopinath, 1971;
Sondhi & Resnick, 1983; Stevens, 1998) and other fields (e.g.
De Salis & Oldham, 1999; Domis, 1980, 1979; Milenkovic,
1987, 1984; Qunli & Fricke, 1990, 1989). El-Rahed and Wagner
(1982) investigated the forward problem of blockage-acoustic
wave interaction in finite cylindrical cavities and concluded that
one-dimensional wave theory is acceptable for a large block-
age, while details of the acoustic field are revealed only by
three-dimensional analysis.

This paper constitutes a first attempt to shed greater light on
the forward problem, as if this forward problem is understood,
the issues that arise in connection with its inversion can be
addressed. In particular, the aim is to understand the interaction
between a blockage and the eigenfrequencies. The theoretical
model considered in this work consists of a reservoir-pipe-valve
(RPV) system containing a single blockage with different radial
and longitudinal extent. A blockage in this paper is defined only
by a location, a length and a radial extent as these are the main
parameters that contribute to the eigenfrequency shift mecha-
nism. The remainder of the paper is structured as follows. The
problem statement is given in Section 2. The case of small vari-
ation in the cross sectional area is discussed in Section 3 where
the energy approach is used to describe the different aspects
of the eigenfrequency shift. Section 4 discusses the cases of
severe cross sectional area variation in which the asymptotic
approach is introduced. In Section 5, moderate variation in the
cross sectional area is discussed. Finally, conclusions are drawn
in Section 6.

2 Problem statement

The eigenfrequency shift mechanism is studied for the sim-
ple case of a RPV system as shown in Fig. 1. The blocked
pipe system is modelled as the junction of two pipes in series
with different diameters (Fig. 1). The two pipes are defined as

Figure 1 Reservoir-pipe-valve system with change in cross-sectional
area

pipe 1 with length l1 and cross sectional area A1 = A0 and pipe
2 with length l2 and cross sectional area A2 < A0 where A0 is the
intact cross sectional area. Pipe 2 represents the blockage. The
ratio between the cross sectional of the blocked and intact pipe
is α = A2/A0. The dimensionless lengths are defined by x/L,
η1 = l1/L and η2 = l2/L where L = l1 + l2 is the total length
of the blocked pipe system and x is the distance along the pipe
length from the reservoir (Fig. 1).

A one-dimensional model is used to represent the pressure
and flow variations and it is assumed that the fluid is invis-
cid. Moreover, the change in wave speed due to the blockage
is neglected in this work because (i) the wave speed variation
is usually small for shallow and/or discrete blockage; and (ii) it
does not change the mechanism of eigenfrequency shift, which
is the main purpose of this work. It is important to notice that
the change in eigenfrequencies does not depend on the head
loss caused by a blockage in a real system. Therefore, the head
loss due to the presence of a blockage is neglected in this work.
In what follows, a case without blockage such that α = 1 is
referred as an intact pipe case.

Applying the transfer matrix method (Chaudhry, 2014) on
the blocked pipe system in Fig. 1, the dispersion relation that
relates the natural resonant frequencies (eigenfrequencies) of the
system to its characteristics (e.g. length, diameter, wave speed)
could be obtained. This dispersion relation depends mainly on
the boundary condition (BC) of the system. For the case of the
blocked pipe system in Fig. 1, the dispersion relation is given by:

cos(kml2) cos(kml1) − α sin(kml2) sin(kml1) = 0;

m = 1, 2, 3 . . . (1)

where km = wm/a is the wavenumber of the mth fundamental
(resonant) mode and a is the acoustic wave speed. A generalized
form of the dispersion relation for the case of multiple blockages
can be found in Duan et al. (2012). Trigonometric manipulation
of Eq. (1) gives:

cos(kmL) + (1 − α) sin(kml2) sin(kml1) = 0 (2)

Note that the second term in Eq. (2) represents the effect of
the blockage on the dispersion relation. In fact, for α = 1, this
second term vanishes and Eq. (2) becomes identical to the
dispersion relation of an intact RPV system (cos(kmL) = 0).

Equation (1) is used to study the variation of the eigenfre-
quencies (wm). Figure 2 plots the eigenfrequency variation with
dimensionless length η2 = l2/L for the first four modes (m = 1,
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2, 3 and 4) and for different values of α. Since α = 1 represents
the eigenfrequencies of the intact pipe case, these eigenfrequen-
cies are independent of η2 and are shown as horizontal lines in
Fig. 2. When α �= 1, the second term on the left hand side of Eq.
(2) is not identical to zero. Therefore, the eigenfrequency at a
given mode m (wm) deviates from its intact case (w0

m) (Fig. 2).
In fact, Fig. 2 shows that the eigenfrequencies for α �= 1are
oscillating with respect to the eigenfrequencies of the intact
case (w0

m). The eigenfrequency shift �wm = (wm − w0
m) takes

positive values for some range of blockage length η2, negative
values for some range of blockage length η2, and equals zero for
particular values of blockage length η2.

In addition, Fig. 2 shows that the eigenfrequency shift (�wm)
becomes pronounced with the severity of the blockage (i.e. as
α gets smaller), except for some special values of η2 where

the eigenfrequency shift is zero regardless of the severity of
the blockages. Furthermore, Fig. 2 shows that for η2 �= 1/2,
the maximum eigenfrequency shift occurs at different blockage
lengths as the blockage severity increases (i.e. the value of η2 at
which �wm is an extremum varies with α). On the other hand,
�wm reaches its extremum at η2 = 1/2 regardless of the value
of α.

For better understanding of Fig. 2, Fig. 3 gives the frequency
response function of pressure measurement at the valve prior to
transient generated by a sudden open-close of the valve for the
case where η2 = 1/3 and α = 0.2. The shifts of the eigenfre-
quencies are clear in Fig. 3. The first and fourth eigenfrequencies
experience positive shift, whereas the second and third eigen-
frequencies experience zero and negative shifts, respectively.
The primary objective of this paper is to provide physical and

Figure 2 Dimensionless eigenfrequency variation with dimensionless length η2 of the first four modes for different α values

Figure 3 Frequency response function of pressure measurement at the valve for the case where η2 = 1/3 and α = 0.2
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mathematical insights that can explain the above observations
that emerge from Fig. 2. Such understanding is presently lack-
ing; yet, this insight is essential if the dispersion relation (Duan
et al., 2012) is to become a viable approach for identifying
blockages in fluid lines.

3 Analysis and discussion of frequency-blockage
interaction for blockage with small radial protrusion
(i.e. α near 1)

3.1 Relationship between eigenfrequency shift and change in
energy

The principle of action invariance, which states that the action
is invariant for processes whose time scale (i.e. process time
for the blockage to be created) is significantly larger than the
period of oscillations (i.e. transient time), was successfully used
by Schroeder (1967) to show that the shift in frequency due
to change in area in a vocal tract is related to the change in
total energy brought about by the work done on air by the con-
traction and expansion of the vocal tract. In this section, the
principle of action invariance is applied to the blockage shown
in Fig. 1. Notice that “action” (used above) is usually defined
(in classical physics) as the integral over time of the difference
between kinetic and potential (elastic) energy. This goes back
to the action principles (e.g. principle of least action) (Lanc-
zos, 2012). The derivation that follows is along the lines of that
proposed by Fant (1975).

The elastic potential energy (Um) and kinetic energy (Tm) per
unit length for the mth mode are (Karney, 1990):

Um = ρA0

2

(g
a

)2
h2

m; Tm = ρ

2
A0V2

m = ρ

2A0
q2

m; Em = Um

+ Tm = ρA0

2

[(g
a

)2
h2

m + q2
m

A2
0

]
(3)

where hm, qm and Vm are the unsteady pressure head, flow dis-
charge and flow velocity for the mth mode (see Appendix 1),
respectively; ρ is the fluid density; Um, Tm and Em are elas-
tic potential energy, kinetic energy and total energy for the mth
mode, respectively; a is the acoustic wave speed; g is the stan-
dard gravitational acceleration constant; and A0 is the intact
cross sectional area of the pipe.

Short (discrete) blockage

Consider a short section of the blockage with length �x and
with radial extent small enough that the associated changes in
head and flow rate are small and can be neglected (i.e. the
harmonic solutions of pressure and flow (see Appendix 1) are
almost unchanged due to a blockage with small radial extent
(Fig. 4)). As a result, the changes in kinetic, potential and total
energies per unit length of mode m are:

�Um = ρ

2
�A
(g

a

)2
h2

m; �Tm = −ρ�A
2A2

0
q2

m;

�Em = ρ

2
�A

[(g
a

)2
h2

m − q2
m

A2
0

]
(4)

where �A = A2 − A0 ≤ 0 = (α − 1)A0. Equation (4) shows
that a small localized blockage increases the kinetic energy and,
conversely, reduces the elastic potential energy. To explain, the
blockage occupies some space that was occupied by the fluid
prior to the formation of the blockage. Therefore, the mass of
the fluid in the blockage region is smaller by a factor of (1 − α)
than the mass that was there before the blockage was formed.
Since the change in head due to the small blockage is negligible
(Fig. 4), the reduction of mass by a factor of (1 − α) results in
reduction in elastic potential energy by the same factor. Since
the change in flow rate due to the small blockage is negligi-
ble (Fig. 4), the flow velocity at the blockage is 1/α times the
flow velocity without the blockage. The reduction in mass and

Figure 4 Pressure head (a) and flow rate (b) harmonics variation for small blockage (α = 0.9)
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increase in velocity due to the blockage results in an increase in
kinetic energy by a factor of 1/(1 − α).

The explicit dependence of energy on frequency is brought
about by considering the momentum and continuity equations
(see Appendix 1):

iwq0
m = −gA0

dh0
m

dx
(5)

iwh0
m = − a2

gA0

dq0
m

dx
(6)

where i = √−1. Therefore, the kinetic energy for the cases with
and without blockage can be calculated as:

T0
m(w0

m) = ρ

2A0
(q0

m)2 = − 1

(w0
m)

2

ρA0g2

2

(
dh0

m

dx

)2

(7)

TI
m(wI

m) = T0
m(w0

m) + �Tm

= −
[
1 + �A

A0

]
1

(wI
m)

2

ρA0g2

2

(
dh0

m

dx

)2

(8)

where w0
m is the mth eigenfrequency for the case without block-

age, and wI
m is the mth eigenfrequency for the case with blockage

that would result from the change in kinetic energy only.
Dividing Eq. (7) by Eq. (8) yields:

(wI
m)

2

(w0
m)

2 =
(

1 + �A
A0

)
T0

m

T0
m + �Tm

(9)

While the change in kinetic energy shifts the frequency of mode
m from w0

m to wI
m, the change in elastic potential energy shifts

the frequency of the same mode from wI
m to wII

m . Therefore, we
obtain:

UI
m = ρA0

2

(g
a

)2
(h0

m)2 = − 1

(wI
m)

2

ρa2

2A0

(
dq0

m

dx

)2

(10)

UII
m = UI

m(wI
m) + �Um = −

[
1 − �A

A0

]
1

(wII
m)

2

ρa2

2A0

(
dq0

m

dx

)2

(11)
Dividing Eq. (10) by Eq. (11) yields:

(wII
m)

2

(wI
m)

2 =
(

1 − �A
A0

)
UI

m

(UI
m + �Um)

(12)

Multiplying Eq. (9) with Eq. (12) yields:

(wII
m)

2

(w0
m)

2 = [1 − (�A/A0)
2](

1 + �Um
UI

m

) (
1 + �Tm

T0
m

) ≈ 1(
1 + �Um

UI
m

) 1(
1 + �Tm

T0
m

)
(13)

Since a small blockage results in small change in energy, Eq.
(13) can be rewritten as:

(wII
m)

2

(w0
m)

2 =
(

1 − �Um

UI
m

)(
1 − �Tm

T0
m

)
⇒ wII

m

w0
m

=
(

1 − �Um

UI
m

)1/2(
1 − �Tm

T0
m

)1/2

(14)

Using Taylor expansion and neglecting second order terms, Eq.
(14) becomes:

wII
m

w0
m

= 1 − 1
2

(
�Um

UI
m

+ �Tm

T0
m

)
(15)

The equipartition theorem for linear wave problems states that
(Mei, Stiassnie, & Yue, 2005):

UI
m(wI

m) = T0
m(w0

m) = E0
m

2
(16)

where E0
m is the total energy of the mode m for the case without

blockage. Inserting Eq. (16) into Eq. (15) yields:

wII
m

w0
m

= 1 −
(

�Um

E0
m

+ �Tm

E0
m

)
⇒ wII

m − w0
m

w0
m

= − (�Um + �Tm)

E0
m

⇔ �wm

w0
m

= −�Em

E0
m

(17)

where �wm and �Emare the eigenfrequency shift and the
change in energy due to the blockage of the mth mode, respec-
tively. The same relation arises in many areas such as quantum
mechanics, where it is referred to as the Ehrenfest theorem
(Ehrenfest, 1916), and classical mechanics (e.g. oscillations of
pendulums (Beyer, 1978) and acoustic waves in vocal tracts
(Schroeder, 1967)). Using Eq. (4), Eq. (17) becomes:

�wm

w0
m

= −�Em

E0
m

= −ρ�A
2E0

m
�x

[(g
a

)2
(h0

m)
2 −

(
q0

m

A0

)2
]

=
( |�Um|

E0
m

− |�Tm|
E0

m

)
(18)

It is clear from Eq. (18) that �wm is proportional to w0
m. Thus,

the eigenfrequency shift �wm will only become visible for very
large frequencies w0

m. Such high frequencies cannot be gener-
ated by mechanical devices such as valves and are susceptible
to viscous dissipation even if they could be generated. It is for
this reason that the focus in the literature is to develop detection
methods for discrete blockages on the basis of local damping
that such blockages generate (e.g. Nixon & Ghidaoui, 2007;
Wang et al., 2005) rather than on the basis of the small frequency
shift that they produce.
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Extended blockage

The eigenfrequency shift due to extended blockage such as the
one shown in Fig. 1 is determined by integrating Eq. (18) along
the pipe as follows:

�wm

w0
m

=
∫ L

0 �wmdx
w0

m
= −

∫ L

0

�Em

E0
m

dx

= − ρ

2E0
m

�A
∫ L

l1
�x

[(g
a

)2
(h0

m)
2 − (q0

m)
2

A2
0

]
dx (19)

where �wm and �Em are the shift in eigenfrequency and the
change in energy due to the extended blockage, respectively.
Note that �A came out from under the integral because it is a
constant for the example being considered (Fig. 1). The pressure
head and discharge solution for an intact RPV system are (see
Appendix 1):

{
hm(x, k0

m) = 2iC sin(k0
mx) = hamp

m sin(k0
mx)

qm(x, k0
m) = −2C g

a A0 cos(k0
mx) = qamp

m cos(k0
mx)

(20)

where C is a complex constant of integration; hamp
m and qamp

m

are the mth maximum complex amplitudes of pressure head
and flow discharge, respectively. Inserting Eq. (20) into Eq. (3)
gives:

E0
m = ρLA0

2

(
4|C|2

(g
a

)2
)

= ρL
2A0

|qamp
m |2 = ρLA0

2

(g
a

)2
|hamp

m |2
(21)

and inserting Eq. (21) into Eq. (18) yields:

�wm

w0
m

= −�Em

E0
m

= −�A
A0

∫ L

l1

[(
h0

m

hamp
m

)2

−
(

q0
m

qamp
m

)2
]

dx
L

=
∫ L

l1

( |�Um|
E0

m
− |�Tm|

E0
m

)
dx (22)

Equation (22) shows that the eigenfrequency shift is related
directly to the change in energy for blockages whose radial
extent is small enough that the head and flow of each mode for
the blocked pipe are approximately equal to the blockage-free
case (i.e. hm and qm with and without blockage are the same
(Fig. 4).

Inserting Eq. (20) into Eq. (22) and carrying out the integra-
tion yields (see Appendix 1):

�wm

w0
m

= −�Em

E0
m

= �A
2L(2m − 1) π

2L A0

×
[

sin((2m − 1)π)

− sin((2m − 1)π − (2m − 1)πη2)

]

= −�A
(2m − 1)πA0

sin((2m − 1)πη2)

(23)

which gives:

�wm

w0
1

= −(2m − 1)
�Em

E0
m

= (1 − α)

π
sin
(

2π(2m − 1)
η2

2

)
(24)

Equation (24) is consistent with the form in Qunli and Fricke
(1989) and Duan et al. (2013), and shows the explicit rela-
tionship between eigenfrequency shift and change in energy
resulting from the extended blockage. It is clear from Eq.
(24) that when α tends to 1 (i.e. blockage-free case), both the
eigenfrequency shift and the change in energy approach zero for
all η2. In addition, Fig. 5 exhibits the eigenfrequency variation
given by Eq. (24) as well as that given by the full dispersion
relation (Eq. (2)) for the case of mode m = 2. Good quantitative
agreement between Eq. (2) and its approximate form (Eq. (24))

Figure 5 Normalized eigenfrequency variation with length η2 for m = 2: comparison between exact solution (Eq. (2)) and approximate solution
(Eq. (24)) (energy approach)
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is found for α ≥ 0.7. There is overall qualitative agreement
between these two equations for all α. Although not plotted
here, a similar conclusion is found for other m modes. Such
agreement supports the application of the principle of action
invariance to analyse the eigenfrequency shift induced by a
blockage in terms of the change in energy in a pipe due to the
presence of blockage.

It could be shown that Eq. (24) is symmetric around η2 = 0.5
which agrees with the symmetry feature observed in Fig. 2. This
symmetry feature is a special instance of the junction case under
consideration, and therefore is not general to all random varia-
tion of blockages in a pipe system. More involved and complex
blockage in a pipe will be considered in future work.

3.2 Work of the radiation pressure

The change in energy of the mth mode, given by Eq. (24), is due
to the work done to form the blockage (Schroeder, 1967). This
work is performed against the radiation pressure and it is derived
below. The term “radiation pressure” is used in acoustic, ocean
and costal engineering. It is the difference between the average
pressure at a surface moving with the sound displacements (the
Lagrangian pressure) and the pressure that would have existed in
the fluid of the same mean density at rest (Beyer, 1978). In this
paper, the work of radiation pressure refers to the work done
to create the blockage. Once the blockage is created, the work
of radiation pressure would then refer to the work to hold the
blockage still at its location. To relate the change in energy to the
work of the radiation pressure (e.g. Beyer, 1978; Borgnis, 1953),
multiply Eq. (6) by the complex conjugate of head (h0

m) and Eq.
(5) by the complex conjugate of the velocity (V0

m). Taking the
difference gives:

V0
m

dh0
m

dx
− h0

m
dV0

m

dx
= iw0

m

(
gh0

mh0
m

a2 − V0
mV0

m

g

)
(25)

Adding h0
m

dV0
m

dx − h0
m

dV0
m

dx to the left hand side of Eq. (25) gives:

d(h0
mV0

m)

dx
−
(

h0
m

dV0
m

dx
+ h0

m
dV0

m

dx

)
= iw0

m

(
gh0

mh0
m

a2 − V0
mV0

m

g

)
(26)

Note that:

h0
m

dV0
m

dx
+ h0

m
dV0

m

dx
= h0

m
dV0

m

dx
+ h0

m
dV0

m

dx
(27)

where according to Eq. (6):

− igw0
mh0

mh0
m

a2 = h0
m

dV0
m

dx
(28)

Thus, we get:

hm
dV0

m

dx
+ h0

m
dV0

m

dx
= − igw0

mh0
mhm

a2 + igw0
mh0

mh0
m

a2 = 0 (29)

and therefore:

d(h0
mV0

m)

dx
= i

w0
m

g

(
g2

a2 h0
mh0

m − V0
mV0

m

)
︸ ︷︷ ︸

radiation pressure

(30)

The work of the radiation pressure to form the blockage is:

∫ L

l1
�A

ρ

2

(
g2

a2 h0
mh0

m − V0
mV0

m

)
dx = − ig

w0
m

ρ

2

∫ L

l1
�A

d(h0
mV0

m)

dx
dx

(31)
Equation (31) shows that:

∫ L

l1
�A

ρ

2

(
g2

a2 h0
mh0

m − V0
mV0

m

)
dx

= − ig
w0

m

ρ

2

∫ L

l1
�A

d(h0
mV0

m)

dx
dx

= ig
w0

m

ρ

2
�A[(h0

mV0
m)L − (h0

mV0
m)l1 ]

(32)

Using Eq. (22) gives:

�wm

w0
m

= Re

[
ig

E0
mw0

m

ρ

2
�A
A

∫ L

l1

d(h0
mq0

m)

dx
dx

]

= ξm

[(
h0

mq0
m

hamp
m qamp

m

)
l1

−
(

h0
mq0

m

hamp
m qamp

m

)
L

]
(33)

with:

ξm = −i
ρg

2w0
mE0

m

�A
A

hamp
m qamp

m = a
w0

mL
(1 − α) (34)

and “Re” denotes real part. With comparison with Eq. (22)
which relates the change in eigenfrequency to the change in
energy within the blocked section, Eq. (33) shows that the eigen-
frequency shift depends on the difference between the works
done at the blockage boundaries. Therefore, Eq. (33) shows
that it is sufficient to only study the work done at the blockage
boundary to obtain the eigenfrequency variation which is much
simpler approach than studying the change in energy (Eq. (22)).
Equation (33) is used in Sections 3.3 and 3.4 to study the shift
behaviour.

For the current case of a blockage at the downstream bound-
ary, the work at the valve is always zero, and therefore, Eq. (33)
simply becomes:

�wm

w0
m

= ξm

(
h0

mq0
m

hamp
m qamp

m

)
l1

(35)

Inserting Eq. (20) into Eq. (35) leads to Eq. (24).
Equation (33) has the freedom to be applied to random varia-

tions of cross-sectional area. Equation (33) will be used in future
work to study more involved blocked pipe systems.
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Table 1 Zero shift location at the first four modes

Mode number Blockage location

m = 1 η2 = 0, 1
m = 2 η2 = 0, 1/3, 2/3, 1
m = 3 η2 = 0, 1/5, 2/5, 3/5, 4/5, 1
m = 4 η2 = 0, 1/7, 2/7, 3/7, 4/7, 5/7, 6/7, 1

3.3 Analysis and discussion of the zero eigenfrequency shift

This section explains the mechanism of zero shift from different
aspects: first analytically; second through energy perspective;
third using the work of radiation pressure (Eq. (33)); fourth, and
finally, through intuitive and physical perspective. The fourth
perspective shows that the system could be seen to be divided
into two subsystems (I & II) with fundamental frequencies the
same as the whole intact pipe system. Details are given in what
follows.

Figure 2 shows there is zero shift for cases shown in Table 1.
This result can be generalized for all m by setting Eq. (24) to
zero:

sin
(

2π(2m − 1)
η2

2

)
= 0 ⇒ π(2m − 1)η2 = (τ − 1)π ;

τ = 1, 2, 3 . . .

⇒ η2 = η2(m, τ)

= τ − 1
(2m − 1)

≤ 1; τ ≤ 2m

(36)

Equation (36) gives the length of the blockage for which the mth
mode experiences no shift. Note that the condition that τ ≤ 2 m
is due to the fact that the blockage cannot be longer than the pipe
(i.e. η2 ≤ 1). The values of η2 where zero shift is obtained from
Fig. 2 can be derived by evaluating Eq. (36) for m = 1, 2, 3 and
4. For example, evaluating Eq. (36) for m = 2 gives η2(2, 1) =

0,η2(2, 2) = 1/3, η2(2, 3) = 2/3 and η2(2, 4) = 1. These values
correspond to the zero shift locations shown in Fig. 2.

From an energy perspective, Eq. (22) shows that the zero
shift of the mth mode occurs when the blockage produces either
(i) zero change in the elastic potential energy and the kinetic
energy; or (ii) non-zero but equal change in potential and kinetic
energy. This is illustrated in Fig. 6 for m = 2. It is evident that
the change in potential and kinetic energy are non-zero, but
equal at η2 = 1/3, while the change in both potential and kinetic
energy are zero at η2 = 0, 2/3, 1 (Fig. 6).

The zero eigenfrequency shift of mode m due to a blockage
means that the work done by the radiation pressure to form the
blockage is zero (Schroeder, 1967). According to Eq. (33) this
work is zero when either the pressure or velocity at the edge of
the blockage is zero. When the blockage extends from the valve
to x = 2L/3, the pressure of mode m = 2 is zero at x = 2L/3
(Fig. 7). Therefore, the work of the radiation pressure is zero,
implying the change in energy of mode m = 2 is zero and, thus,
the eigenfrequency shift is zero. When the blockage extends
from the valve to x = L/3, the velocity of mode m = 2 is zero at
x = L/3 (Fig. 7). Therefore, the work of the radiation pressure is
zero, implying the change in energy of mode m = 2 is zero and,
thus, the eigenfrequency shift is zero. In general, the eigenfre-
quency shift of mode m is zero when the values of hmVm of this
mode at either end of the blockage are equal.

Physically, when the blockage extends from the downstream
end to the pressure node (η2 = 2/3, case (a) in Fig. 7), the pipe
system for this mode m = 2 is effectively divided into two pipe
subsystems. Subsystem I is a RPV with a pipe length equal
to the blockage length l2 = L/3. Subsystem II is a reservoir-
pipe-reservoir with a pipe length equal to l1 = L−l2 = 2L/3.
The wavelengths of the natural modes of subsystem I are
ln = 4l2/(2n−1) = 4L/3(2n−1) for n = 1, 2 . . . . Therefore,
the wavelength of the fundamental (n = 1) mode is l1 = 4l2
which explains the quarter wave in subsystem I (Fig. 8, case

Figure 6 Variation with η2 of total change in potential and kinetic energy in the pipe with blockage along with the eigenfrequency shift at mode
m = 2 and α = 0.8
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Journal of Hydraulic Research (2017) Eigenfrequency shift mechanism due to variation in the cross sectional area of a conduit 9

Figure 7 Eigenfrequency shift variation at mode m = 2 for different α values along with the intact pressure harmonic

Figure 8 Sketch depicting how the harmonic at mode m = 2 is subdivided into single subharmonics. Case (a) and case (b) correspond to the zero
shift cases where η2 = 1/3 and η2 = 2/3, respectively

(a)). The wavelengths of the natural modes of subsystem II
are ln = 2l2/n = 4L/3n for n = 1, 2 . . . . Therefore, the wave-
length of the fundamental (n = 1) mode is l1 = 2l2, which
explains the half wave in subsystem II (Fig. 9, case (a)). That
is, mode m = 2 of the whole pipe system is made up of the two
fundamental modes of subsystems I and II. The same reasoning
can be used to explain the subsystems in Fig. 8, case (b), as well
as the zero shifts that occur for other modes m.

3.4 Analysis and discussion of the positive and negative
eigenfrequency shift

Figure 2 shows that the first four modes experience positive shift
and negative shift for blockage locations as given in Table 2.
These observations are corroborated by Eq. (24).

Equation (22) shows that a positive eigenfrequency shift in
mode m occurs when the presence of the blockage results in a
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10 M. Louati and M.S. Ghidaoui Journal of Hydraulic Research (2017)

Figure 9 Sketches of the junction system for two shift cases: case (c) leads to positive shift (η2 = 1/6) and case (d) leads to negative shift
(η2 = 5/12)

Table 2 Blockage locations that lead to positive and negative
shift at the first four modes

Mode number
Blockage location for

positive shift
Blockage location for

negative shift

m = 1 η2 in ]0 , 1[ No negative shift
m = 2 η2 in ]0 , 1/3[ ∪ ]2/3 , 1[ η2 in ]1/3 , 2/3[
m = 3 η2 in ]0 , 1/5[ ∪ ]2/5 ,

3/5[ ∪ ]4/5 , 1[
η2 in ]1/5 , 2/5[ ∪ ]3/5 ,

4/5[
m = 4 η2 in ]0 , 1/7[ ∪ ]2/7,

3/7[ ∪ ]4/7 , 5/7[ ∪
]6/7 , 1[

η2 in ]1/7 , 2/7[ ∪ ]3/7 ,
4/7[ ∪ ]5/7 , 6/7[

net negative change in the total energy of this mode. This in turn
occurs when the change in elastic potential energy is larger than
the change in kinetic energy (see right hand side of Eq. (22)).
Conversely, Eq. (22) shows that a negative eigenfrequency shift
in mode m occurs when the presence of the blockage results in
a net positive change in the total energy of this mode. This, in
turn, occurs when the change in elastic potential energy is less
than the change in kinetic energy (see right hand side of Eq.
(22)). This is illustrated in Fig. 6 for the case of m = 2. In par-
ticular, Fig. 6 shows that the change in elastic potential energy
is larger than the change in kinetic energy of mode m = 2 for η2

in ]0, L/3[∪]2L/3, L[ which is the region where there is a pos-
itive eigenfrequency shift of mode m = 2 (Fig. 2). In addition,
Fig. 6 shows that change in elastic potential energy is less than
the change in kinetic energy of mode m = 2 for η2in ]L/3, 2L/3[

which is the region where there is negative eigenfrequency shift
of mode m = 2 (Fig. 2).

To further investigate the eigenfrequency shift in mode
m = 2, Fig. 9 shows two cases for which the shift is positive
(case (c)) and negative (case (d)). The pressure head and veloc-
ity harmonics corresponding to case (c) and case (d) are given
in Fig. 10a and 10b, respectively. It is clear from Fig. 10a that
mode m = 2 has a positive h and a negative V at x = 5L/6.
Therefore, hV�A of this mode is negative at x = 5L/6, imply-
ing that the work of the radiation pressure (Eq. (31)) and the
change in energy for a blockage that extends from the valve to
x = 2L/3 are negative. This explains why mode m = 2 experi-
ences a negative shift in this case (Fig. 2). Figure 10b shows
that mode m = 2 has negative h and V at x = 7L/12. There-
fore, hV�A of this mode is positive at x = 7L/12 implying that
the work of the radiation pressure (Eq. (31)) and the change in
energy for a blockage that extends from the valve to x = 7L/12
are positive. This explains why mode m = 2 experiences a pos-
itive shift in this case (Fig. 2). In fact, hV�A of the mth mode
varies assin[ ( 2m − 1) πη2] ; thus, there is (i) a positive shift
when the argument of the sine function varies is in the range
]2μπ , (2μ+ 1)π [ where μ is an integer counting number; and
(ii) a negative shift otherwise. In general, a given mode m
experiences negative eigenfrequency shift when the work of
the radiation pressure due to the formation of the blockage is
positive and experiences a positive eigenfrequency shift when
the work of the radiation pressure due to the formation of the
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Journal of Hydraulic Research (2017) Eigenfrequency shift mechanism due to variation in the cross sectional area of a conduit 11

Figure 10 Dimensionless pressure and velocity harmonics when m = 2 and α = 0.4 : (a)η2 = 1/6; leads to positive shift (b)η2 = 5/12 leads to
negative shift. The black square boxes are sketch of the cross sectional area reduction

blockage is negative. It is noted that a positive eigenfrequency
shift is sometimes referred to as length shortening and a neg-
ative eigenfrequency shift as length extending (e.g. Qunli and
Fricke 1989).

The maximum eigenfrequency shift position corresponds to
the length of the blockage at which the change in energy is an
extremum. Mathematically, this occurs when the derivative of
Eq. (24) is zero; that is:

cos
(

2π(2m − 1)
η2

2

)
= 0 ⇒ 2π(2m − 1)

η2

2

= (2n − 1)
π

2
; n = 1, 2, 3

⇒ η2 = η2(m, n) = (2n − 1)

2(2m − 1)
≤ 1; n ≤ 2m − 1

(37)

For example, consider the case of m = 2. The condition,
n ≤ 2m−1 = 3 gives n = 1, 2 and 3. Therefore, there are three
maxima at 1/6, 1/2 and 5/6 (Fig. 5). These maxima correspond
to hmVm �A, which varies as sin[ ( 2m − 1) πη2], having the
largest magnitude (i.e. where the work of the radiation pressure
is extremum).

4 Analysis and discussion of frequency-blockage
interaction for blockage with large radial protrusion
(i.e. α near 0)

The previous section is devoted to blockage with small radial
protrusion. In this section, a blockage with large radial protru-
sion (referred to as severe blockage in this paper) is investigated.

For a severe blockage (i.e. α tends to 0), Eq. (1) reduces to:

cos(kl1) cos(kl2) = 0 (38)

which implies:

cos(kl1) = 0 ⇒ ws1
m

w0
1

= (2m − 1)

η1
; m = 1, 2, 3 . . . (39)

or

cos(kl2) = 0 ⇒ ws2
m

w0
1

= (2m − 1)

η2
; m = 1, 2, 3 . . . (40)

where w0
1 is the first eigenfrequency of the intact pipe case and

ws1
m and ws2

m are the mth eigenfrequencies for the case of severe
blockage. Effectively, the severe blockage decouples the pipe
system responses into two independent subsystems. Subsystem
1 consists of the pipe with length l1 bounded by the upstream
reservoir and the blockage. The blockage, being severe, would
act in a manner similar to a valve. That is, a severe blockage
imposes a large impedance on the flow as a valve would. There-
fore, the response of subsystem 1 is equivalent to a RPV system.
In fact, the resonant frequencies given by Eq. (39) are for a
RPV system, where the pipe has a length l1. It is for this reason
that a superscript “s1” is used in Eq. (39). Subsystem 2 consists
of another RPV system in which the narrow blockage opening
functions as a small diameter pipe of length l2, while the much
larger pipe diameter of lengths l1 acts as a reservoir. Indeed, the
resonant frequencies given by Eq. (40) are for a RPV system,
where the pipe has a length l2.
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12 M. Louati and M.S. Ghidaoui Journal of Hydraulic Research (2017)

Figure 11 Dimensionless eigenfrequency variation with length η2 of the first four modes for different α along with the asymptotic solution from
Eqs (39) and (40)

The decoupling of the pipe system into two subsystems
can be understood from an energy perspective. The ratio
of reflected to incident energy at the interface between the
blocked and unblocked pipe sections is (Lighthill, 1978)
(Z1−Z2)2/(Z1 +Z2)2 = (α − 1)2/(α + 1)2, where Z1 = ρa/A0 is
the impedance of the unblocked pipe section and Z2 = ρa/A2

is the impedance of the pipe section that has the severe block-
age. The ratio of the transmitted to incident energy at the
interface between the blocked and unblocked pipe sections is
4Z1Z2/(Z1 + Z2)2 = 4α/(α + 1)2. Clearly, as α tends to 0, the
reflection coefficient approaches 1 and the transmission coeffi-
cient approaches zero. Therefore, a wave that is generated in
subsystem 1 is largely trapped in this subsystem. Conversely,
a wave that is generated in subsystem 2 is largely trapped in
this subsystem. It is in this sense that the decoupling should be
understood.

The eigenfrequencies of the whole system are the union
of the eigenfrequencies of subsystems 1 and 2. That is,
wm = {(2m−1) aπ /(2l1)}∪{(2m−1) aπ /(2l2)}, where ∪ is the
union operator. It is clear that if the blockage length l2 is much
smaller than l1, then the low frequencies are governed by sub-
system 1 and vice versa. To see this, consider Fig. 11. The
fundamental frequencies of subsystem 1 (cos(kl1) = 0) and sub-
system 2 (cos(kl2) = 0) are plotted for m = 1, 2, 3 and 4. It
can be seen that w1, w2, w3 and w4 are governed by subsystem
2 for a short (i.e.η2 close to 0) blockage and by subsystem 1
for a long (i.e.η2 close to 1) blockage. For example, using Eq.
(39), the first four dimensionless eigenfrequencies for subsys-
tem 1 for η2 = 1/3 are 3/2, 9/2, 15/2 and 21/2. In addition, using
Eq. (40), the first four dimensionless eigenfrequencies for sub-
system 2 for η2 = 1/3 are 3, 9, 15 and 21. The union of these

eigenfrequencies is {3/2, 9/2, 15/2, 21/2}∪{3, 9, 15, 21} = {3/2,
3, 9/2, 15/2, 9, 21/2, 15, 21}. Therefore, the first four dimen-
sionless resonant frequencies for the overall system are {3/2, 3,
9/2, 15/2} which agree with values that can be read from Fig. 11
when η2 = 1/3. Note that the first, third and fourth of these fre-
quencies are the first three resonant frequencies of subsystem 1
and the second is the eigenfrequency of subsystem 2. In the pre-
ceding eigenfrequency sets, the four fundamental frequencies
of the overall system are determined manually by calculating
the four fundamental frequencies of each subsystem and then
sorting them from lowest to largest value. An algorithm that
automates this sorting process is given in Appendix 2.

Equation (B4) (see Appendix 2) gives the different asymp-
totic branches at a given mode m as η2 varies, and as observed
from Fig. 11, these branches define the solution domain of the
eigenfrequency shift variations for 0 ≤ α ≤ 1.

5 Analysis and discussion of frequency-blockage
interaction for blockage with moderate radial
protrusion

The last two sections focused on blockages with small radial
protrusion (α near 1) and blockages with large radial protru-
sion (α near 0). It is found that the small blockage assumption
is accurate for α ≥ 0.7(Fig. 5). In addition, the large blockage
assumption is valid for α < 0.7 provided that the values of the
frequencies of subsystem 1 (Eq. ((39)) and subsystem 2 (Eq.
(40)) are not equal or close to each other (Fig. 11). This section
focuses on the case α < 0.7for systems where the frequencies
of subsystem 1 (Eq. (39)) and subsystem 2 (Eq. (40)) are equal
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or near each other. In this case, the waves in subsystem 1 act as
forcing functions to subsystem 2, where the forcing frequency is
equal or close to the eigenfrequency of subsystem 2. Similarly,
the waves in subsystem 2 act as a forcing function to subsystem
1, where the forcing frequency is equal or close to the eigen-
frequency of subsystem 1. That is, both subsystems are driven
at or near resonance. Therefore, although the ratio of transmit-
ted to incident energy on the interface between the blocked and
unblocked pipe sections of each incoming wave is of the order of
4α/(α + 1)2 (i.e. small), the fact that each of the two subsystems
is driven near its resonance frequency means that the transmit-
ted energy accumulates with time and forces the overall system
to behave more as a coupled rather than an uncoupled system.

To first order, the wavenumbers and eigenfrequencies of
the coupled system are those of the uncoupled system plus a
perturbation (i.e. km = ks

m + δkm and wm = ws
m + δwm). There-

fore, Eq. (1) gives: δkm = ± √
α/(l1l2), which gives δwm = ±

a
√

α/(l1l2). To illustrate this, consider the case α = 0.2, m = 1,
l1 = L/2 = l2. Then, δw1/w0

1 = ± (α/l1l2)1/2/(π /2L) = ±
(α/L/2L/2)1/2/(π /2L) = ± (4/π )(α)1/2 = ± 0.569, which is in
good agreement with the deviations that can be read from
Fig. 11. Note that δwm = ± a

√
α/(l1l2) is independent of m,

which agrees with Fig. 2.
It is noted from Fig. 11 that the zero shift is independent of α.

This result can be explained from Eq. (1). In particular, for any
α �= 1, Eq. (1) gives the intact pipe frequencies whenever the
blockage length is such that either sin(kl1) = 0 or sin(kl2) = 0.

Figure 2 shows that the position of the maximum shift
changes as a function of α except when the blockage length
is half of the pipe length (i.e. η2 = 0.5). An expression for the
maximum eigenfrequency shift and the location η2 at which it
occurs can be obtained from Eq. (2) as follows:

cos(kL) + 1 − α

1 + α
cos(kL − 2kl2) = 0 (41)

where the second term on the left hand side of Eq. (41) is what
causes the shift in frequency. The maximum shift occurs when
that term is maximum, which gives:

sin(kL − 2kl2) = 0 ⇒ kmax
m L − 2kmax

m l2

= (n − 1)π ; n = 1, 2, 3 . . .

⇒ cos(kmax
m L − 2kmax

m l2) = (−1)(n−1)

(42)

where kmax
m = wmax

m /a is the wavenumber corresponding to the
maximum mth eigenfrequency (wmax

m ) magnitude at a given α.
Inserting Eq. (42) into Eq. (41) yields:

⇒ kmax
m L = acos

[
(−1)n+m−1

(
1 − α

1 + α

)]
+ (m − 1)π ; m = 1, 2, 3 . . . (43)

which gives:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�wmax
m (m, α, n)

w0
1

= wmax
m − w0

m

w0
1

= 2
π

acos
[
(−1)n+m ( 1−α

1+α

)]− 1

where n ≡ n − 1 = 1, 2, 3 . . . and m = 1, 2, 3 . . .

(44)

where �wmax
m (m, α, n) is the maximum shift at a given mode

m, a given αand a given positive or negative shift region n
(between two successive zero shift locations (Fig. 2 and Eq.
(36)). In Eq. (44), n − 1 was replaced by n so that the first
(n = 1) shift magnitude is positive. For example, the first shift
region (n = 1) as η2 increases in Fig. 2 is located at η2(2, 1) =
0 ≤ η2 ≤ η2(2, 2) = 1/3 (Fig. 2 and Eq. (36)). Thus, at mode
m = 2, α = 0.2 and n = 1, Eq. (42) shows that the magnitude
of the eigenfrequency shift is �wmax

m (2, 0.2, 1)/w0
1 = 0.4646

which agrees with Fig. 11.
The location corresponding to each maximum shift is

obtained by inserting Eq. (43) into Eq. (42) which leads to:

⇒
⎧⎨
⎩η2 = η2(m, α, n) = 1

2

[
1 − (m−n)π

acos((−1)2m−n 1−α
1+α )+mπ

]
;

where n − 1 ≡ (m − n) ≤ 2m and 0 ≤ η2 ≤ 1
(45)

For example, at mode m = 2, α = 0.2 and n = 1, Eq.
(45) shows that the position of the maximum shift is
η2(2, 0.2, 1) = 0.2114, which agrees with Fig. 11.

6 Conclusions

The eigenfrequency shift due to variation in the cross sectional
area of a conduit is investigated with the primary goal being to
understand and describe the mechanisms that cause the eigen-
frequency shift caused by a conduit blockage. The theoretical
model considered consists of a RPV containing a single block-
age that may have different radial and longitudinal extent. The
key findings are:

(1). The assumption of small blockage is applicable when the
blockage occupies 30% of the pipe’s area or less. The
assumption of severe blockage is applicable when the
blockage occupies 30% of the pipe’s area or more pro-
vided that the eigenfrequencies of waves in the blockage
zone and waves outside the blockage zone are not close or
equal.

(2). A small blockage reduces the elastic potential energy, but
increases the kinetic energy of all modes. In addition, wm

Em is conserved, implying �wm/wm = −ΔEm/Em for all
modes m, and the change in energy is found to equal the
work of the radiation pressure during the formation of the
blockage. The test cases confirm that (i) a blockage that
causes an increase in total energy of a mode m would pro-
duce a negative shift of the eigenfrequency of this mode;
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(ii) a blockage that causes a decrease in total energy of a
mode m would produce a positive shift of the frequency
of this mode; and (iii) blockage that causes a zero change
in total energy of a mode m would produce no shift of the
frequency of this mode.

(3). A severe blockage decouples the pipe system into two inde-
pendent subsystems. The ratio of the reflected to incident
energy at the interface between the blocked and unblocked
pipe sections is about 1 while the transmission coefficient
is about 0. The eigenfrequencies of the overall system are
given by the union of the eigenfrequencies of the two
decoupled systems.

(4). The decoupling by a severe blockage is lost when the eigen-
frequencies of the two subsystems are close or equal to
each other. When this happens, waves in the blockage act
as forcing functions that drive the rest of the pipe system
at or near resonance. Similarly, waves outside the block-
age are forcing functions that drive the waves within the
blockage at or near resonance. The fact that both subsys-
tems are driving one another at or near resonance is what
brings about the coupling even for a very severe blockage.
In this case, perturbation theory is found to provide a sim-
ple and explicit relationship between the frequency shift
and the properties of the blockage.

(5). The methodology presented in this paper can be extended
to more general problems. In fact, the authors have already
embarked on extending the work to a single pipe but with
more realistic blockage, and the results will be reported in
future publications.
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Appendix

Appendix 1: Governing equations

A.1 Intact pipe case

The continuity and momentum equations of an inviscid flow in
a single intact pipe case are given by (Chaudhry, 2014):⎧⎪⎪⎨

⎪⎪⎩
∂H
∂t

+ a2

gA0

∂Q
∂x

= 0

∂Q
∂t

+ gA0
∂H
∂x

= 0
(A1)

where Q is the instantaneous flow discharge, H is the instan-
taneous pressure head, g is the acceleration due to gravity, A0

is the cross-sectional area, a is the acoustic wave speed, x is
the distance along the pipe line and t is the time. In steady-
oscillatory flow, Q and H could be divided into steady and
unsteady parts as follows:

{
Q = Q + q

H = H + h
(A2)

where Q and H are the mean discharge and pressure head,
respectively, and q and h are the unsteady discharge and pressure
head parts. In what follow, q and h will be referred simply as dis-
charge (flow rate) and pressure head, respectively. Substituting
Eq. (A2) into Eq. (A1) gives:

⎧⎪⎪⎨
⎪⎪⎩

∂h
∂t

+ a2

gA0

∂q
∂x

= 0

∂q
∂t

+ gA0
∂h
∂x

= 0
(A3)

Differentiating the continuity equation with t and the momentum
equation with x, Eq. (A3) leads to the following wave equation:

∂2h
∂t2

− a2 ∂2h
∂x2 = 0 (A4)

Assuming that q and h are harmonics in time, the solution to Eq.
(A4) is:

h = [C1 exp(−ikx) + C2 exp(ikx)] exp(iwt) (A5)

where k = w/a is the wavenumber with w being the angular fre-
quency and a is the acoustic wave speed in water, C1 and C2 are
complex constants that depend on the BCs, and i = √−1. The
pressure head and discharge solution for an intact symmetric
pipe system such as valve-pipe-valve and for an anti-symmetric
pipe system such as RPV are governed by (Chaudhry, 2014):

{
h(x, k) = 2C cos(kx) = hamp cos(kx)

q(x, k) = −2i g
a A0C sin(kx) = qamp cos(kx)

(A6)

and {
h(x, k) = 2iC sin(kx) = hamp sin(kx)

q(x, k) = −2 g
a A0C cos(kx) = qamp cos(kx)

(A7)

where h and q = A0V are the pressure head and flow discharge,
respectively, with V the unsteady flow velocity; hamp and qamp

are the amplitudes of maximum pressure head and flow dis-
charge, respectively; C is a complex constant of integration;
x is the distance along the pipe line from downstream bound-
ary to the upstream boundary. The dispersion relationships that
governs the natural resonant frequencies (eigenfrequencies) for
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intact valve-pipe-valve and RPV systems can be obtained by
imposing the velocity to be zero at x = L (at the valve) as
follows:

Valve - Pipe - Valve : sin(kL) = 0 ⇔ w0
m = ak0

m

= 2π
(
(2m)

a
4L

)
; m = 1, 2, 3 . . . (A8)

and

Reservoir - Pipe - Valve : cos(kL) = 0 ⇔ w0
m = ak0

m

= 2π
[
(2m − 1)

a
4L

]
; m = 1, 2, 3 . . . (A9)

where w0
m and k0

m are the mth eigenfrequency and wavenumber,
respectively; the superscript “0” refers to intact pipe, “m” is the
mode number and L is the total length of an intact pipe. Inserting
the mth eigenfrequency in the pressure head and flow velocity
solution gives the mth mode solution. In linear wave theory, the
summation of all the mode solutions gives the overall solution
of the pressure and flow velocity as follows:⎧⎪⎨

⎪⎩
h = ∑

m
hm

q = ∑
m

qm
(A10)

The mode solution in pipe system depends on the BCs where
for example Eq. (A8) gives the even modes and Eq. (A9) gives
the odd modes. These mode solutions are also often referred as
standing waves or harmonics. The pressure head and flow har-
monics are balanced in such a way that as the pressure varies, the
elastic potential energy is being transformed into kinetic energy.
The relationship between the change in pressure head (�h)
and flow velocity (�V) could be obtained from the momentum
equation as follows:

�h = ±a
g

�V (A11)

which corresponds to the Joukowsky relationship in water
hammer theory (Ghidaoui, 2004).

A.2 Junction pipe case

The transfer matrix method (Chaudhry, 2014) can be used to
determine q and h at any location x ≥ l1 in the junction pipe
system (Fig. 1) as follows:

(
q(x, km)

h(x, km)

)
=

⎡
⎢⎣ cos(km(x − l1)) −i

gA2

a
sin(km(x − l1))

−i
a

gA2
sin(km(x − l1)) cos(km(x − l1))

⎤
⎥⎦

×
[

1 0
0 1

]
×

⎡
⎢⎣ cos(kml1) −i

gA0

a
sin(kml1)

−i
a

gA0
sin(kml1) cos(kml1)

⎤
⎥⎦

×
(

q(0, km)

h(0, km)

)
; if x ≥ l1 (A12)

where m represents the mth natural harmonic mode and km is the
mth wavenumber. Equation (A12) can be written as:

(
q(x, km)

h(x, km)

)
=
[
U11 U12

U21 U22

](
q(0, km)

h(0, km)

)
(A13)

where U11, U12, U21 and U22 can be determined from the matrix
multiplication in Eq. (A12). The pressure head and discharge at
the reservoir are given by:

⎧⎨
⎩h(0, km) = 0

q(0, km) = −2
g
a

A0C = qamp
m = i

g
a

A0hamp
m

(A14)

where qamp
m and hamp

m are the maximum flow and pressure head
which are complex constant, respectively; C is a complex
constant of integration. Using Eq. (A14), Eq. (A13) yields:

q(x, km) = U11qamp
m

h(x, km) = U21qamp
m

(A15)

Obtaining U11 and U21 from Eq. (A12) leads to:

⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

qm(x, km) = qm(x, k)
qamp

m
=
[

cos(km(x − l1)) cos(kml1)

−α sin(km(x − l1)) sin(kml1)

]

hm(x, km) = hm(x, k)
hamp

m
= 1

α

[
sin(km(x − l1)) cos(kml1)

+α cos(km(x − l1)) sin(kml1)

]
(A16)

where α =A2/A0; q and h are the dimensionless discharge and
pressure head, respectively.

The normalized kinetic energy (Tm) and elastic potential
energy (Um) at a given location x ≥ l1 can be obtained from Eq.
(A16) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tm = Tm

(ρ/2A0)(q
amp
m )

2 = (ρ/2A2)q2
m

(ρ/2A0)(q
amp
m )

2

= 1
α

[
cos(km(x − l1)) cos(kml1)

−α sin(km(x − l1)) sin(kml1)

]2

Um = Um

(ρ/2A0)(q
amp
m )

2 = (ρ/2)A2(g/a)2h2
m

(ρ/2A0)(q
amp
m )

2

= 1
α

[
sin(km(x − l1)) cos(kml1)

+α cos(km(x − l1)) sin(kml1)

]2

(A17)

wherekm = wm/a is the mth wavenumber, wm is the mth eigen-
frequency (natural resonant frequency of the system) with the
subscript “m” refers to the mth resonant mode. At the valve
where x = L, the flow and the kinetic energy are zero, and
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therefore, Eq. (A17) gives:

cos(kml2) cos(kml1) − α sin(kml2) sin(kml1) = 0

⇔ cos(kmL) + (1 − α) sin(kml2) sin(kml1) = 0
(A18)

which is the dispersion relation. Equation (A18) could be
obtained from the dispersion relationship derived in Duan et al.
(2012) under the special case where the blockage is located at
the downstream of the pipe.

B Appendix 2: Eigenfrequency solution for uncoupled
subsystems

In order to automate this sorting process, Eq. (2) is considered:

− 1 ≤ cos(kL) = − sin(kl1) sin(kl2)︸ ︷︷ ︸
Eq. 3(α=0)

≤ 1 (B1)

which gives:

2(m − 1) ≤ ws
m

w0
1

≤ 2m; m = 1, 2, 3 . . . (B2)

where ws
m is the mth eigenfrequency of the whole junction sys-

tem for the case of very deep (severe) cross sectional area
variation (α tends to 0). Imposing the condition in Eq. (B2) on
Eqs (39) and (40) gives:

wm

w0
1

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ws1
m1

w0
1

= (2m1 − 1)

1 − η2
; when: 2m ≤ ws1

m1

w0
1

≤ 2m + 2

ws2
m2

w0
1

= (2m2 − 1)

η2
; when: 2m ≤ ws2

m2

w0
1

≤ 2m + 2

(B3)
where, just for clarity, m1 and m2 are introduced as mode num-
bers for the uncoupled subsystem 1 and subsystem 2, respec-
tively. Changing the conditions in Eq. (B3) in terms of η2

yields:

wd
m

w0
1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ws1
m1

w0
1

= (2m1 + 1)

1 − η2
; when: 0 ≤ 1 − (2m1 + 1)

2m

≤ η2 ≤ 1 − (2m1 + 1)

(2m + 2)
≤ 1

ws2
m2

w0
1

= (2m2 + 1)

η2
; when: 0 ≤ (2m2 + 1)

(2m + 2)

≤ η2 ≤ (2m2 + 1)

2m
≤ 1

(B4)

Notation

a = acoustic wave speed in water (m s−1)
A0 = area of intact pipe (m2)

A2 = area of pipe with reduced cross sectional area (m2)
C = complex integration constant (Pa)
T = normalized kinetic energy (–)
U = normalized elastic potential energy (–)
T = kinetic energy per unit length (J m−1)
U = elastic potential energy per unit length (J m−1)
E = total energy per unit length (J m−1)
g = acceleration due to gravity (m s−2)
H = instantaneous pressure head (m)
H = mean pressure head (m)
h = unsteady pressure head due to wave (m)
hamp

m = mth maximum complex amplitude of pressure head
(m)

h∗ = dimensionless pressure head at x-l1 (–)
i = √−1 (–)
Jn = 0 or 1 and represents the number at nth binary

position of j (–)
j = counting numbers (–)
k = wavenumber (rad m−1)
ks

m = mth wavenumber whenα = 0 (rad m−1)
kmax

m = mth wavenumber at maximum shift (rad m−1)
L = whole pipe length (m)
l1 = length of pipe 1 (m)
l2 = length of pipe 2 (m)
m = mode number for pipe system of length L (–)
τ = τ th zero shift position at a given m mode (–)
N = number of blockages (–)
n = nth shift region between two consecutive zero shit

locations at a given m mode (–)
M = 2N −1 (–)
m1 = mode number for subsystem 1 (–)
m2 = mode number for subsystem 2 (–)
P = pressure (Pa)
Q = instantaneous flow discharge (m3 s−1)
Q = mean discharge (m3 s−1)
q = unsteady discharge due to wave (m3 s−1)
qamp

m = mth maximum complex amplitude of flow dis-
charge (m)

q∗ = dimensionless discharge at x – l1 (–)
S = total number of junctions between blockages and

the unblocked section (–)
t = time (s)
V = unsteady flow velocity due to the wave (m s−1)
w = angular frequency (rad s−1)
wm = mth resonant frequencies in the blocked pipe case

(rad s−1)
w0

m = mth resonant frequencies in the intact pipe case
(rad s−1)

ws
m = mth eigenfrequency whenα = 0 (rad s−1)

ws1
m = mth eigenfrequency of uncoupled subsystem 1

(α = 0) (rad s−1)
ws2

m = mth eigenfrequency of uncoupled subsystem 2
(α = 0) (rad s−1)
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x = axial coordinate (m)
Z = impedance (Pa m−3 s−1)
α = area ratio between A2 and A0 (–)
�E = energy change due to cross sectional area variation

(J m−1)
�E = integrated energy change over the pipe domain (J)
�wm = mth eigenfrequency shift (rad s−1)
�wmax

m = maximum mth eigenfrequency shift (rad s−1)
�wm = mth integrated eigenfrequency shift over the pipe

domain (rad s−1)
δk = small perturbation in wave number (rad m−1)
δw = small perturbation in eigenfrequency (rad s−1)
η1 = l1 / L dimensionless length (–)
η2 = l2 / L dimensionless length (–)
l = probing wave length (m)
ν = counting numbers (–)
ξ = counting numbers (–)
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