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Abstract: The presence of blockages in water supply systems wastes energy, decreases system performance, and may pose safety concerns.
Previous research showing that blockages induce a shift in the resonant frequencies (eigenfrequencies) of the pipe system made use of that
shift information to develop improved inverse problem solution techniques for blockage detection. This paper studies in more detail the
eigenfrequency shift mechanism itself that arises from an interior blockage in a pipe system, and shows that more information could
be obtained from understanding the nature and physical basis for the shift mechanism. This improved understanding can improve the com-
putational efficiency of current blockage detection solution techniques. This paper explains the mechanism causing positive, negative, and
zero eigenfrequency shifts, and shows how these shifts vary with blockage location, size, and resonant modes. Zero shift occurs if the
midlength of the blockage is located at a position where the pressure head and flow harmonics are equal in magnitude, whereas maximum
(or significant) shifts occur if the midlength of the blockage is located at either a pressure node (if the shift is negative) or a stagnation point
(if the shift is positive), where pressure node and stagnation points are where the pressure and flow harmonics’ magnitudes are zero. It is also
shown that the Bragg resonance phenomenon directly influences the direction and magnitude of the observed eigenfrequency under different
resonant modes. DOI: 10.1061/(ASCE)HY.1943-7900.0001380. © 2017 American Society of Civil Engineers.

Author keywords: Unsteady pipe flow; Eigenfrequency shift mechanism; Wave-blockage interaction; Bragg resonance; Blockage
detection.

Introduction

During their lifetime, pressurized conduits transporting liquids such
as freshwater, seawater, sanitary and stormwater, oil, and blood
may develop full or partial blockage at discrete locations or distrib-
uted over considerable lengths of the affected pipeline. The block-
ages are due to reduction in pipe cross-sectional area caused by
various physical and/or chemical processes. Blockages waste en-
ergy and financial resources by reducing pipe carrying capacity
and can increase the potential for in-pipe liquid contamination
(e.g., James and Shahzad 2012). Reduced flow area in severely
blocked pipes may also throttle flow to such a degree that flow
is redistributed in a pipe network, resulting in a reduction of system
redundancy (reliability) or overpressure of some pipes in the sys-
tem, thereby increasing leakage. Increases in leakage and energy
consumed to pump the liquid through reduced pipe cross-sectional
areas also means that the energy footprint of the pipe system is
increased, adding to environmental problems of air pollution
and greenhouse gas emissions (e.g., Coelho and Andrade-Campos
2014). Consequently, it is important to be able to quickly and re-
liably detect and characterize the severity and location of pipe
blockage so that it may be dealt with in a timely manner. Early
detection of developing blockage would also lead to more optimal

rehabilitation and replacement programs that minimize lifetime
costs associated with pipe blockage.

A well-known approach from the field of acoustic phonetics
(Stevens 1998; Fant 1975; Heinz 1967; Mermelstein 1967;
Schroeder 1967) uses measured transient pressure(s) at one or more
monitored locations in a pipe or conduit to infer the internal shape
of the conduit. This technique is used to image the human vocal
tract system. More recently, the technique elicited considerable
interest on the part of water supply researchers (Duan et al. 2011,
2013; Lee et al. 2013; ) and its utility was extended to other fields of
application (Duan et al. 2015).

Some of this research shows that eigenfrequencies of a mea-
sured pressure signal vary with cross-sectional area of a conduit
(e.g., Duan et al. 2011; De Salis and Oldham 1999; Stevens
1998; Schroeter and Sondhi 1994; Qunli and Fricke 1990, 1989;
Milenkovic 1987, 1984; Sondhi and Resnick 1983; Domis 1980,
1979; Fant 1975; Sondhi and Gopinath 1971; Heinz 1967;
Mermelstein 1967; Schroeder 1967). This dependence between
eigenfrequencies and conduit cross-sectional area has recently been
used to formulate algorithms for defect detection in water supply
systems (WSSs) (e.g., Louati and Ghidaoui 2015; Duan et al. 2011,
2013; Lee et al. 2008, 2013; Louati 2013; Meniconi et al. 2013;
Sattar et al. 2008; Mohapatra et al. 2006; Wang et al. 2005).

The economic and hydraulic consequences of blockages in
pipelines led to an emphasis in research to develop detection algo-
rithms for blockages. Accordingly, the focus of past research is pri-
marily on the inverse problem where mathematical relations linking
eigenfrequencies to the cross-sectional area of the pipe are formu-
lated, and algorithms for using these relationships to infer block-
ages from measured eigenfrequencies are proposed (e.g., Duan
et al. 2013, 2011; Lee et al. 2013; Meniconi et al. 2013). While
this research direction is promising and has led to proof of concept
under idealized laboratory settings, there are several unresolved is-
sues. For example, there is neither a proof that the inverse problem,
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which relates the unknown blockage properties to the measured
eigenfrequencies, has a unique solution nor is there a technique
to find it even if it exists. In fact, current solutions of this inverse
problem in the water supply field require that the number of block-
ages is known a priori (e.g., Duan et al. 2013; Lee et al. 2013),
which is unrealistic in practice. In addition, the computational time
needed to solve the inverse problem grows almost exponentially
with the number of blockages.

In the field of vocal tract geometric characterization, which is
governed by the same general wave equations as the problem
of blockage detection in pipes, progress has been made instead
by improving understanding of the forward problem and using this
improved understanding to develop more efficient and robust inver-
sion techniques. For example, Schroeder (1967) showed that the
eigenfrequency shift of the mth pressure mode is directly linked
to the amplitude of the mth term in the Fourier series expansion
of the cross-sectional area function of the conduit with respect
to longitudinal distance. He showed how this relationship can be
imposed as a constraint that guarantees uniqueness of the inverse
problem. In addition, Schroeder (1967) showed that the Ehrenfest
theorem (Ehrenfest 1917) can be used to formulate an algorithm for
determining the geometry of the vocal tract from measured values
of the eigenfrequencies of the acoustic pressure wave. Schroeder’s
(1967) results formed the basis for several robust algorithms to
solve the inverse problem in the vocal tract field (e.g., De Salis
and Oldham 1999; Stevens 1998; Schroeter and Sondhi 1994;
Qunli and Fricke 1990, 1989; Milenkovic 1987, 1984; Sondhi and
Resnick 1983; Domis 1980, 1979; Fant 1975; Sondhi and Gopinath
1971). El-Rahed and Wagner (1982) investigated the forward
problem of blockage–acoustic wave interaction in finite cylindrical
cavities and concluded that one-dimensional wave theory is accept-
able for determining large blockage, while three-dimensional
analysis is only needed to reveal the details of the acoustic
field.

Louati and Ghidaoui (2016) provide an in-depth study of the
eigenfrequency shift mechanism for the case of blockage at a boun-
dary. For the case of a shallow blockage (i.e., small radial protru-
sion), Louati and Ghidaoui (2016) derived an equation for the
eigenfrequency shift based on the work done by the radiation pres-
sure (Borgnis 1953; Beyer 1978; Louati and Ghidaoui 2016;
Schroeder 1967). They showed that the shift for the shallow block-
age case is governed by the change in work done at the blockage
boundaries. Louati et al. (2016) studied the case of internal block-
age in a reservoir-pipe-valve (RPV) system and showed that
changes in the magnitude of the shift is governed by Bragg

resonance phenomena (Bragg and Bragg 1913; Mei 1985; Louati
2013, 2016).

This paper extends the understanding of the blockage phenome-
non and its effect on key aspects of the governing wave equations to
shed greater light on the forward problem. The eigenfrequency shift
mechanism is analyzed and studied in some detail and rigor be-
cause it is a key component of the forward problem that must
be understood if one hopes to address difficult issues that arise in
connection with its inversion. This paper explains the nature of the
mechanism causing positive, negative, and zero eigenfrequency
shifts, and describes how this shift varies with blockage location,
size, and resonant modes. This understanding is essential to im-
prove the accuracy and convergence of inverse solution techniques
for transient-based defect detection methods (TBDDMs) and pipe
cross-section characterization. The theoretical model considered in
this work is for a RPV system containing a single interior blockage.

The paper is organized in the following manner: first, the prob-
lem statement is formulated. Then the shift mechanism for the case
of a shallow blockage is described using the radiation pressure
equation derived in Louati and Ghidaoui (2016). Then the effects
of severe and moderate blockages on the shift behavior are dis-
cussed in detail. Finally, some conclusions are drawn.

Problem Statement

For the purposes of this paper, a RPV system is considered as
shown schematically in Fig. 1. The blocked pipe system is modeled
as a series of three pipes, with the interior pipe having a reduced
(blocked) diameter. Two junction boundary conditions are also
solved, one at each end of the interior pipe where it connects with
the upstream and downstream pipes, respectively. The three pipes
are defined as Pipe 1 with length l1 and cross-sectional area
A1 ¼ A0, Pipe 2 with length l2 and cross-sectional area A2 < A0,
and Pipe 3 with length l3 and cross-sectional area A3 ¼ A0, where
A0 is the intact cross-sectional area. Pipe 2 represents the blockage.
The ratio between the cross-sectional area of the blocked and intact
pipe is α ¼ A2=A0. The dimensionless lengths are defined by x=L,
η1 ¼ l1=L, η2 ¼ l2=L, and η3 ¼ l3=L, where L ¼ l1 þ l2 þ l3 is
the total length of the blocked pipe system, and x is the distance
along the pipe length from the reservoir (Fig. 1). The location of the
midlength of the blockage is defined by ηb ¼ η3 þ η2=2. It is as-
sumed that the pipe system is one-dimensional and the fluid is in-
viscid. In what follows, the case without blockage (i.e., α ¼ 1) is
referred to as the intact pipe case.

Fig. 1. Single blockage in a reservoir-pipe-valve system (bounded pipe system)
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The frequency response function (FRF) of the RPV system can
be obtained by generating a transient signal at the valve, for exam-
ple, by opening and/or closing the valve rapidly. Fig. 2 compares
the FRF of the blocked RPV system (Fig. 1) and the FRF of the
intact RPV system (i.e., with no blockage). A transient signal is
generated by rapid valve closure with the closure time used in
the numerical experiment equal to one time step (i.e., instantaneous
closure). Fig. 2 shows the eigenfrequency shift due to the presence
of the interior blockage in the pipe system. In Fig. 2, the wave
modes are numbered along the abscissa. As observed in Fig. 2,
the shift is almost zero at the second mode, whereas the eigenfre-
quencies of the blocked pipe system shift to the left at the third
mode (a negative shift), and shift to the right at the fourth mode
(a positive shift). The causes and mechanism for these observed
eigenfrequency shifts is yet not discussed nor is it understood in
the existing literature. This paper studies in detail the nature of
the shift mechanism from an interior single blockage in a RPV sys-
tem. The improved understanding of this shift phenomenon and the
forward problem creates efficiencies in the computational solution
of the corresponding inverse problem (i.e., blockage detection in
pipe systems).

The dispersion relation governing eigenfrequencies of the
blocked pipe system (Fig. 1) is given by El-Rahed and Wagner
(1982) and Duan et al. (2011)

α cosðkml1Þ cosðkml2Þ cosðkml3Þ − cosðkml1Þ sinðkml2Þ sinðkml3Þ
− α2 sinðkml1Þ sinðkml2Þ cosðkml3Þ
− α sinðkml1Þ cosðkml2Þ sinðkml3Þ ¼ 0 ð1Þ

which could also be written as

cosðkmLÞ þ
ð1 − αÞ
ð1þ αÞ cos½kmðl1 − l2 − l3Þ�

− ð1 − αÞ
ð1þ αÞ cos½kmðl1 þ l2 − l3Þ�

− ð1 − αÞ2
ð1þ αÞ2 cos½kmðl1 − l2 þ l3Þ� ¼ 0 ð2Þ

where the subscriptm =mth natural resonant mode; and km ¼ wm=a
is the mth wavenumber, with wm being the mth eigenfrequency
and a being the acoustic wave speed. When α ¼ 1, Eq. (2)
becomes

cosðk0mLÞ ¼ 0 ⇒ w0
m ¼ ak0m ¼ 2π

�
ð2m − 1Þ a

4L

�
;

m ¼ 1; 2; 3; : : : ð3Þ

which is the dispersion relation of an intact pipe system with k0m ¼
w0
m=a being the mth wavenumber and w0

m being the mth eigenfre-
quency of the intact pipe system.

Figs. 3 and 4 show the eigenfrequency (wm) variation with
length ηb ¼ η3 þ 0.5η2 for the first five modes and different α val-
ues when η2 ¼ 0.15 and η2 ¼ 0.027, respectively. The cases for
which α ¼ 1 in Figs. 3 and 4 represent the eigenfrequencies of
the intact pipe case and are the straight horizontal lines. When
α ≠ 1, the effect of the blockage is introduced and the eigenfre-
quency at a given mode m (wm) deviates from the intact case
(w0

m) as shown in Figs. 3 and 4. The eigenfrequency shift is defined
asΔwm ¼ ðwm − w0

mÞ and could take on positive, negative, or zero
values (Figs. 3 and 4).

Comparing Figs. 3 and 4 shows that varying the blockage length
induces a change in the maximum shift magnitude at given modem
and dimensionless area α. This feature is discussed in Louati et al.
(2016), where it is shown that it is related to Bragg-type resonance
(Mei 1985; Louati 2013). This resonance effect occurs when the
reflection from the blockage is in phase with the incident wave,
and leads to significant eigenfrequency shift. Bragg resonance con-
ditions occur when the blockage length is of similar order of mag-
nitude to wavelength [the exact conditions are given in Louati et al.
(2016)]. At modes where a Bragg resonance condition occurs,
the shift magnitude is high; otherwise, the shift magnitude is low.
For short blockages, Bragg resonance occurs at shorter wave-
lengths (i.e., higher frequencies), and this accounts for the reduced
shift magnitude at low modes in Fig. 4, for example, in the case
of η2 ¼ 0.027.

Figs. 3 and 4 show that the magnitude of maximum positive
shift and maximum negative shift vary for a given α at different
modes m. Furthermore, for a given mode m, the location of the
blockage where zero shift occurs varies with α. These features
were not observed in the case of the blocked RPV system with
blockage at the boundary (Louati and Ghidaoui 2016). This paper
expands on the nature of, and reasons for, these observed features
of eigenfrequency shift. This understanding is presently lacking in
this field of research, yet it is precisely this insight that is essential
to formulating useful dispersion relations [e.g., Eq. (2)] and de-
veloping viable models for identifying blockages in liquid
pipelines.

For the case of shallow blockage, Louati and Ghidaoui
(2016) derived an equation for the eigenfrequency shift based
on the work done by the radiation pressure (Borgnis 1953;
Beyer 1978; Louati and Ghidaoui 2016; Schroeder 1967), which
is given by

Δwm

w0
m

¼ Re

� −ξm
hamp
m qamp

m

Z
L

0

dðh0mq0mÞ
dx

dx

�
ð4Þ

where ξm ¼ −i½ðρgÞ=ð2w0
mE0

mÞ�½ðΔAÞ=A0�hamp
m qamp

m ; h0m ¼
hamp
m sinðk0mxÞ and q0m ¼ qamp

m cosðk0mxÞ are pressure head and flow
harmonics for the intact pipe case, and hamp

m and qamp
m are their

corresponding maximum amplitudes, respectively; E0
m ¼

ðρA0=2Þ½ðg=aÞ2ðh0mÞ2 þ q0m=A2
0� = energy of an intact pipe sys-

tem; ρ = density; g = standard gravitational acceleration;
i ¼ ffiffiffiffiffiffi−1p

; ΔA ¼ A − A0 with A ¼ AðxÞ being the cross-sectional
area function; and Re = real part. Eq (4) is used for subsequent

Fig. 2. Comparison between the FRFs of the intact and blocked RPV
systems showing the eigenfrequency shifts at the first five resonant
modes; η3 þ η2=2 ¼ 0.562, η2 ¼ 0.15, and α ¼ 0.16
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discussion and analysis of shift mechanism for the shallow
blockage case.

Analysis and Discussion of Eigenfrequency Shift
Variation for Interior Blockage with Small Radial
Protrusion: Shallow Blockage Case

At a given mode m, Fig. 3 shows that the eigenfrequency-shift sign
varies with the blockage location and mode number. Considering a
blockage with small radial protrusion (α > 0.65), the shift equation
Eq. (4) is applied for the case of interior blockage and gives

Δwm

w0
m

¼ ξm

"�
h0mq0m

hamp
m qamp

m

�
l1

−
�

h0mq0m
hamp
m qamp

m

�
l1þl2

#
ð5Þ

Inserting the pressure and flow harmonics into Eq. (5) gives

Δwm

w0
1

¼ 2

π
ð1 − αÞfsinðk0ml1Þ cosðk0ml1Þ

− sin½k0mðl1 þ l2Þ� cos½k0mðl1 þ l2Þ�g ð6Þ

⇒
Δwm

w0
1

¼ð1−αÞ
π

fsin½ð2m−1Þπη1�−sin½ð2m−1Þπðη1þη2Þ�g

¼ð1−αÞ
π

fsin½ð2m−1Þπðη3þη2Þ�−sin½ð2m−1Þπη3�g

¼ð1−αÞ
π

�
2sin

�
ð2m−1Þπ

2
η2

�
cos

�
ð2m−1Þπ

�
η3þ

η2
2

���
ð7Þ

Fig. 3. Normalized eigenfrequency variation with length ηb ¼ η3 þ 0.5η2 of the first five modes for different α values when η2 ¼ 0.15

Fig. 4. Normalized eigenfrequency variation with length ηb ¼ η3 þ 0.5η2 of the first five modes for different α values when η2 ¼ 0.027
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Eq. (7) is identical to the simplified shift equation obtained in
Duan et al. (2013), where they assumed a small shift and used
Taylor expansion of the dispersion relation [Eq. (2)] around the in-
tact pipe frequencies. Eq. (7) could also be obtained by using the
energy approach in the form of the Ehrenfest theorem (Louati and
Ghidaoui 2016; Fant 1975). Eq. (7) is found to compare well with
experimental data (Duan et al. 2013). Fig. 5 gives the comparison
between the approximated eigenfrequency shift from Eq. (7) and
the exact eigenfrequency obtained using the dispersion relation
[Eq. (2)] for different α values and shows good quantitative agree-
ment between the exact shift solution from Eq. (2) and its approxi-
mate form [Eq. (7)] for α > 0.6. Although not shown here, it is
observed that there is overall qualitative agreement between the

exact shift solution from Eq. (2) and its approximate form [Eq. (7)]
for all α. A similar conclusion can be made for the other m modes
as shown in Fig. 6, which gives the comparison between the exact
and approximated eigenfrequency variation for the first eight
modes with α ¼ 0.64. Such agreement supports the use of Eq. (7)
to analyze the eigenfrequency shift signs and determine maximum
shift locations.

Zero Eigenfrequency Shift

Setting Eq. (7) to zero gives the conditions for which the eigenfre-
quency shift is zero at a given mode m as follows:

Fig. 6. Normalized eigenfrequency variation with length η3 þ η2=2 for the first eight modes with α ¼ 0.64 and η2 ¼ 0.15: comparison between
exact solution [Eq. (2)] and approximate solution [Eq. (7)]

Fig. 5. Normalized eigenfrequency shift variation with length η3 þ η2=2 for m ¼ 2 and η2 ¼ 0.15: comparison between exact solution [Eq. (2)]
and approximate solution [Eq. (7)]: (a) α ¼ 0.9; (b) α ¼ 0.8; (c) α ¼ 0.64; (d) α ¼ 0.5

© ASCE 04017055-5 J. Hydraul. Eng.
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sin

�
ð2m − 1Þ π

2
η2

�
¼ 0 or cos

�
ð2m − 1Þπ

�
η3 þ

η2
2

��
¼ 0

ð8Þ
which leads to

η2 ¼
2ðm̄− 1Þ
ð2m− 1Þ or η3þ

η2
2
¼ 2m̄− 1

2ð2m− 1Þ ; m̄¼ 1;2; : : : ð9Þ

The first equation in Eq. (9) corresponds to the Bragg resonance
condition of total transmission (Louati et al. 2016; Louati 2016,
2013; Mei 1985) as follows:

η2 ¼
2ðm̄ − 1Þ
ð2m − 1Þ ⇔

w0
m

wT
m̄ðl2Þ

¼ 1 ⇔ l2 ¼
ðm̄ − 1Þ

2

�
4L

ð2m − 1Þ
�
ð10Þ

where wT
m̄ = Bragg resonance frequency of total transmission

(Louati 2016; Louati et al. 2016) for a single blockage in a pipe
system. The condition in Eq. (10) states that the shift is zero if
the blockage length is a multiple of the half-wavelength of the
mth-mode harmonic. This condition is natural because if total wave
transmission through the blockage occurs, then the blockage effect
no longer exists, and therefore the system behaves as an intact pipe
system.

The second equation in Eq. (9) corresponds to the location of the
blockage midlength from the downstream boundary (η3 þ η2=2),
where

sin

�
k0mL

�
η3þ

η2
2

��
¼�cos

�
k0mL

�
η3þ

η2
2

��
⇒

h0m
hamp
m

¼� q0m
qamp
m

ð11Þ

which states that the shift is zero if the blockage midlength is lo-
cated at a position where the pressure head and the flow harmonics

are equal in magnitude. At a given blockage length η2, the first
equation in Eq. (9) is independent of the blockage location,
whereas the second equation depends on the blockage location.
Either condition in Eq. (10) or Eq. (11) renders the right-hand
side of Eq. (5) zero; thus, zero shift. Figs. 7(a and b) give the
dimensionless pressure and flow harmonics variations along
the pipe at modes m ¼ 7 and m ¼ 2, respectively. In this case, the
blockage length is equal to half the wavelength of the seventh-
mode harmonic, which is η2 ¼ 2=ð2 × 7 − 1Þ ¼ 0.1538 ≈ 0.15.
Three different locations are considered in Figs. 7(a and b).
Fig. 7(a) shows that, at any blockage location along the pipe,
the products of the pressure head and flow at the blockage boun-
daries are equal in magnitude and sign. Therefore, from Eq. (5),
the shift is zero at any location along the pipe at Mode 7 as ob-
served in Fig. 6. In Fig. 7(b), the first equation in Eq. (9) is not
satisfied where the blockage length is smaller than half the wave-
length of the second-mode harmonic. The blockage location cases
shown in Fig. 7(b) satisfy the second equation in Eq. (9) where the
blockage midlength is situated at the position of equal pressure
head and flow magnitudes. At these specific blockage locations,
the products of the pressure head and flow at the blockage boun-
daries are also equal, which leads to zero shift. Consequently, the
second equation in Eq. (9) gives the zero shift location at any
given mode m as observed in Figs. 3 and 6 except when the block-
age length is a multiple of the half-wavelength of the mth-mode
harmonic where the shift becomes zero at any blockage location
along the pipe.

Positive and Negative Eigenfrequency Shift

As observed from Figs. 3 and 6, the shift sign alternates between
consecutive zero shift locations. Moreover, within two zero shift
locations, the shift reaches either a positive or negative maximum
shift. This section studies the mechanism causing this variation of
shift sign and magnitude for shallow blockage case. Conditions for

Fig. 7. Dimensionless pressure head and flow harmonics variation along the pipe where different blockage location cases are shown to discuss the
zero shift equations [Eq. (9)]: (a) seventh mode of pressure and flow harmonics; (b) second mode of pressure and flow harmonics
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maximum shift are obtained by equating the gradient of Eq. (7) to
zero, which gives

cos

�
ð2m − 1Þ π

2
η2

�
¼ 0 and sin

�
ð2m − 1Þπ

�
η3 þ

η2
2

��
¼ 0

ð12Þ
yielding

η2 ¼
2m̄ − 1

ð2m − 1Þ ; m̄ ¼ 1; 2; : : :

and

η3 þ
η2
2
¼ m 0

2m − 1
; m 0 ¼ 1; 2; : : : ð13Þ

The first equation in Eq. (13) corresponds to the Bragg reso-
nance condition of maximum reflection (Louati et al. 2016;
Louati 2016, 2013; Mei 1985) as follows:

η2 ¼
2m̄− 1

2m− 1
⇔

w0
m

wR
m̄ðl2Þ

¼ 1⇔ l2 ¼
ð2m̄− 1Þ

4

�
4L

2m− 1

�
ð14Þ

where wR
m̄ = Bragg resonance frequency of total reflection (Louati

2016; Louati et al. 2016) for a single blockage in a pipe system.
The condition in Eq. (14) states that the shift is maximum if the
blockage length is an odd multiple of the quarter-wavelength of
the mth-mode harmonic. Waves propagating at Bragg resonance
frequency of maximum reflection interact most with, and therefore
it is natural that they induce, the largest eigenfrequency shift.

The second equation in Eq. (13) corresponds to the location of
the blockage midlength from the downstream boundary
(η3 þ η2=2) where

η3 þ
η2
2
¼ 2m 0

2m− 1
or

η3 þ
η2
2
¼ 2m 0 − 1

2m− 1

⇒

8>>>>><
>>>>>:

sin

�
k0mL

�
η3 þ

η2
2

��
¼ 0

or

cos

�
k0mL

�
η3 þ η2

2

��
¼ 0

⇒

8>>>>><
>>>>>:

h0m
hamp
m

¼ 0

or
q0m
qamp
m

¼ 0

ð15Þ

which states that the shift is maximum if the blockage midlength is
located at either a pressure node or a stagnation point. Conversely
to the zero shift case, where either satisfied condition in Eq. (9)
leads to a zero shift, the maximum shift requires both equations
in Eq. (13) to be fulfilled. That is, the maximum shift is given when

the blockage length is an odd multiple of the quarter-wavelength of
themth-mode harmonic and its midlength is located at a position of
either a pressure node or stagnation point. Fig. 8 gives the dimen-
sionless pressure and flow harmonics variations along the pipe at
modes m ¼ 4. In this case, the blockage length is equal to the
quarter-wavelength of the fourth-mode harmonic, which is η2 ¼
1=ð2 × 4 − 1Þ ≈ 0.15. Three different locations are considered in
Fig. 8 to discuss the properties of Eq. (13). Blockage Locations 1
and 3 are such that the blockage midlength is placed respectively at
a stagnation point and pressure node where both equations in
Eq. (13) are satisfied. In these cases, Fig. 8 shows that the products
of the pressure head and flow at the blockage boundaries are equal
in magnitude but with different signs. Therefore, the work done at
the boundaries in Eq. (5) are added up, and because the product of
sine and cosine is maximum when these two functions are equal,
Eq. (5) gives the maximum shift magnitude. At Blockage Locations
1 and 3, Fig. 6 shows that the shift magnitude is maximum.

Blockage Location 2 in Fig. 8 is such that the blockage mid-
length is placed at a location of equal pressure head and flow, which
satisfies the second condition of zero shift [Eq. (9)] but not the sec-
ond equation in Eq. (13). In this case, the product of the pressure
head and flow at the blockage boundaries becomes of equal mag-
nitude and sign. Therefore, from Eq. (5), the shift is zero as ob-
served from Fig. 6. This shows the necessity of satisfying both
conditions in Eq. (13) to produce maximum shift.

To distinguish between positive and negative maximum shifts,
the determinant of the Hessian matrix (DH) is computed and ana-
lyzed (see the Appendix). At the critical points conditions
[Eq. (12)], one obtains

DH ¼
�ð1 − αÞ

π

�
2

½ð2m − 1Þπ�4ð−1Þ2ðm̄þm 0þ1Þ > 0 ð16Þ

Therefore, if m̄ and m 0 have the same parity, then the maximum
shift is negative. However, if m̄ and m 0 have different parity, then
the maximum shift is positive. This means that at a given Bragg
resonance mode (m̄) of maximum reflection [see first condition
in Eq. (13)], if m̄ is even, then the maximum shift is either positive
or negative depending on whether the blockage midlength is
located respectively at a pressure node or stagnation point
[Eq. (15)], and vice versa if m̄ is odd.

For example, Fig. 8 shows the pressure and flow harmonics
at mode m ¼ 4, which corresponds to the first Bragg resonance
frequency of maximum reflection (m̄ ¼ 1). The midlength of
Blockage Location 1 in Fig. 8 is at a stagnation point, which from
Fig. 6 gives a positive maximum shift as expected. On the other

Fig. 8. Dimensionless pressure head and flow harmonics of the fourth mode where different blockage location cases are shown to discuss the
maximum shift equations [Eq. (13)]
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hand, the midlength of Blockage Location 3 in Fig. 8 is at a pres-
sure node, which from Fig. 6 gives a negative maximum shift, also
as expected.

Eq. (13) gives the conditions for absolute maximum shift, which
is given at specific modes that satisfy the Bragg resonance condi-
tion of maximum reflection. However, at any given mode m, the
eigenfrequency variation undergoes local maximum shift, although
the Bragg resonance condition of maximum reflection is not sat-
isfied. The location of those local maximum shifts at any given
mode m can be determined for a fixed blockage length η2. There-
fore, assuming a fixed blockage length η2 and equating to zero the
first derivative of the shift equation [Eq. (7)] with respect to the
midlength blockage location (η3 þ η2=2) gives

sin

�
ð2m − 1Þπ

�
η3 þ

η2
2

��
¼ 0 ⇒ η3 þ

η2
2
¼ m̄

2m − 1
ð17Þ

which is the second condition in Eq. (13). The maximum shift sign
is obtained by computing the second derivative at the maximum
shift locations as follows:

∂2ðΔwm=w0
1Þ

∂ðη3þη2=2Þ2
¼ 2

ð1−αÞ
π

½ð2m−1Þπ�2 sin
�
ð2m−1Þπ

2
η2

�
ð−1Þm̄þ1

ð18Þ

Knowing that sin½ð2m − 1Þπη2=2� changes sign between two
consecutive Bragg resonance frequencies of total transmission
[Eq. (10)], Eq. (18) gives

sgn

� ∂2ðΔwm=w0
1Þ

∂ðη3 þ η2=2Þ2
�

¼ ð−1ÞnTþm̄

�
if > 0 ⇒ maximum shift is negative

if < 0 ⇒ maximum shift is positive
ð19Þ

where sgn = signum function; and nT = integer that gives the num-
ber of modes region between two consecutive Bragg resonance
frequencies of total transmission defined as

nT ¼ Floor

�
ð2m − 1Þ η2

2

�
þ 1 ð20Þ

where Floor = function that gives the largest previous integer. The
second derivative in Eq. (19) is positive when nT and m̄ have the
same parity, which leads to negative maximum shift, and positive
when nT and m̄ have different parity, which leads to positive

maximum shift. This means that at a given m such that nT is even,
the maximum shift is positive or negative when the blockage mid-
length is located respectively at a pressure node or stagnation point
[Eq. (15)], and vice versa if nT is odd. For example, Fig. 9 gives the
dimensionless pressure and flow harmonics at mode m ¼ 2, where
the blockage length is η2 ≈ 0.15, which gives nT ¼ 1 [Eq. (20)].
Two blockage location cases are shown in Fig. 9. The midlength of
Blockage Locations 1 and 2 are placed, respectively, at a stagnation
point and a pressure node. Fig. 6 shows that at these blockage lo-
cations the maximum shift is respectively positive and negative, a
result that is expected from Eq. (19).

Analysis and Discussion of Eigenfrequency Shift
Variation for Interior with Moderate and Large
Radial Protrusion

Variation of Zero Shift Locations with the Radial
Protrusion of the Blockage

For the case of blocked pipe system with blockage at the boundary
(Louati and Ghidaoui 2016), the zero shift locations are indepen-
dent of α. However, for the interior blockage case, Figs. 3 and 4
show that the zero shift locations at a given mode vary with α ex-
cept at modes corresponding to the Bragg resonance frequency of
maximum reflections (e.g., see fourth mode in Fig. 3). In fact, at
these Bragg resonance modes, the pipe system with interior block-
age behaves as if the blockage is located at the boundary (Louati
et al. 2016). To determine the variation of the zero shift locations at
modes other than the Bragg resonance modes, the dispersion rela-
tion for blocked RPV system with interior blockage [Eq. (2)] is
rewritten as follows:

cosðkmLÞ þ
ð1 − αÞ
ð1þ αÞ cosfkmL½1 − ð2η3 þ η2Þ − η2�g

− ð1 − αÞ
ð1þ αÞ cosfkmL½1 − ð2η3 þ η2Þ þ η2�g

− ð1 − αÞ2
ð1þ αÞ2 cos½kmLð1 − 2η2Þ� ¼ 0 ð21Þ

Using the fact that at zero shift, km ¼ k0m ¼ ð2m − 1Þ½π=ð2LÞ�
gives

Fig. 9. Dimensionless pressure head and flow harmonics of the second mode where different blockage location cases are shown to discuss the
maximum shift equations at given mode m [Eqs. (17) and (19)]
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sin

�
ð2m − 1Þ π

2
ð2η3 þ η2Þ þ ð2m − 1Þ π

2
η2

�

− sin

�
ð2m − 1Þ π

2
ð2η3 þ η2Þ − ð2m − 1Þ π

2
η2

�

− ð1 − αÞ
ð1þ αÞ sin

�
ð2m − 1Þπ

2
2η2

�
¼ 0 ð22Þ

Using trigonometric manipulation on Eq. (22) yields

2 sin

�
ð2m− 1Þπ

2
η2

�
cos

�
ð2m− 1Þπ

2
ð2η3þ η2Þ

�

− 2
ð1−αÞ
ð1þαÞ sin

�
ð2m− 1Þπ

2
η2

�
cos

�
ð2m− 1Þπ

2
η2

�
¼ 0 ð23Þ

which gives�
cos

�
ð2m−1Þπ

2
ð2η3þη2Þ

�

− ð1−αÞ
ð1þαÞcos

�
ð2m−1Þπ

2
η2

��
sin

�
ð2m−1Þπ

2
η2

�
¼ 0 ð24Þ

There are two possible solutions for Eq. (24). The first is

sin½ð2m − 1Þπη2=2� ¼ 0 ð25Þ
which gives the Bragg resonance frequencies of total transmission
and corresponds to the first equation in Eq. (9) for the small radial
protrusion case. The second is given by

cos

�
ð2m − 1Þπ

2
ð2η3 þ η2Þ

�
− ð1 − αÞ
ð1þ αÞ cos

�
ð2m − 1Þπ

2
η2

�
¼ 0

ð26Þ
which has the following solution

ð2m−1Þπ
2
ð2η3þη2Þ

¼−arccos

�
ð−1Þm̄ ð1−αÞ

ð1þαÞcos
�
ð2m−1Þπ

2
η2

��
þ m̄π ð27Þ

leading to

η3 þ
η2
2
¼

2m̄− 2
π arccos

n
ð−1Þm̄ ð1−αÞ

ð1þαÞ cos½ð2m− 1Þ π
2
η2�

o
2ð2m− 1Þ ð28Þ

Eq. (28) gives the zero shift locations (m̄) at a given mode m
and for a given dimensionless area α. For example, the zero shift
locations from Eq. (28) at the second mode (m ¼ 2) and for α ¼
0.16 and η2 ¼ 0.15 are

η3 þ
η2
2
¼ 0.1048; η3 þ

η2
2
¼ 0.5619; η3 þ

η2
2
¼ 0.7715

ð29Þ
which agrees with the zero shift locations observed in Fig. 3.

Notice that when

cos½ð2m − 1Þπη2=2� ¼ 0 ð30Þ
which gives the Bragg resonance frequencies of maximum reflec-
tion, Eq. (28) becomes

η3 þ
η2
2
¼ 2m̄ − 1

2ð2m − 1Þ ð31Þ

which is independent of α and corresponds to the second zero shift
equation in Eq. (9) for small radial protrusion case. Moreover,
Eq. (30) gives

η2 ¼
2m 0 − 1

ð2m − 1Þ ; m 0 ¼ 1; 2; 3; : : : ; < m ð32Þ

and when inserted into Eq. (31) yields

η3 ¼
m 0 0

ð2m − 1Þ ; m 0 0 ≡ m̄ −m 0 − 1 ¼ 1; 2; 3; : : : ð33Þ

which could be written as

l3
ðl1þ l3Þ

ð1−η2Þ¼
m 0 0

ð2m−1Þ⇒
l3

ðl1þ l3Þ
¼ m 0 0

2ðm−m 0Þ ð34Þ

Eq. (34) can be shown to correspond to the zero shift locations
for the case of a blocked reservoir-pipe-reservoir (RPR) system
with blockage at the boundary. This is because at Bragg resonance
frequencies of maximum reflections, the blocked RPV system
with interior blockage behaves as blocked RPR system with total
length l1 þ l3 and having a blockage at the downstream boundary
with length l3 (Louati et al. 2016).

Eq. (28) could be written as follows:

η3 þ
η2
2
¼ 2m̄− 1

2ð2m− 1Þ þ
1− 2

π arccosfð−1Þm̄ 1−α
1þα cos½ð2m− 1Þ π

2
η2�g

2ð2m− 1Þ
ð35Þ

The first term on the right-hand side of Eq. (35) is the zero shift
locations for the case of blockage with small radial protrusion
(shallow blockage). The second term on the right-hand side repre-
sents the deviation from the zero shift locations of shallow blockage
case. The deviations range from

� −1
2ð2m − 1Þ to

1

2ð2m − 1Þ
�

ð36Þ

These deviations become very small at high modes. For exam-
ple, at modes m ¼ 2 and m ¼ 3, the deviation range becomes

�−1
6

to
1

6

�
and

�−1
10

to
1

10

�
ð37Þ

respectively. Therefore Eq. (35) could be approximated by the
equation of zero shift locations for shallow blockages [Eq. (31)]
at relatively high modes.

Variation of the Maximum Shift Locations and
Magnitudes

In both interior blockage and blockage at the boundary cases, the
maximum shift locations change as the radial protrusion of the
blockage (α) varies (Figs. 3 and 4). For the case of blockage at
the boundary, the maximum shift locations could be determined
from Louati and Ghidaoui (2016). To obtain the maximum shift
locations for the case of interior blockage, the dispersion relation
[Eq. (2)] is rewritten as follows:
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cosðkmLÞ þ
1 − α
1þ α

ðcosfkmL½1 − ð2η3 þ η2Þ − η2�g
− cosfkmL½1 − ð2η3 þ η2Þ þ η2�gÞ

−
�
1 − α
1þ α

�
2

cos½kmLð1 − 2η2Þ� ¼ 0 ð38Þ

which gives

cosðkmLÞ þ
1 − α
1þ α

ð2 sinfkmL½1 − ð2η3 þ η2Þ�g sinðkmLη2Þ

− 1 − α
1þ α

cos½kmLð1 − 2η2Þ�Þ ¼ 0 ð39Þ

The second term in Eq. (39) represents the effect of the blockage
on the dispersion relation. In fact, for α ¼ 1, this second term
vanishes and Eq. (39) becomes identical to the dispersion relation
of an intact RPV system [Eq. (3)]. Therefore, the shift is maximum
when the term inside the curly brackets is maximum. Denoting this
term by

Θ ¼ 2 sinfkmL½1 − ð2η3 þ η2Þ�g sinðkmLη2Þ

− 1 − α
1þ α

cos½kmLð1 − 2η2Þ� ð40Þ

and equating its gradient to zero gives

∂Θ
∂ðkmLÞ ¼

�
2ð½1 − ð2η3 þ η2Þ� cosfkmax

m L½1 − ð2η3 þ η2Þ�g

× sinðkmax
m Lη2Þ þ η2 sinfkmax

m L½1 − ð2η3 þ η2Þ�g

× cosðkmax
m Lη2ÞÞ þ

1 − α
1þ α

ð1 − 2η2Þ

× sin½kmax
m Lð1 − 2η2Þ�

�
¼ 0

and

∂Θ
∂ð2η3 þ η2Þ

¼ −2kmax
m L cosfkmax

m L½1 − ð2η3 þ η2Þ�g

× sinðkmax
m Lη2Þ ¼ 0 ð41Þ

which yields

2ð−1Þm̄þ1η2 cosðkmax
m Lη2Þþ

1−α
1þα

ð1−2η2Þsin½kmax
m Lð1−2η2Þ�¼0

and

cosfkmax
m L½1− ð2η3þη2Þ�g

¼0⇒kmax
m L½1−ð2η3þη2Þ�¼ ð2m̄−1Þπ

2
ð42Þ

Solving for the second equation in Eq. (42) gives the blockage
locations at maximum eigenfrequencies as follows:

η3 þ
η2
2
¼ 1

2

�
1 − 2ðm − m̄Þ − 1

wmax
m =w0

1

�
;

with

8<
:

η2
2
< η3 þ

η2
2
< 1 − η2

2

m̄ ¼ 1; 2; 3; : : :
ð43Þ

By studying the sign of the Hessian matrix determinant, it can be
shown that the distinction between maximum and minimum eigen-
frequency magnitudes is governed by Eq. (19). To verify Eq. (43),
consider the case of η2 ¼ 0.15 in Fig. 3 where the maximum and
minimum eigenfrequency magnitudes at modem ¼ 3 and α ¼ 0.16

are wmax
3 =w0

1 ¼ 5.69 and wmin
3 =w0

1 ¼ 4, respectively. Inserting the
maximum eigenfrequency magnitude into Eq. (43) and taking into
account Eq. (19) gives

η3 þ
η2
2
¼ 0.4121 or η3 þ

η2
2
¼ 0.7636 ð44Þ

which agrees with the maximum positive shift locations observed
in Fig. 3. Inserting the maximum eigenfrequency magnitude into
Eq. (43) and taking into account Eq. (19) gives

η3 þ
η2
2
¼ 0.125 or η3 þ

η2
2
¼ 0.625 ð45Þ

which also agrees with the maximum negative shift locations ob-
served in Fig. 3.

For the cases of blockage with small radial protrusion, the pos-
itive and negative shift magnitudes are about the same at a given
mode [Fig. 6 and Eq. (7)]. However, Figs. 3 and 4 show that the
magnitudes of the positive and negative maximum shifts oscillate
as the mode number increases. For example, Fig. 3 shows that at the
second and third modes, the magnitude of the positive maximum
shift is lower than the negative maximum shift. However, at the
fourth mode, which is near the Bragg resonance condition of maxi-
mum reflection, both negative and positive maximum shift magni-
tudes are the same. At the fifth and sixth modes, the magnitude
of the positive maximum shift becomes larger than the negative
shift. Figs. 10 and 11 give the eigenfrequency (wm) variation with
length ηb ¼ η3 þ 0.5η2 for the first 15 and 40 modes for η2 ¼ 0.15
and η2 ¼ 0.027, respectively. Overall, Figs. 10 and 11 show that
between two modes where maximum transmission occurs, the
magnitude of the positive maximum shift is low at low modes
and increases as the frequency increases, and conversely, the neg-
ative maximum shift is high at low modes and decreases as the fre-
quency increases. Both negative and positive shift magnitudes
become the same at the Brag resonance frequency of maximum
reflection.

The solution of the first equation in Eq. (42) gives the maximum
eigenfrequency magnitudes at a given mode m. However, to date,
attempts to solve for the first equation in Eq. (42) and find a closed
form for the maximum eigenfrequency at a given mode m have
failed. Fortunately, the features observed for the maximum shift
variation can be explained qualitatively. Eqs. (35) and (36) show
that the variation range of zero shift location is

η3 þ
η2
2
¼

�
m̄ − 1

ð2m − 1Þ to
m̄

ð2m − 1Þ
�

ð46Þ

The boundaries in Eq. (46) are the locations of a positive and
negative shift for shallow blockages. This implies that the zero shift
locations could coincide with a maximum shift location, preventing
the maximum shift from occurring. To further illustrate this effect,
consider the case of a blockage with large radial protrusion such
that α ≈ 0. In this case, the zero shift equation in Eq. (28) gives

η3 þ
η2
2
¼ 2m̄ − 2

π arccosfð−1Þm̄ cos½ð2m − 1Þ π
2
η2�g

2ð2m − 1Þ ð47Þ

which leads to two cases, depending on whether the zero shift
location m̄ is even or odd as follows:
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η3 þ
η2
2
¼ m̄ − 1

ð2m − 1Þ þ
η2
2

if m̄ is odd

η3 þ
η2
2
¼ m̄

ð2m − 1Þ −
η2
2

if m̄ is even ð48Þ

In a more general, and simpler, form, Eq. (48) becomes

η3 þ
η2
2
¼ 2m̄

ð2m − 1Þ �
η2
2

ð49Þ

This shows that the zero shift location for severe blockages
could approach the maximum shift at even locations for certain
modes. Knowing that the maximum shift sign at even locations
changes at different modes, the zero shift locations approach pos-
itive maximum shift locations at certain modes, and approach the
negative maximum shift locations at other modes. For example,
Figs. 3 and 10 show that for the case of η2 ¼ 0.15, the second maxi-
mum shift (as η3 þ η2=2 increases) is positive at modes m ¼ 2 and

m ¼ 3. Figs. 3 and 10 show that at those modes, the zero shift lo-
cations are close to the maximum positive shift location, and there-
fore the magnitude of the positive shift is reduced.

Moreover, for very short blockages, Eq. (48) shows that two
consecutive zero shifts take almost the same location at low modes.
Because a shift occurs between two zero shift locations, this would
prevent the shift at even locations from taking place. For example,
the case of η2 ¼ 0.027 in Figs. 4 and 11 shows that at low modes
such as m ¼ 2, almost only negative shifts occur and that the zero
shift locations coincide at almost η3 þ η2=2 ¼ 2=3.

Eq. (49) approaches the zero shift locations for small radial pro-
trusion when

η3 þ
η2
2
¼ 2m 0 0

ð2m − 1Þ �
η2
2
≈ 2m 0 − 1

2ð2m − 1Þ

⇒ ∓η2 ≈ 2ð2m 0 0 −m 0Þ þ 1

ð2m − 1Þ ð50Þ

Fig. 10. Normalized eigenfrequency variation with length ηb ¼ η3 þ 0.5η2 of the first 15 modes when α ¼ 0.16 and η2 ¼ 0.15; data similar to data
found in Louati et al. (2016) was used to calculate the results

Fig. 11.Normalized eigenfrequency variation with length ηb ¼ η3 þ 0.5η2 when α ¼ 0.16 and η2 ¼ 0.027: (a) the first 20 modes; (b) modesm ¼ 21

to m ¼ 40; data similar to data found in Louati et al. (2016) was used to calculate the results
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which is the condition for Bragg resonance frequency of maximum
reflections [Eq. (14)]. This is as shown in Eq. (31), and as expected
from Figs. 10 and 11. On the other hand, Eq. (49) approaches the
odd maximum shift locations when

η3 þ
η2
2
¼ 2m̄

ð2m − 1Þ �
η2
2
≈ 2m 0 − 1

ð2m − 1Þ

⇒ ∓η2 ≈ 2ð2m̄ − 2m 0 þ 1Þ
ð2m − 1Þ ð51Þ

which is the condition for Bragg resonance frequency of total trans-
mission [Eq. (10)]. In addition, Eqs. (19) and (20) show that the
maximum negative shifts occur at odd locations for modes below
the first Bragg resonance frequency of total transmission. This is
why Figs. 10 and 11 show that as the mode number approaches the
Bragg resonance frequency of total transmission, the magnitude of
negative shifts decreases and the zero shift locations move toward
the negative shift locations. Once the mode number exceeds the
Bragg resonance frequency of total transmission, the zero shift lo-
cations switch from being close to the negative shift locations to
being near the positive shift locations. This is because, from
Eqs. (19) and (20), the positive shift switches from being at even
locations to odd locations when the mode number crosses a Bragg
resonance frequency of total transmission.

Low-Frequency Approximation

For a severe blockage case, Fig. 3 shows that the lowest mode takes
mostly negative shift. In this case, if the first eigenfrequency is
assumed to be very small (w1=w0

1 ≪ 1), then a first-order Taylor
expansion could be applied to sine and cosine functions in the
dispersion relation [Eq. (2)], which gives

α − ðk1LÞ2η2η3 − α2ðk1LÞ2η1η2 − αðk1LÞ2η1η3 ≈ 0

⇒
w1

w0
1

≈ 2

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α

α2η1η2 þ αη1η3 þ η2η3

r
ð52Þ

Considering that α≪ 1, Eq. (52) becomes

w1

w0
1

≈ 2

π

ffiffiffiffiffiffiffiffiffi
α

η2η3

r
ð53Þ

To understand the physical meaning of the natural frequency in
Eq. (53), consider a RPV blocked system (Fig. 1) and assume that
the pipe with length l2 (representing the blockage) has a very small
cross-sectional area (α ¼ A2=A≪ 1) such that the pipe with length
l1 behaves as a reservoir with respect to Pipe 2. At very low fre-
quency such that the wavelength is much greater than l2 and l3, the
system comprising Pipe 2 and Pipe 3 behaves as a Helmholtz res-
onator (Stevens 1998, Chapter 3) in which Pipe 2 is equivalent to an
acoustic mass (most of the energy in Pipe 2 is kinetic energy) and
Pipe 3 is equivalent to an acoustic compliance (most of the energy
in pipe 3 is potential energy). Applying the one-dimensional mo-
mentum equation (Ghidaoui 2004) in Pipe 2 and assuming an ideal
fluid gives the following result:

M
dV2

dt
¼ P0A2 − ðP0 þ PÞA2 ⇒

dV2

dt
¼ −PA2

ρl2
ð54Þ

where V2 = velocity in Pipe 2; P = transient pressure; P0 = pressure
at the reservoir; and ρ = density. Applying the continuity equation
(Ghidaoui 2004) in Pipe 3 and using the continuity of flow at the
junction between Pipe 2 and Pipe 3 A2V2 ¼ A3V3 gives

dM3

dt
¼ ρV2A2 ⇒

dρA3l3
dt

¼ ρV2A2 ð55Þ

where V3 = velocity in Pipe 3; and l3 = length of Pipe 3. Using the
state equation dP=dρ ¼ a2 yields

dP
dt

¼ αa2
ρ
l3
V2 ⇒

d2P
dt2

¼ αa2
ρ
l3

dV2

dt
ð56Þ

Inserting Eq. (54) into Eq. (56), gives

d2P
dt2

− a2

L2

α
η3η2

P ¼ 0 ð57Þ

which is the ordinary differential equation of a Helmholtz resonator
system with natural frequency (wH)

wH ¼ a
L

ffiffiffiffiffiffiffiffiffi
α

η3η2

r
⇒

wH

w0
1

¼ 2

π

ffiffiffiffiffiffiffiffiffi
α

η3η2

r
ð58Þ

This is identical to Eq. (53). For the short blockage case (Fig. 4),
the shift is almost always nearly zero at the lowest mode (m ¼ 1).
Therefore, a significant shift of the lowest eigenfrequency is a good
indication of severe blockage case where Eq. (53) could become an
accurate approximation.

Conclusions

The eigenfrequency shift from an interior blockage in a conduit is
investigated with the goal being to understand and describe the
mechanisms that cause such eigenfrequency shift. This understand-
ing provides insights essential to improving the accuracy and the
convergence of inverse techniques for TBDDM and cross-sectional
pipe condition assessment.

The variation in eigenfrequency shift caused by a shallow block-
age (i.e., small radial protrusion) in a conduit is analyzed by study-
ing the variation of the work done by radiation pressure at the
blockage boundaries. In particular, if the work done at one end
of a blockage is equal in magnitude and sign to the work done
at the other end, then the eigenfrequency shift is zero. This case
occurs under two conditions:
1. The blockage length is a multiple of half the wavelength of the

mth mode harmonic. At these modes, the eigenfrequency corre-
sponds to the Bragg resonance frequency of total transmission.
Under this condition, the shift is zero for any blockage location.

2. At a given mode m, the shift is zero when the blockage
midlength is located at a position of equal pressure and flow
magnitudes.
On the other hand, maximum shift occurs if the work done by

radiation pressure at one blockage boundary is equal in magnitude
and opposite in sign to the work done at the other boundary.
Two mechanisms govern the maximum shift:
1. For a given mode m, the shift is maximum if the blockage

midlength is located at a position of either a pressure node
or stagnation point; and

2. For a given mode number, the largest shift magnitude occurs
at modes with an eigenfrequency close to the Bragg resonance
frequencies of maximum reflection.
Positive and negative shifts depend on which blockage bounda-

ries experience higher work done by radiation pressure. The
assumption of shallow blockage applies when the blockage occu-
pies 35% or less of the pipe’s area.

For the case of severe and moderate blockage, the blockage lo-
cations of zero shift and maximum shift vary with the radial pro-
trusion of the blockage (α). The more severe the blockage, the more

© ASCE 04017055-12 J. Hydraul. Eng.
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these locations are shifted. However, the variation of these locations
with respect to the shallow blockage case becomes very small at
high modes (m > 3). The magnitude of positive shifts is small
at low modes and becomes high at modes with eigenfrequencies
close to the Bragg resonance frequency of maximum reflection.
When such a significant positive shift is measured, it provides
an accurate estimate of the Bragg resonance frequency from which
the blockage characteristics can be determined. The first eigenfre-
quency can be well approximated by the natural frequency of a
Helmholtz resonator system. The conclusion and results in this
work are studied experimentally in Louati et al. (2017).

Appendix. Hessian Matrix for Positive and Negative
Maximum Shifts

DH ¼
∂2
	
Δwm
w0
1



∂ðη3 þ η2

2
Þ2
∂2
	
Δwm
w0
1



∂ðη3Þ2 −

∂2
	
Δwm
w0
1



∂ðη3 þ η2

2
Þ∂ðη3Þ ð59Þ

with

∂2
	
Δwm
w0
1



∂ðη3þ η2

2
Þ2 ¼−ð1−αÞ

π
½ð2m−1Þπ�2

8><
>:

2sin
h
ð2m−1Þπ

2
η2
i

cos
h
ð2m−1Þπ

	
η3þ

η2
2


i
9>=
>;

∂2
	
Δwm
w0
1



∂ðη2Þ2 ¼−ð1−αÞ

π

h
ð2m−1Þπ

2

i
2

8><
>:

2sin
h
ð2m−1Þπ

2
η2
i

cos
h
ð2m−1Þπ

	
η3þ

η2
2


i
9>=
>;

∂2
	
Δwm
w0
1



∂ðη3þ η2

2
Þ∂ðη3Þ

¼−ð1−αÞ
2π

½ð2m−1Þπ�2
8><
>:

2cos
h
ð2m−1Þπ

2
η2
i

sin
h
ð2m−1Þπ

	
η3þ

η2
2


i
9>=
>;

ð60Þ
which at the critical points conditions [Eq. (12)] gives

DH ¼
�ð1 − αÞ

π

�
2

½ð2m − 1Þπ�4ð−1Þ2ðm̄þm 0þ1Þ > 0 ð61Þ

with

∂2
	
Δwm
w0
1



∂ðη3 þ η2

2
Þ2 ¼ −2 ð1 − αÞ

π
½ð2m − 1Þπ�2ð−1Þm̄þm 0þ1

∂2
	
Δwm
w0
1



∂ðη2Þ2 ¼ −2 ð1 − αÞ

π

h
ð2m − 1Þπ

2

i
2ð−1Þm̄þm 0þ1

∂2
	
Δwm
w0
1



∂ðη3 þ η2

2
Þ∂ðη3Þ ¼ 0 ð62Þ
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Notation

The following symbols are used in this paper:
A0 = area of intact pipe (m2);
A2 = area of pipe with reduced cross-sectional area (m2);
a = acoustic wave speed in water (ms−1);
g = acceleration due to gravity (m s−2);

hamp
m = mth maximum complex amplitude of pressure head (m);
i =

ffiffiffiffiffiffi−1p
;

kmax
m = mth wavenumber at maximum shift (radm−1);
L = whole pipe length (m);
l1 = length of Pipe 1 (m);
l2 = length of Pipe 2 (m);
l3 = length of Pipe 3 (m);
m = mode number for pipe system of length L;
nT = integer that gives the number of modes region between

two consecutive Bragg resonance frequencies of total
transmission;

P = pressure (Pa);
qamp
m = mth maximum complex amplitude of flow discharge (m);
V2 = velocity in Pipe 2 (m s−1);
V3 = velocity in Pipe 3 (m s−1);
wH = natural frequency of Helmholtz resonator system

(rad s−1);
wm = mth resonant frequencies in the blocked pipe case

(rad s−1);
w0
m = mth resonant frequencies in the intact pipe case (rad s−1);
x = axial coordinate (m);
α = area ratio between the blocked pipe section (A2) and the

intact pipe section (A0);
Δwm = mth eigenfrequency shift (rad s−1);

η1 = l1=L dimensionless length;
η2 = l2=L dimensionless length;
ξ = counting numbers; and
ρ = density.
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