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Abstract: Due to random noise in real measurements, leak detection (estimation of leak size and location) is subject to a degree of uncertainty.
This paper provides a framework to investigate the lower bound of the variance of a leak’s variable estimation and delineates the parameters upon
which this lower bound depend. This is accomplished by applying the Cramer-Rao lower bound (CRLB) principle to the leak detection problem.
For a given data set, CRLB gives the minimum mean square error of any unbiased estimator. The CRLB is evaluated using the Fisher
information, which is evaluated from direct differentiation of the water-hammer characteristics equations. The results show that the CRLB of
the leak-size estimate increases with time of closure and noise level but reduces with the duration of the measured signal. It is also shown that the
CRLB is instrumental in the systematic design of efficient transient tests for leak detection. The error of leak-size estimates rises remarkably with
setting distances between consecutive potential leaks of less than half the minimum wavelength of the probing signal. More conclusions are
drawn on appropriate mesh-size for inverse transient analysis (ITA), maximum possible accuracy in successful localization, and its probability
subject to the physical situation’s parameters. DOI: 10.1061/(ASCE)HY.1943-7900.0001603. © 2019 American Society of Civil Engineers.
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Introduction

Leakage in pipe systems is a serious and growing concern in water
resources management. Therefore, leak detection techniques, espe-
cially those based on transient tests, are receiving great attention
from scientists (Colombo et al. 2009). The purpose of transient-
based defect detection methods (TBDDM) is to infer some unknown
properties of a pipe system from measured pressure transient sig-
nals (Liggett and Chen 1994; Colombo et al. 2009). This is done
through a procedure consisting of mathematical modeling, numeri-
cal simulation, use of an optimization tool (often), identification
of model input parameters, and data collection from experimental
tests. Each of these tasks is prone to some amount of error, which
finally leads to uncertain results from the TBDDM. These errors
mean that TBDDM results need to be interpreted using a stat-
istical framework (Duan 2016; Sattar and El-Beltagy 2017). This
approach for TBDDM is in its infancy, but is beginning to bear fruit

(e.g., Vitkovsky et al. 2007; Lee et al. 2015; Wang and Ghidaoui
2018b; Zhao et al. 2018).

Measurement errors can be categorized into systematic error
(deterministic error) and noise (random error or statistical uncer-
tainty). Systematic error can be due to a miscalibration of measur-
ing devices, which is deterministic in principle, or due to modeling
assumptions and approximations. Noise, on the other hand, is de-
scribed as random fluctuations around a mean value (e.g., uncertain
mechanical motion of particles), which makes all measured data
uncertain. The pressure spikes of noise do not contain any infor-
mation about the system properties, but their partial resemblance to
true reflections from leaks (i.e., pressure drops) causes the deterio-
ration of the signal and results in either inaccurate estimation of
leak parameters or even the wrong identification (e.g., identification
of leaks that do not exist or missing leaks that do exist) (Ferrante
et al. 2007, 2010, 2016).

Estimation theory provides a lower bound of the mean square
error of the parameters being investigated as a function of measured
signal characteristics (bandwidth, power, and time length). This
lower bound is referred to as the Cramer-Rao lower bound (CRLB)
and is quantified by the Fisher information matrix (Kay 1993).
In the case of multiple unknown parameters to be estimated, the
CRLB offers a lower bound for their covariance matrix (Kay 1993;
Garthwaite et al. 2002; van Trees and Bell 2013).

CRLB has a number of practical applications. For example, it
can be used to evaluate different estimators [i.e., different TBDDM
approaches to see which one comes close or achieves the theoretical
lower bound (Vaseghi 2008)]. In addition, the CRLB provides a
framework for assessing how the various parameters that are under
the control of the experimenter (e.g., characteristics of input signal
and length of measured signal, among others) affect the estima-
tion and how to choose the best strategy to minimize the minimum
square error of the parameters being estimated (e.g., Diong et al.
2015; Bolliger et al. 2013; Zhao et al. 2014).

This paper introduces the CRLB approach to the TBDDM and
formulates a fast, accurate, and efficient scheme for evaluating the
CRLB from water-hammer characteristics equations. The effect of
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valve closure time, duration of measurement, and signal power on
the accuracy of localization and leak-size estimates is investigated.
In addition, the computed CRLB values of the leak variables are
used to estimate minimum possible standard deviation of leak areas.

The paper is structured as follows. In the next section, the role
of CRLB in leak detection is elucidated. Then, the numerical
scheme to compute CRLB is formulated and validated, and its com-
putational properties are discussed. Numerical examples and com-
putations of performance limits for a typical reservoir-pipe-valve
system are then discussed. Two applications of the proposed CRLB
computations (design of experiments and probability of successful
localization of leaks) are discussed.

CRLB and Its Role in Transient-Based Defect
Detection

In real experiments, measurements are always contaminated by
random noise. As a result, detecting defects (leaks in this paper)
requires a statistical framework. It is thus natural to ask what, given
an experimental setup and the distribution of random noise, is the
optimal leakage detection result? That is, what is the minimum
possible square error of leakage localization? This is precisely the
role of CRLB theory (Kay 1993). In particular, CRLB provides
the theoretical lower bound of the mean square error of parameter
estimation. It is important to stress that the mean square error of
maximum likelihood estimation (MLE) tends to the CRLB as the
sample size tends to infinity (Garthwaite et al. 2002).

A reservoir-pipe-reservoir system is considered where the fluid
is assumed inviscid. To elucidate the CRLB and its important role
in transient-based defect detection, a leakage problem for which the
CRLB can be derived analytically is considered (Wang et al. 2019)

CRLBðxLÞ ¼
σ2

2SA2
ekG 0ðxLÞk2

ð1Þ

with kG 0ðxLÞk2 ¼
XJ
j¼1

Z4gq2ðxUÞ
2H0

L
sin2

�
ωj

a
ðxm − 2xLÞ

�
ð2Þ

where S = sample size (number of times the experiment is re-
peated); xL = leak location; Ae = effective leak area; σ2 = noise
variance; Z ¼ a=gA = pipe impedance; a = wave speed, g = grav-
ity; A = cross-sectional area; ωj ¼ jth selected angular frequency
for leakage detection (j ¼ 1; : : : ; J); qðxUÞ = transient flow rate
at the upstream; H0

L = steady-state pressure head at the leak; and
xm = measurement position. Therefore, the minimum variance of
the leak location estimate is analytically given by combination of
Eqs. (1) and (2) as follows:

CRLBðxLÞ ¼ varðx̂LÞ ¼
H0

Lσ
2

SAeZ4gq2ðxUÞ
P

J
j¼1 sin

2ðωj

a ðxm − 2xLÞÞ
ð3Þ

If all the parameters in the right-hand side are known, then the
CRLB provides the minimum possible variance that any leakage
detection scheme can achieve. This lower limit provides a quanti-
tative measure for comparing different defect detection schemes
(Wang et al. 2019). Furthermore, the right-hand side of Eq. (3) pro-
vides analysts with a scientific way to assess and design experiments
so as to minimize the variance of the parameter being identified.
For example, it is clear that to lower the minimum variance of leak
estimate, it is better to measure during peak demand (i.e., when H0

L
is small). This is consistent with the finding of Ferrante et al. (2014).

In addition, the CRLB shows that the larger the value of J (number
of measured frequencies), the smaller the variance of the leak esti-
mate. This dependence on frequency provides a theoretical support
for the intuitive result that sharper transients (wider frequency band-
width) result in more reliable (accurate) defect detection and agrees
with the results found by Lee et al. (2013, 2015), Zhao et al. (2018),
Louati et al. (2017), and Wang and Ghidaoui (2018b).

Moreover, the CRLB shows the relationship between sample
size, S, and variance of leak localization. Furthermore, the CRLB
shows explicitly how a larger leak size Ae and a smaller noise level
σ2 are beneficial for defect detection. For example, reducing the
noise by half (which can be performed by repeated transient tests
or larger S) reduced the variance of localization by a factor of 4.
Taking derivatives of the CRLB with respect to the various param-
eters informs the analyst of the marginal gain in identification ac-
curacy. For example, the decreasing rate (derivative) of the CRLB
with respect to S provides the analyst with an increased level of
confidence in localizing the leak by adding one more measurement.

The preceding discussion was given for the ideal case (e.g., no
friction, linear leak law, and sudden valve closure). More realistic
test cases where these assumptions are relaxed (Ferreira et al. 2018)
cannot be analyzed analytically. Therefore, in what follows, the
method of characteristics is used to investigate the CRLB for more
realistic test cases.

Numerical Formulation of CRLB

The simple example in the previous section assumes one leak; thus,
the uncertainty of both leak location and size is estimated. Wang and
Ghidaoui (2018a) developed a linearized frequency-domain model
and derived corresponding CRLB equations of leak size and loca-
tion for any leak. However, for the time-domain water-hammer
solution where several parameters may be incorporated in the
model, an analytical solution for the CRLB cannot be derived, and
a numerical approach is needed. Computational approaches allow
for the application of a versatile transient solver that includes ad-
vanced models of viscoelasticity, turbulence, fluid–structure inter-
action, and non-Newtonian fluids, among others, with various types
of boundary conditions (Covas et al. 2005; Ahmadi and Keramat
2010; Keramat and Tijsseling 2012; Keramat et al. 2012, 2013;
Meniconi et al. 2014; Majd et al. 2016; Meniconi et al. 2017;
Ferreira et al. 2018). In this view, any arbitrary valve type and con-
sequently valve maneuver with any nonlinear closure pattern or pipe
system equipment such as pumps or pressure suppression devices
can be adopted in such numerical formulation. The majority of time-
domain leak estimation models assume many equidistant leaks on
the pipeline because they usually adopt method of characteristics
(MOC) as the solver of the forward problem (Liggett and Chen
1994; Vítkovský et al. 2000; Brunone and Ferrante 2001; Kapelan
et al. 2003; Covas et al. 2005; Jung and Karney 2008; Haghighi and
Ramos 2012). In this view, this section derives a numerical pro-
cedure for evaluating the CRLB in a model with many equidistant
leaks.

Before embarking on the validation section and the CRLB usage
for realistic cases, the framework of numerical computation of
CRLB is detailed. First, the fundamental equations and concepts
are defined and then, the time-domain based numerical scheme
for evaluating CRLB is described.

Numerical Computation of CRLB

One of the simplest CRLB formulations of unbiased estimators is
numerically computed based on the Hessian of the likelihood func-
tion of leak estimates. If the elements of the measurement vector
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hm are independent and identically distributed, then the covariance
matrix of measurements reduces to covðhmÞ ¼ σ2IM , in which σ2

is the variance of random noise and IM is the M-dimensional iden-
tity matrix. Therefore, the log-likelihood function becomes (Press
et al. 1992; Oppenheim et al. 1983)

ln LðAe;hmÞ ¼ −M
2
lnð2πÞ −M ln σ − 1

2σ2
kðhm − hÞk2 ð4Þ

where h denotes the expectation of hm and may be found by MOC
solution. The CRLB then states that the covariance matrix of the
unbiased leak-area estimators Ae satisfies

covðÂeÞ ¼ E
��
Âe −Ae

��
Âe −Ae

�T� ≥ IðAeÞ−1 ð5Þ

where IðAeÞ is the Fisher information matrix, whose element is

Ii;j ¼ E

� ∂
∂Aei

ln LðAe;hmÞ
∂

∂Aej
ln LðAe;hmÞ

	

¼ −E
� ∂2

∂Aei∂Aej
ln LðAe;hmÞ

	
; i; j ¼ 1; 2; : : : ;NL ð6Þ

Considering Eqs. (4) and (6), the second derivative of the last
term of Eq. (6) is (Appendix I)

∂2

∂Aei∂Aej
ln LðAe;hmÞ ¼

1

σ2

� ∂2hT

∂Aei∂Aej
ðhm − hÞ − ∂hT

∂Aei

∂h
∂Aej

	

ð7Þ

Thus, the CRLB corresponding to each element of the leak-
areas covariance matrix reads

ΣÂe
¼ covðÂeÞ ≥ IðAeÞ−1;

Ii;j ¼ −E
� ∂2

∂Aei∂Aej
ln LðAe;hmÞ

	
¼ 1

σ2

∂hT

∂Aei

∂h
∂Aej

ð8Þ

Each element of the Fisher information matrix (Ii;j) is found by
the scalar product of two vectors. The vector ∂h=∂Aei (∂h=∂Aej)
means the derivative of the computed head vector at the measure-
ment location with respect to the effective area of ith (jth) leak
candidate. The numerical algorithms to compute the elements of
these vectors (∂hn=∂Aei, n ¼ 1; 2; : : : ;M) are addressed in the
next section. The computed head is obviously a function of model
inputs including time closure and closure pattern of valve, time-
length of analysis, pipeline and flow properties, and leak variables.
As seen in the last expression of Eq. (8), the lower bound of the
covariance matrix of estimated parameters is independent of a spe-
cific measurement vector and is only a function of the statistical
properties of the random vector hm (i.e., computed head, its vari-
ance, and distribution).

A sensible global measure of performance of an estimator Âe is
defined by the root-mean square error (RMSE)

RMSEðAeÞ ¼
�

1

NL
E½ðÂe −AeÞTðÂe −AeÞ�

�1
2 ð9Þ

which indicates the root-mean square error performance over the
entire NL leak candidates. The corresponding Cramer-Rao (CR)
inequality can be introduced using the trace of computed matrix
IðAeÞ−1 in Eq. (8) as follows (Vitkovsky et al. 2003; Nehorai and
Hawkes 2000; Robinson and Milanfar 2006):

RMSEðAeÞ ≥ ξðAeÞ; with ξðAeÞ ¼
�

1

NL
traceðI−1Þ

�1
2 ð10Þ

This measure of performance has units of leak area and repre-
sents the minimum average error of size estimation.

Numerical Computation of Sensitivities

The elements of the vector ∂h=∂Aei in Eq. (8) are ∂hn=∂Aei,
n ¼ 1; 2; : : : ;M, where n indicates the time step. They represent
the sensitivity of the computed pressure heads at the nth time
step with respect to the ith model parameter Aei, i ¼ 1; 2; : : : ;NL.
This derivative can be approximated by finite difference for all
leak-size parameters. However, this numerical calculation becomes
cumbersome when the number of parameters are high because each
numerical derivative computation requires running the solver. An
alternative approach to calculate gradients is the adjoint method
(Liggett and Chen 1994). Using this method, the forward and ad-
joint solvers are called once, and hence the number of computations
is remarkably reduced. However, the derivation of the continuous
adjoint equations is complicated, especially when unsteady fric-
tion, viscoelasticity, or nonlinear boundary conditions are taken
into account.

In this research, the direct differentiation method (DDM) is de-
veloped, which is an accurate and computationally efficient alterna-
tive method for computing the response sensitivities. The proposed
DDM, explained in Appendix II in detail, is based on the exact differ-
entiation (consistent calculation of state variables) of the compatibil-
ity equations with respect to the model parameters. This approach
was previously used by Nash and Karney (1999) for the calibration
of friction coefficient in the inverse transient analysis (ITA), and it is
also widely used in structural mechanics when time-domain solu-
tions are adopted (Kleiber et al. 1997; Conte et al. 2003).

Validation and Convergence of CRLB Computation

This section verifies the proposed numerical scheme to evaluate
CRLB. The numerical computations are conducted in a typical
reservoir-pipe-valve system with one leak in the middle. The sys-
tem specifications are wave speed a ¼ 1,000 ms−1, pipe length
L ¼ 1,000 m, inner diameter of pipe = 0.2 m, upstream reservoir
head hR ¼ 26 m, outflow velocity from reservoir (before the
leak) = 0.2 ms−1, friction factor of pipe flow f ¼ 0, effective leak
area Ae ¼ 20 mm2, valve maneuver time (linear) Tc ¼ 0.04, signal
to noise ratio (SNR) = 10 dB, and signal length (total time of
measurement) TT ¼ 2T, where T ¼ 4 s is the fundamental water-
hammer period.

The mesh size of MOC is refined and the number of leak can-
didates is taken as constant. Fig. 1 shows the convergence of CRLB
results indicated by error bars when the number of leak candidates is
fixed to NL ¼ 19 so that distance between potential leaks is d ¼
50 mwhereas the grid size (Δx) decreases. As seen, despite making
use of finer mesh than 50 m, the computed standard deviations still
arrive at relatively the same quantity, which implies that the CRLB
computations soon converge to a quantity. This in turn validates the
proposed numerical application of CRLB. The negative error bars
in Fig. 1 are due to the unbiased estimation method used to com-
pute CRLB. Unbiasedness means that expectation of an estimator
is equal to its actual value. Because the expected values of the esti-
mated leak sizes at nonleaky nodes are zero, negative leak sizes are
possible, which in fact compensates for positive sizes to keep the
mean equal to zero (if estimation is repeated several times).

The trend of convergence with the mesh size can better be stud-
ied by the average of standard deviations defined by Eq. (10). Fig. 2
depicts the convergence of the measure (trace of the inversion of
the Fisher information matrix) defined by Eq. (10), which is a key
parameter to quantify the performance of the leak-size estimation.

© ASCE 04019018-3 J. Hydraul. Eng.
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The figure represents the convergence of ξ for two different num-
bers of potential leaks: NL ¼ 19 and NL ¼ 9, which correspond
to leak distances of 50 and 100 m, respectively. In both cases,
the convergence occurs for mesh sizes around 0.5 a · Tc ¼ 20 m,
which can be adopted as an appropriate mesh size for the proposed
numerical computation.

Spatial Resolution of Leak Estimates

This section investigates the effect of space resolution (i.e., spacing
between potential leaks = d) on the CRLB results. Intuitively, reduc-
ing the distance between computational leaky nodes in MOC codes
gives better accuracy. However, this section indicates that this is not
always true in leak detection. In fact, the accuracy depends on the
amount of information collected during transients.

According to the test case specified in the previous section,
Figs. 3(a–f) give the standard deviation (CRLB analysis results)

at leak candidates for six cases of space resolution including d ¼
166.67, 100, 50, 25, 16.67, and 12.5 m, respectively, where they
all come together in Fig. 3(g). Figs. 3(a–c) show that for d ≥ 50 m,
the minimum standard deviations do not change, and thus they are
independent of the space resolution for this case. However, when
d < 50 m [Figs. 3(d–f)], the precision reduces as the resolution in-
creases. To explain this, the minimum wavelength of the probing
signal, which is approximated by the length of the wavefront evalu-
ated by a · Tc, is equal to 40 m in all numerical simulations of this
figure. Therefore, in the cases in Figs. 3(a–c) d > a · Tc, whereas
the cases in Figs. 3(d–f) correspond to d < a · Tc. To conceive how
the accuracy is related to the waveform, Fig. 4 depicts a schematic of
a typical wavefront for two test cases. Fig. 4 illustrates that when the
wavefront is larger than space resolution, neighboring leak nodes
can interact with each other during the propagation of the wavefront.
Such interaction allows for larger leak sizes (which means higher
leak-size deviations) to reconstruct the indicated wavefront (and the

Fig. 2. Convergence of the performance bound ξ defined in Eq. (10) versus gird size (Δx) for two different spacing of leak candidates: d ¼ 50 m and
d ¼ 100 m.

Fig. 1. Convergence of computed standard deviations at leak candidates for different mesh grids Δx and fixed distance between leaks d ¼ 50 m.
Solid bar indicates actual leak size and location.

© ASCE 04019018-4 J. Hydraul. Eng.
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whole collected signal) and hence reduces the accuracy of leak detec-
tion. Another justification for the leak interactions is provided in terms
of correlation between leak-size estimates in Appendix III.

The trend of precision variations with space resolution can be
further elucidated with the performance bound defined in Eq. (10).

As shown in Fig. 5, when the leak distance is larger than minimum
wavelength λ ¼ a · Tc, the average of standard deviations evalu-
ated by Eq. (10) stays almost at the same level. As the leak distance
decreases from λ to λ=2, CRLB slightly increases, but after λ=2,
it drastically rises. This means that when d < λ=2, leaks cannot be
efficiently identified. Consequently, the spacing of potential leaks
is advised to be equal to half of minimum wavelength. This result
is in agreement with the Nyquist-Shannon theory (Shannon 1949)
and recent studies of transient-based leak detection by Wang and
Ghidaoui (2018b) that two leaks with a distance lower than half of
the minimum wavelength cannot be identified.

Analysis of the CRLB Model and Applications in
Leak Detection

The purpose of this section is to illustrate the effects of noise and
signal bandwidth and demonstrate how the time of valve closure,
signal strength (or SNR), and time length of measured data can help
provide more information about a leak. In particular, this section
shows that CR inequalities [Eq. (8)] can quantify the accuracy of
leak detection in terms of mean square error of size estimations.
The use of CRLB in designing transient experiments is also dis-
cussed. Subsequently, it is deduced that the lower-bound errors of

Fig. 4. Space resolutions versus leaks interaction.

(a) (b) (c)

(d) (e)

(g)

(f)

Fig. 3. Standard deviations at each leak candidate for different leak distances: (a) d ¼ 166.67 m; (b) d ¼ 100 m; (c) d ¼ 50 m; (d) d ¼ 25 m;
(e) d ¼ 16.67 m; (f) d ¼ 12.5 m. Tc ¼ 0.01T ¼ 0.04 s and a · Tc ¼ 40m; and (g) all the six leak distances. Solid bars indicate the actual leak
size and location.

© ASCE 04019018-5 J. Hydraul. Eng.
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potential leak sizes provide considerable insight into spatial reso-
lution and probability of successful leak localization.

The numerical computations are conducted in a typical reservoir-
pipe-valve system with one or two leaks and the detailed properties
specified earlier in the “Validation and Convergence of CRLB
Computation” section.

Effect of Transient Test Parameters on CRLB

The main transient test parameters are valve maneuver time
(i.e., frequency bandwidth), signal length measured and processed,
and SNR (i.e., power of the generated transient amplitude versus
noise level). The effect of these parameters on CRLB is investigated
in this section through different numerical test cases. Fig. 6 gives
the minimum standard deviations of leak sizes at each leak candi-
date. The distance between the possible leak positions is fixed to
d ¼ 50 m, which defines the spatial resolution of leak location.
Figs. 6(a and b) illustrate the effect of frequency bandwidth where
SNR and TT are fixed to 10 dB and 2T, respectively, while Tc is
altered from 0.01T to 0.1T. Figs. 6(a and b) show that the increase
in time closure (linear pattern), which is equivalent to reduction in
frequency bandwidth, significantly declines the accuracy of leak-
size estimation. This raises the failure possibility of localization
exercise. A comparison of standard deviations in Figs. 6(b and c)
delineates the effect of signal length increase from TT ¼ 2T to
TT ¼ 5T, thus demonstrating the accuracy enhancement with
the increase in sample size. Finally, Figs. 6(c and d) illustrate the
effect of SNR when it reduces from 10 to 5 dB. The comparison
between these two figures reveals how the precision declines as
SNR reduces.

Fig. 6(c) indicates that a superresolution localization of leaks
can be expected. The term superresolution refers to the ability
to recover the information beyond the Shannon-Nyquist limit
(Puschmann and Kneer 2005; Greenspan 2008; McCutchen 1967).
In the current work, this means identification of leaks located at
distance apart lower than half minimum wavelength (i.e., d < λ=2,
where d ¼ 50 m is potential leak spacing and λ=2 ¼ 0.5a · Tc ¼
200 m represents half the minimum wavelength). Similar descrip-
tions of the superresolution can be found in astronomy (Puschmann

and Kneer 2005), medical imaging (Greenspan 2008), and micros-
copy (McCutchen 1967).

Fig. 7 gives the case where two leaks are located 50 m (solid
bars) apart and shows clearly the conclusions drawn regarding
Fig. 6. As seen in Figs. 7(b–d), there is no hope of successful
localization within the 50-m resolution, although from the results,
one can conclude that Case C provides better performance than
Cases B or D. If a 50-m accuracy is of interest, higher signal band-
width (than 2.5 Hz), measurement size, or signal power is required.

Experiment Design

This section explains the role of CRLB in order to design the most
efficient transient test for leak detection. Considering that CRLB
estimates the maximum attainable accuracy for given set of tran-
sient parameters (e.g., frequency bandwidth or time closure, signal
length, and SNR), if one targets a specific resolution for leak
detection, CRLB is able to provide the appropriate parameters
to achieve such resolution. For example, if a water authority targets
leak localization down to a minimum size of Ae;target, then CRLB
analysis can be employed to estimate the minimum frequency
bandwidth, signal length, and SNR to achieve the desired target for
leak-size detection. To do so, the CR bound of the mean square error
of size estimates defined in Eq. (10) is exploited. This performance
bound represents the ideal average standard deviation for size esti-
mation. The measure ξ can be used to compare the efficiency of
different transient experiments by allocating a performance quantity
to each experiment. To simplify making comparisons, a relative CR
bound that indicates the ratio of ξ of one experiment to that of a
reference one is incorporated. This ratio intuitively represents the
performance limit of a transient experiment with respect to the refer-
ence one. This is illustrated through an example in the rest of this
section.

Herein, all comparisons are made with respect to the reference
experiment whose performance bound is ξðTc ¼ 0.01T;TT ¼ 2T;
SNR ¼ 10 dB; d ¼ 50 mÞ ¼ ξref ¼ 2 mm2, which corresponds
to that of Fig. 6(a) discussed previously. Recall that in Fig. 6(a),
the minimum standard deviation of size detection on average is
about ξref ¼ σ̄Ae

¼ 2 mm2 and leaks smaller than 2 mm2 cannot be

Fig. 5. Performance bound of vector Âe evaluated according to Eq. (10), ξ, versus distance between two consecutive leak candidates (resolution)
d for different times of valve maneuver with xL ¼ 500 m, Ae ¼ 20 mm2, SNR ¼ 10 dB, and TT ¼ 2T.
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identified within the 50-m resolution. The ratio between the target
size estimation and the aforementioned reference limit ξref (detect-
able leak size) from CRLB is hereafter referred to as the relative CR
bound and is indicated by ξr. Indeed, it defines the deviation bound

of that experiment with respect to the reference one. As an example,
for a target standard deviation ξtarget ¼ σ̄Ae

¼ 4 mm2, the relative
CR bound is ξr ¼ ξtarget=ξref ¼ 2. The corresponding design curves
for this example are further illustrated via some figures.

(a) (b)

(c) (d)

Fig. 7. Computed standard deviations at each leak candidate for different time closures, measurement size, and SNR: (a) SNR ¼ 10 dB, d ¼ 50 m,
TT ¼ 2T, and Tc ¼ 0.01T; (b) SNR ¼ 10 dB, d ¼ 50 m, TT ¼ 2T, and Tc ¼ 0.1T; (c) SNR ¼ 10 dB, d ¼ 50 m, TT ¼ 5T, and Tc ¼ 0.1T; and
(d) SNR ¼ 5 dB, d ¼ 50 m, TT ¼ 5T, and Tc ¼ 0.1T. Solid bars indicate actual leak size and location.

(a) (b)

(c) (d)

Fig. 6. Computed standard deviations at each leak candidate for different time closures, measurement size, and SNR: (a) SNR ¼ 10 dB, d ¼ 50 m,
TT ¼ 2T, and Tc ¼ 0.01T; (b) SNR ¼ 10 dB, d ¼ 50 m, TT ¼ 2T, and Tc ¼ 0.1T; (c) SNR ¼ 10 dB, d ¼ 50 m, TT ¼ 5T, and Tc ¼ 0.1T; and
(d) SNR ¼ 5 dB, d ¼ 50 m, TT ¼ 5T, and Tc ¼ 0.1T. Solid bars indicate actual leak size and location.
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Figs. 8–10 give the variation of relative CR bound (ξr) with
dimensionless time closure (i.e., frequency bandwidth), dimen-
sionless signal length, and SNR, respectively. The relative bound
ξr ¼ 2 is indicated by arrows in these figures. Fig. 8 gives the
variation of ξr with Tc=T for given TT ¼ 2T and SNR = 10 dB,
where Tc is the time closure (with linear maneuver) and TT

is the measurement length. The size estimation uncertainty (ξr)
rises as the time closure increases, especially when Tc is higher
than 0.5T (i.e., Tc > 2L=a). For the indicated target ξr ¼ 2, CRLB
shows that Tc=T ¼ 0.44 is acceptable for the transient experiment.

Fig. 9 gives the variation of ξr with TT for given Tc ¼ 0.01T and
SNR ¼ 10 dB. The figure displays that for a signal length larger

Fig. 8. Relative CR bound [Eq. (10) defines ξ] as a function of dimensionless valve maneuver, with ξr ¼ ξðTc ¼ ð0.01∶0.01∶1ÞT;TT ¼ 2T;
SNR ¼ 10 dB; d ¼ 50 mÞ=ξðTc ¼ 0.01T;TT ¼ 2T;SNR ¼ 10 dB; d ¼ 50 mÞ, and T = fundamental water hammer period = 4 s.

Fig. 9. Relative CR bound ξr as a function of dimensionless measurement time length, with ξr ¼ ξðTc ¼ 0.01T;TT ¼ ð0.5∶0.2∶10ÞT; SNR ¼
10 dB; d ¼ 50 mÞ=ξðTc ¼ 0.01T;TT ¼ 2T; SNR ¼ 10 dB; d ¼ 50 mÞ, [Eq. (10) defines ξ], and T = fundamental water hammer period = 4 s.
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than 2T, the gain in certainty is relatively low. In other words, one
does not benefit (gain in detection confidence) much by taking
signals longer than TT ¼ 2T. For the desired target ξr ¼ 2, CRLB
shows that TT ¼ 0.8T is appropriate for the transient experiment
given Tc ¼ 0.01T and SNR = 10 dB. This also shows that when
TT ¼ 0.8T and Tc ¼ 0.01T, the same certainty in detection as for
the explained case in Fig. 8 is achieved.

Fig. 10 gives the variation of ξr with SNR for given Tc ¼
0.01T and TT ¼ 2T. For a given target ξr ¼ 2, CRLB shows that
SNR ¼ 4 dB can provide the required detection certainty. If the
SNR increases (e.g., SNR ¼ 10 dB), then the detection certainty
rises, as shown in Figs. 10 and 6(a). Eventually, the transient
experiment designed by using SNR ¼ 4 dB (i.e., ξr ¼ 2), Tc ¼
0.01T, and TT ¼ 2T can still be acceptable by water authorities
for localization because the position of leaks is usually the main
concern of clients. For instance, Fig. 6(c) displays an experiment
where ξr is higher than 2, but as discussed, the leak location can
still be identified.

Ferrante et al. (2014) investigated different ways to increase the
transient signal power and thus enhancing detectability. However,
because they did not recognize noise interference in localization, no
prescriptions for transient experiment design were deduced by their
study. Nevertheless, the current research enables a systematic way
to quantify the required values of transient test parameters for a
successful leak identification with a specified resolution of size and
location.

Probability of Successful Localization

This section uses the CRLB to estimate the highest probability of
successful leakage localization. Assuming that the estimated leak
sizes Âe follow Gaussian distribution with mean Ae (actual value
of leak sizes, i.e., they are unbiased estimators), then the probability
density function (PDF) of Âe is obtained

pLðÂeÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞNL detðΣÂe
Þ

q exp

�
−1

2
ðÂe−AeÞTΣ−1

Âe
ðÂe−AeÞ

�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞNL detðI−1

Âe
Þ

q exp

�
−1

2
ðÂe−AeÞTIÂe

ðÂe−AeÞ
�

ð11Þ
where ΣÂe

and IÂe
are, respectively, the covariance and Fisher

information matrix of the leak sizes as derived in Eq. (8).
In a real-time leak detection exercise, localization is more im-

portant than sizing leaks. A criterion for successful localization
based on the evaluated lower-bound error of leak sizes can be de-
fined. Assume that a single leak is located at the kth node with size
Aek. The following criterion for successful localization of this leaky
node can be defined:

Aek − σAek
> σAei

; i ¼ f1; 2; : : : ;NLg=fkg ð12Þ
which means that in the leak-detection runs of ITA, the estimated
leak size at the actual location (indicated by index k) is maximum
with a very high probability so that it can be identified in most
cases. On the basis of the numerical manifestations in Figs. 1, 3, 6,
and 7, one can assume that all nodes have similar standard devia-
tions σAek

¼ σAei
; thus, Eq. (12) reduces to

σAei
<
Aek

2
; i ¼ f1; 2; : : : ;Ng ð13Þ

In other words, the lower-bound error at all nodes should be smaller
than Aek=2. The criteria provided in Eq. (13) implies that the thresh-
old of successful localization is σAe

¼ Aek=2, which for the leak
case under consideration is σAe

¼ Ae=2 ¼ 10 mm2, indicated by
the dashed line in Fig. 5. The desired threshold σAe

along with
the PDF defined by Eq. (11) can be exploited to estimate the highest
probability of localization using the multivariable normal cumula-
tive density function

Fig. 10. Relative CR bound [Eq. (10) defines ξ] as a function of SNR, where ξðTc ¼ 0.01T;TT ¼ 2T; SNR ¼ ð−5∶15ÞdB; d ¼ 50 mÞ=
ξðTc ¼ 0.01T;TT ¼ 2T;SNR ¼ 10 dB; d ¼ 50 mÞ, and T = water hammer period = 4 s.
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pL½ðÂe1 − Ae1 < σAe
Þ ∩ ðÂe2 − Ae2 < σAe

Þ ∩ : : : ∩ ðAek − Âek < σAe
Þ ∩ : : : ∩ ðÂeN − AeN < σAe

Þ�
¼ pL½ðÂe1 − Ae1 < σAe

Þ ∩ ðÂe2 − Ae2 < σAe
Þ ∩ : : : ∩ ðÂek − Aek < σAe

Þ ∩ : : : ∩ ðÂeN − AeN < σAe
Þ�

¼ pLðÂe −Ae < σAe
1Þ ¼

ZAe1þσAe

−∞

ZAe2þσAe

−∞
: : :

ZAekþσAe

−∞
: : :

ZAeNþσAe

−∞
pLðÂe1; Âe2; : : : ; ÂeNÞdÂe1dÂe2 : : : dÂeN ;σAe

¼ 0.5Ae ð14Þ

where 1 is a column vector of ones with NL elements. The second equality holds due to the symmetric property of the Gaussian distribution.

Fig. 11 shows the computed cumulative probabilities for differ-
ent localization accuracy and various linear maneuver times. These
results also confirm the findings in Fig. 5 regarding the fact that it is
highly probable to find the leak in ðx̂L − a · Tc; x̂L þ a · TcÞ. For
localization in the region ðx̂L − d; x̂L þ dÞ where 0.5a · Tc < d <
a · Tc, the probability reduces smoothly, and finally for d <
0.5a · Tc, the successful probability has declined drastically. These
curves reveal that for a given probability of successful localization,
each valve maneuver time (probing bandwidth) can arrive at a cer-
tain accuracy in localization at best.

Conclusions

Noise in a measured signal can blur the desired reflections from
leaks and reduce the amount of information that can be achieved
from waves. It is therefore of great interest to quantify the maxi-
mum achievable information or lower bound of error in leak-size
detection and localization. The main contributions of CRLB in
terms of lower-bound error of leak-size estimates and experiment
design have been addressed. For a hypothetical pipe system, the
effect of valve-closure time and sample size of measurement on
the computed lower bound error of leak-size estimates were inves-
tigated. The results revealed a sharp rise of standard deviation with
increased time closure and conversely, a significant drop of error
for higher time length of measurements. The behavior of the

parameters demonstrated the importance of optimal design of time
closure and measurement time duration corresponding to the de-
sired accuracy.

The comparison of lower-bound error of size-detection with
leak-size estimates allows for quantifying the success of localiza-
tion. The assumption of lumping potential leaks at computational
nodes indicated that only the error bound of leak sizes can be for-
mulated. However, it was observed that the error of size detection
rises with reduced distance between two consecutive leaks. The
reason is the significant interaction between close leaks (closer than
a · Tc=2) or in another interpretation, the high correlation of the
leak estimates when they are closer than half the minimum wave-
length. The variation of leak-size error versus distance between two
consecutive leaks enables one to predict the best possible resolution
in localization for a given set of physical experimental parameters.
The probability of successful localization within a specified zone
(resolution) was further evaluated using the cumulative integration
of the estimated PDF of leak sizes.

Using the CRLB computations, the efficient mesh size for ITA-
based leak detection was proposed to be a constant factor of the
length of the probing wavefronts (a · Tc). The factor is supposed
to be a function of the shape of the wavefront, which is dictated by
the valve closure pattern (Ferreira et al. 2018). For a linear closure,
a factor around 0.5 is found, where a lower value raises the standard
deviation and hence leads to inaccurate size estimates.

Fig. 11. Cumulative probability of successful localization versus different resolutions and valve maneuver, where xL ¼ 500 m, Ae ¼ 20 mm2,
SNR ¼ 10 dB, and TT ¼ 2T.
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Appendix I. Second Derivative of the Log-Likelihood
Function

The first derivative of the log-likelihood function in Eq. (4) is

∂LðAe;hmÞ
∂Aei

¼ − 1

2σ2

∂kðhm − hÞk2
∂Aei

¼ − 1

2σ2

∂ðhT
mhm − 2hT

mhþ hThÞ
∂Aei

¼ 1

σ2

∂hT

∂Aei
ðhm − hÞ ð15Þ

Second derivative yields

∂2LðAe;hmÞ
∂Aei∂Aej

¼ 1

σ2

∂
∂Aej

�∂hT

∂Aei
ðhm − hÞ

	

¼ 1

σ2

� ∂2hT

∂Aei∂Aej
ðhm − hÞ − ∂hT

∂Aei

∂h
∂Aej

	
ð16Þ

Appendix II. Direct Differentiation Method

The following algorithm can be utilized to compute the sensitivities
of the state variables at each point and time step with respect to the
leak-size parameters. At the steady state, the head and flow rate at
reservoir node (node number k ¼ 1) are known. Therefore, for the
reservoir node

∂h1
∂Aei

¼ 0;
∂Q1þ
∂Aei

¼ 0 ð17Þ

where flow rate before and after the leak are indicated by minus and
plus subscripts, respectively. For each interior node 1 < k < Nn,
three relations including continuity and orifice relation at each node
and Darcy-Weisbach head loss between leaks hold (Fig. 12), which
taking their derivative with respect to leak sizes yields

∂Qk;−
∂Aei

¼ ∂Qk−1;þ
∂Aei

;

∂hk
∂Aei

¼ ∂hk−1
∂Aei

− fΔxQk−1;þ
gDA2

∂Qk−1;þ
∂Aei

; k ¼ 2; 3; : : : ;Nn ð18Þ

∂Qk;þ
∂Aei

¼ ∂Qk;−
∂Aei

− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðhk − hoÞ

p �∂Aek

∂Aei
þ Aek

2ðhk − hoÞ
∂hk
∂Aei

�

ð19Þ
where g = gravitational acceleration; and ho = pressure head outside
the pipe (to compute head difference inside and outside the pipe
at the leak). If k ¼ i, then ∂Aek=∂Aei ¼ 1; otherwise, it is zero.
These computations should be implemented sequentially from the

reservoir point to the downstream valve or vice versa (if the head
and flow rate at the valve, rather than reservoir, are given).

At the transient state, the goal is to compute the derivatives at
the next time step knowing those at the current step. The algebraic
(finite difference) form of the characteristics equations in the pres-
ence of leak at each node are used for this aim

Cþ∶Qk− ¼ −Caphk þ Cp ð20Þ

C−∶Qkþ ¼ Canhk þ Cn ð21Þ
where subscripts p and n = positive and negative characteristic
lines; and coefficients Cap, Cp, Can, and Cn = general functions of
head and flow rate at the current time step and flow and pipe param-
eters (Chaudhry 2014; Wylie and Streeter 1993; Soares et al. 2008;
Keramat et al. 2012). Their derivatives with respect to each leak
area ∂Cn=∂Aei, ∂Cp=∂Aei, ∂Cap=∂Aei, and ∂Can=∂Aei are con-
veniently determined because the derivative of the state variables
(head and discharge) at the current step is known; they were already
found in Eqs. (17)–(19) for the first time step (steady state).

Eqs. (20) and (21) along with the orifice relation (Brunone 1999)

Qk− −Qkþ ¼ Aek

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðhk − hoÞ

p
ð22Þ

are simultaneously solved for the three unknownsQk−,Qkþ, and hk
at each computational section. The solution yields the following
explicit expression for hk:

hk ¼−Aekα0.5− gA2
ekþCnCanþCnCap−CpCan −CpCap

ðCanþCapÞ2
with

α¼−gð2C2
anho− gA2

ekþ 2C2
aphoþ 2CnCanþ 2CnCap

− 2CpCan− 2CpCapþ 4CanCaphoÞ ð23Þ

Finally, the chain rule allows for the sensitivity computation at
the next time step

dhk
dAei

¼ ∂hk
∂Cn

∂Cn

∂Aei
þ ∂hk
∂Cp

∂Cp

∂Aei
þ ∂hk
∂Cap

∂Cap

∂Aei
þ ∂hk
∂Can

∂Can

∂Aei
þ ∂hk
∂Aei

ð24Þ
Eqs. (20) and (21) are also symbolically differentiated to calcu-

late derivatives of Qkþ and Qk− with respect to the leak variables.

Appendix III. Correlation between Leak Estimates

The correlation between ith and jth leak candidates is numerically
found using the evaluated lower bound of the covariance matrix in
Eq. (8), as follows:

rAei;Aej
¼ covðAei;AejÞ

σAei
σAej

; i; j ¼ 1; 2; : : : ;NL ð25Þ

Reservoir

Q1 Q2

Qi-

Valve

Qi+

Qi

Fig. 12. Schematic of a reservoir-multileak pipe valve system for the computation of sensitivities. Q1, Q2, and Qi stand for discharge of leaks and
Qi− and Qiþ represent discharge before and after each leak, respectively.
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where σAei
and σAej

= standard deviations for ith and jth leak so
the diagonal elements of the correlation matrix are equal to 1. The
values of this matrix for different number of potential leaks are in-
dicated by shading in Fig. 13. Generally, these matrices show that
there is a negative correlation between two consecutive leaks and
the amount of this negative correlation increases when the leaks get
closer. More precisely, it means that any change in the size of one
leak can be compensated by a negative change, which corresponds
to negative leak size (inflow) at the next point. In addition, for quite
close leaks [Fig. 13(d)], there is a sequence of negative and positive
correlations between serial leaks, which intuitively means that the
signature of one leak on the pressure signal can be reconstructed by
sequential inflows and outflows (leaks) at successive neighboring
nodes. As a result of considerable negative (positive) correlation
between each leak and its neighboring one observed in the second
(third) off-diagonal elements from the main diagonal, one can an-
ticipate that higher standard deviations for leak sizes are likely for
the same set of data.
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Notation

The following symbols are used in this paper:
Ae = effective leak-area of all leak candidates;
Âe = estimated effective leak area of all leak candidates;

Aei = effective leak area at node i;
Âei = estimated effective leak area at node i;
a = wave speed;
d = distance between potential leaks (resolution of leak

localization);
h = EðhmÞ = expectation of measured pressure

signal = computed pressure head;
hm = measured pressure head;
I = Fisher information matrix;
L = pipe length;
L = likelihood function;
M = number of measurement time points;
NL = number of leak candidates;
pL = probability density function of estimated leaks;
T = water hammer period;

TT = total time of measurement;
Tc = manoeuvre time of valve;
Δx = mesh (grid) size of MOC numerical solution;
λ = aTc = length of injected wavefront = wavelength;
ξ = average Cramer-Rao bound of leak candidates

[Eq. (10)]; and
σ = noise standard deviation = standard deviation of

measured pressures.
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