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ABSTRACT
The minimum entropy production principle (mEPP) for flow in a wide rectangular channel shows that the entropy production rate is equal to the
unit stream power divided by the product of temperature and flow depth. Only for isothermal, steady, uniform flow is an extremum of the entropy
production equivalent to an extremum of unit stream power. For a sediment-carrying channel, minimization of unit stream power provides a linear
relation between channel slope and water depth. In agreement with published results, the unit stream power is shown to be constant rather than
minimized by mEPP within accuracy provided by data. The entropy generation rate is minimized only when the flow is as deep as possible. For a
specified volumetric flow rate, the entropy production rate for uniform flow is is less than that for an M2, M3, or S3 profile but greater than that for
an M1, S1, or S2 profile.

Keywords: Channel thermodynamics; minimum entropy production; morphodynamics and channel forms; river channels; stream
power

1 Introduction

1.1 Statement of the problem and aim of this paper

Yang (1976, 1994) hypothesize that when a sedimentary chan-
nel is subjected to a fixed flow, the slope of the channel will
adjust so that the entropy production rate will be minimized at
a stationary state of normal flow for the channel. Parker (1977)
compared the theory proposed in Yang (1976) with other the-
ories. He concluded that the minimization theory produces
solutions that seem reasonable for small slopes, but it fails for
larger channel slopes. Yang (1996) reported that his theory pro-
vides acceptable results in the low flow region, but its accuracy
diminishes as the Froude number increases and is unacceptable
for supercritical flow. That the minimization theory appears to
be acceptable when Froude number is small will be shown to
be due to the fact that the entropy generation rate is minimized
when the depth of flow is large and velocity small. Further-
more, our analysis of the equations and data for the Rio Grande
River suggests that minimizing power is ad hoc at best and
that the results obtained and subsequent conclusions are only
coincidentally correct in special cases.

In the opening of his discussion of Yang (1976),
Parker (1977) writes

Many researchers, including the writer, remain wary of the unit
stream power minimization principle utilized by the author inso-
far as it appears to have been “pulled out of the hat,” with no
physical justification.

The aim of the current paper is to investigate whether the min-
imum stream power hypothesis as it has been employed has
a physical foundation. We stress that we are not advocating
use of a different principle; our only objective is to determine
the range of applicability of the currently employed application
of a minimum energy production principle (mEPP) to stream
flow hydraulics. Certainly, there have been numerous publica-
tions in the last 40 years advocating use of the minimum stream
power theory. In addition, this theory constitutes a major theme
of a book on sediment transport (Yang, 1994). There are indi-
cations that this theory is being progressively accepted among
engineers.

Yet, the question as to whether this theory is, as some
have claimed, “pulled out of the hat” remains open. Our paper
addresses only this issue. That is, we ask whether we can derive
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the minimum stream power theory. We approach this objec-
tively, from first principles. We apply the fundamental laws
of mass, momentum, energy and entropy conservation to one-
dimensional channel flow with rigour and see where this leads
us in relation to the minimum stream power theory. There are a
number of entropy-based theories, such as information entropy
and Tsallis entropy, being proposed for water resources appli-
cations; but such theories are beyond the scope of the current
paper (although we do plan to look into other entropy theories
in the future).

2 Expression for entropy generation for open channel flow

Gray and Ghidaoui (2009) provide a rigorous derivation of the
entropy generation expression for open channel flow based on
the approaches of continuum mechanics (Eringen, 1980; Trues-
dell, 1984), classical irreversible thermodynamics (De Groot &
Mazur, 1984; Jou & Casas-Vázquez, 2001), and thermodynam-
ically constrained averaging theory (TCAT) (Gray & Miller,
2013). However, in maintaining the rigour, some of the insights
are likely obfuscated for many readers. Therefore, the current
analysis uses simpler, more-familiar equations that nevertheless
retain all elements that allow for the analysis to be valid. We
consider the equations for open channel flow in a wide rectan-
gular channel when variation of the velocity field over the cross
section can be neglected. We also neglect leakage over the wet-
ted perimeter of the channel and inflow and evaporation over the
upper surface. Curvature of the channel is also neglected. We
emphasize that these simplifications are not intrinsic to the anal-
ysis but help clarify the heart of the analysis. Furthermore, we
have made use of average quantities defined systematically so
that some averages are weighted to ensure that the equations are
consistent. For example, the average temperature is an entropy
weighted average. The precise definitions of averages are not
essential to understanding the following development and are
not indicated, but the interested reader may find the definitions
explicitly listed in Gray and Ghidaoui (2009).

2.1 Mass conservation

The three-dimensional point mass conservation equation is well
known:

∂ρ

∂t
+ ∇· (ρv) = 0 (1)

where ρ is the fluid density and v is the velocity vector. This
equation may be integrated over the cross section of the chan-
nel of constant width, B, much greater than the depth, H, using
integral theorems (Gray, Leijnse, Kolar, & Blain 1993), as well
as over an increment of time if desired, to obtain:

∂(ρH)

∂t
+ ∂(ρUH)

∂x
= 0 (2)

where ρ is the average fluid density and U is the density
weighted average velocity in the direction of flow, x. The over-
bar is used to indicate that the quantity has been averaged over
the channel cross-section, and an increment of time. Capitaliza-
tion rather than an overbar is used to indicate the average of the
velocity component in the direction of flow because this is a den-
sity weighted average. Equation (2) may be rearranged so that
the time variation is a Lagrangian derivative along the channel
axis with the form:

D(ρH)

Dt
+ ρH

∂U
∂x

= 0 (3)

where:

D
Dt

= ∂

∂t
+ U

∂

∂x
(4)

2.2 Momentum conservation

The momentum equation at a point is:

∂(ρv)
∂t

+ ∇·(ρvv) − ρg − ∇·t = 0 (5)

where g is gravity and t is the total stress tensor. Equation (5) is a
vector equation, but we have primary interest in the momentum
transport along the channel for the case when the hydrostatic
condition applies for the momentum in the vertical. Integration
of this equation over the cross section of the wide rectangular
channel yields

∂(ρUH)

∂t
+ ∂(ρUUH)

∂x
− ρgH

(
S0 − Sf

)− ∂(txxH)

∂x
= 0 (6)

where S0 is the channel slope, Sf is the friction slope (the retard-
ing force due to interaction of flow with the channel boundary),
and txx is the stress for the flow channel which also accounts
for the stress arising from the inertial term due to averaging of
velocity squared such that:

txx = txx − ρ(u − U)(u − U) (7)

where txx is the point stress in the flow along the channel and
the additional terms on the right account for turbulent stress as
well as stress due to non-uniformity of the velocity across the
channel cross section. Rearrangement of the time derivative in
Eq. (6) into a Lagrangian derivative form gives the momentum
conservation equation:

D(ρUH)

Dt
+ ρUH

∂U
∂x

− ρgH
(
S0 − Sf

)− ∂(txxH)

∂x
= 0 (8)

2.3 Energy conservation

The point form of the total energy equation is perhaps less
commonly used in hydraulics than the preceding conservation
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equations, but it is still foundational. It can be expressed as:

∂

∂t

(
E + ρ

v · v
2

)
+ ∇·

[(
E + ρ

v · v
2

)
v
]

− ρg · v − h − ∇· (t · v) − ∇·q = 0 (9)

where E is the internal energy per volume, q is the non-
advective heat transfer vector, and h is an energy body source.
Integration of this equation while using the assumption that the
impact of the velocity components orthogonal to the channel
axis are negligible yields:

∂

∂t

[(
E + ρ

UU
2

)
H
]

+ ∂

∂x

[(
E + ρ

UU
2

)
UH

]

− ρgUS0H − hH − ∂(UtxxH)

∂x
− ∂(qxH)

∂x
= 0 (10)

In this equation the deviation kinetic energy is omitted, as is
customary in the inertial terms; the terms that arise for energy
transport due to deviation velocities associated with turbulence
and variability across the channel cross section are included
in qx, the non-advective energy transport along the channel;
and non-advective energy transport across the wetted perimeter
and the top of the channel are considered negligible. Rewriting
Eq. (10) in terms of the Lagrangian derivative provides:

D
Dt

[(
E + ρ

UU
2

)
H
]

+
[(

E + ρ
UU
2

)
H
]

∂U
∂x

− ρgUS0 − hH − ∂(UtxxH)

∂x
− ∂(qxH)

∂x
= 0 (11)

2.4 Entropy equation

In addition to the preceding three conservation equations, sys-
tem behaviour is subject to the second law of thermodynamics
as expressed by the entropy balance equation. Although this
equation is somewhat rarely used in the context of hydraulic
analysis, the point form of this balance is:

∂η

∂t
+ ∇· (ηv) − ∇·ϕ − b = � (12)

where η is the entropy per volume, ϕ is the non-advective
entropy flux, b is the body source of entropy, and � is the
non-negative entropy production rate per volume. Averaging
this equation over the channel cross-section, as well as a time
increment if desired, gives:

∂(ηH)

∂t
+ ∂(ηUH )

∂x
− ∂(ϕxH)

∂x
− bH = �H (13)

Once again, the double overbar used with ϕx indicates that this
quantity is an average of the microscale non-advective entropy
flux along the channel axis that includes contributions from
velocity deviations. Additionally, the non-advective entropy

transport across the boundary of the channel is considered negli-
gible, consistent with the assumption in the energy equation that
non-advective energy transport at the boundary is inconsequen-
tial. Written in terms of the Lagrangian time derivative, Eq. (13)
takes the form:

D(ηH)

Dt
+ ηH

∂U
∂x

− ∂(ϕxH)

∂x
− bH = � (14)

2.5 Classical irreversible thermodynamics

The entropy equation plays a key physical role by placing a
constraint on system behaviour; but to apply this constraint, a
relation between entropy per volume and energy per volume
must be established. This is obtained using a thermodynamic
expression. Here, we make use of the the simplest form based
on classical irreversible thermodynamics (CIT). This formula-
tion is particularly appropriate because it satisfies the condition
of local equilibrium required for mEPP as noted by Kay (2003)
and Trepczyńska-Lent (2012). For CIT, the energy per volume
is given by the Euler form (Bailyn, 1994; Callen, 1985):

E − ηθ + p − ρμ = 0 (15)

where θ is temperature, p is pressure, and μ is the chemical
potential. The differential of the Euler equation is:

dE − θ dη − μ dρ = 0 (16)

The differential in this equation can be written both as a par-
tial time derivative and as a gradient because of the local
equilibrium assumption to obtain:

∂E
∂t

− θ
∂η

∂t
− μ

∂ρ

∂t
= 0 (17)

and

∇E − θ∇η − μ∇ρ = 0 (18)

2.6 Thermodynamic equation

Gray (2002) and Gray and Miller (2009,1,1) have shown
the importance of averaging thermodynamic relations from the
smaller scale to the larger scale rather than merely posing
the thermodynamics at the larger scale. If Eqs (17) and (18) are
averaged and combined we obtain:

D(EH)

Dt
− θ

D(ηH)

Dt
− μ

D(ρH)

Dt

+ η
D(θ − θ)

Dt
H + ρ

D(μ − μ)

Dt
H (19)

In this equation, μ is the density weighted average of the chemi-
cal potential and θ is the entropy weighted average temperature.
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In both cases, the averaging is over the channel cross section
and an increment in time, if desired.

The preceding conservation and thermodynamic equations
are employed, making use of Lagrange multipliers, as con-
straints on the entropy balance equation. The result is the rather
formidable combined expression:

D(ηH)

Dt
+ ηH

∂U
∂x

− ∂(ϕxH)

∂x
− bH

+ lT

{
D(EH)

Dt
− θ

D(ηH)

Dt
− μ

D(ρH)

Dt

+ η
D(θ − θ)

Dt
H + ρ

D(μ − μ)

Dt
H

}

+ lE

[
D
Dt

{[
E + ρ

UU
2

]
H
}

+
{[

E + ρ
UU
2

]
H
}

∂U
∂x

]

− lE

[
ρgUS0H + hH + ∂(UtxxH)

∂x
+ ∂(qxH)

∂x

]

+ lP

[
D(ρUH)

Dt
+ ρUH

∂U
∂x

− ρgH
(
S0 − Sf

)− ∂(txxH)

∂x

]

+ lM

[
D(ρH)

Dt
+ ρH

∂U
∂x

]
= �H (20)

To progress, we seek to eliminate the material derivatives by
appropriate selection of the Lagrange multipliers indicated as ls
in the preceding equation. This will leave the entropy produc-
tion rate on the right side of the equation expressed in terms of
the dissipative, irreversible fluxes and the forces that drive these
fluxes. Therefore choose:

{lT, lE , lP, lM } =
{

1
θ

, −1
θ

,
U
θ

,
1
θ

(
μ − U2

2

)}
(21)

Substituting these forms into the constrained entropy Eq. (20)
results in a new, but still rather intimidating, form:

D(ηH)

Dt
+ ηH

∂U
∂x

− ∂(ϕxH)

∂x
− bH

+ 1
θ

{
D(EH)

Dt
− θ

D(ηH)

Dt
− μ

D(ρH)

Dt

+η
D(θ − θ)

Dt
H + ρ

D(μ − μ)

Dt
H

}

− 1
θ

[
D
Dt

{[
E + ρ

UU
2

]
H
}

+
{[

E + ρ
UU
2

]
H
}

∂U
∂x

]

+ 1
θ

[
ρgUS0H + hH + ∂(UtxxH)

∂x
+ ∂(qxH)

∂x

]

+ U
θ

[
D(ρUH)

Dt
+ ρUH

∂U
∂x

− ρgH
(
S0 − Sf

)− ∂(txxH)

∂x

]

+ 1
θ

[
μ − U2

2

] [
D(ρH)

Dt
+ ρH

∂U
∂x

]
= �H (22)

However, cancelling and combing terms allows a little more
clarity to emerge:

− ∂

∂x

(
ϕxH − qxH

θ

)
+ qxH

θ
2

∂θ

∂x

−
{

b − 1
θ

[
h + η

D(θ − θ)

Dt
+ ρ

D(μ − μ)

Dt

]}
H

− 1
θ

[{[
E − ηθ − ρμ − txx

]
H
} ∂U

∂x

]

+ U
θ

(
ρgHSf

) = �H (23)

The next step uses the concept of a simple system, as defined
by Eringen (1980), as having two specific properties. The first
is that the non-advective heat flux divided by the temperature is
equal to the non-advective entropy flux such that:

ϕxH − qxH
θ

= 0 (24)

The second property is that the energy body source term divided
by the temperature is equal to the entropy body source term. For
the case where we have integrated to a larger scale, this rela-
tion also includes the fluctuations in temperature and chemical
potential that dissipate as the system moves to an equilibrium
configuration. This equality is stated as:

b − 1
θ

[
h + η

D(θ − θ)

Dt
+ ρ

D(μ − μ)

Dt

]
= 0 (25)

We also invoke the averaged form of the local Euler relation at
a point given by Eq. (15) which is:

E − ηθ − ρ μ = −p (26)

Use of these relations in Eq. (23) and division by H simplifies it
further to:

qx

θ
2

∂θ

∂x
+ 1

θ

(
p + txx

) ∂U
∂x

+ 1
θ

(
ρgSf

)
U = � (27)

This equation expresses the product of dissipative fluxes with
their conjugate driving forces. Each force and flux term will
be zero at equilibrium. The first product on the left involves
the non-advective heat flux, qx, multiplying the temperature
gradient, ∂θ/∂x. The second product on the left is the non-
equilibrium fluid stress tensor, txx + p , multiplying the velocity



Journal of Hydraulic Research Vol. 56, No. 5 (2018) Does the stream power theory have a physical foundation? 589

gradient, ∂U/∂x. The third term is the friction slope, Sf , which
multiplies the velocity U. The sum of these three products,
multiplied by 1/θ , is equal to the entropy generation rate per
volume. If the system is isothermal and we ignore viscous effects
within the fluid, the first two products of terms in this equation
are zero. Thus we have the final form of the entropy inequality:

U
θ

(
ρgSf

) = � (28)

If the volumetric flow rate is denoted as Q = UHW where W is
the width of the channel, this equation can be rearranged to:

ρgQ
θW

Sf

H
= � (29)

This result was also obtained by Gray and Ghidaoui (2009)
using a more detailed analysis. It is this expression for entropy
generation that must be examined in light of the mEPP. Alter-
natively, if the stream power, P, is defined as in Yang (1994)
as:

P = ρgUSf = ρgQ
W

Sf

H
(30)

We can write Eq. (29) as:

1
θ

P = � (31)

such that the stream power is seen to be directly proportional
to the entropy generation rate. If the volumetric flow rate, Q,
the channel width, W, and the average density ρ are constant,
Eq. (29) significantly shows that Sf /H is proportional to the
entropy production, �, and therefore, of course, proportional to
the stream power, P.

Note that Eq. (29) is valid for both steady and unsteady
one-dimensional open channel flows. In deriving this equation,
mass, momentum, and energy conservation were employed as
constraints on the entropy inequality. Therefore, any additional
condition on Eq. (29), such as requiring that it be extremum, is
beyond what the conservation laws demand. The equation only
provides the rate of entropy generation.

The preceding derivation remains valid for the case of a
water–sediment mixture, where the state variables (H, Q and
U) are taken to be those of the mixture. At a given section of
the channel, the total mass flux is the sum of the water mass
flux and the sediment mass flux. That is, ρQ = ρwQw + ρsQs,
where superscripts w and s stand for water and sediment, respec-
tively, and ρ is the density of the mixture. As a result, Eq. (29)
becomes:

g
θW

(
ρwQw + ρsQs) Sf

H
= � (32)

and the stream power is:

P = (
ρwQw + ρsQs) g

Sf

WH
(33)

From Eq. (31) we see that the stream power divided by temper-
ature is equal to the entropy production rate. Therefore, when
the flow is isothermal, steady, and uniform, an extremum of
entropy production would correspond to an extremum of unit
stream power. Equation (29) describes the entropy production
based on larger scale quantities. If one wishes to ensure that
smaller scale contributions to entropy production are properly
accounted for, this can be accomplished through selection of the
form of Sf and by inclusion of the coefficients that account for
a variable velocity profile as in Gray and Ghidaoui (2009).

3 Is the minimum stream power theory “pulled out of a
hat”?

Yang (1994) writes that the minimum entropy principle indi-
cates, “For a closed and dissipative system, available energy can
only decrease with respective to time”. As a consequence, he
further states, “If the rate of energy dissipation due to sediment
transport is relatively small and the velocity distribution is fairly
uniform”:

US0 = a minimum subject to S0 = f (Q, H ; a) and

Q = constant (34)

where f is an empirically proposed function (Yang, 1976) in
which a is a vector of parameters such as the median diam-
eter of sediments, viscosity, terminal velocity of sediments,
sediment concentration, critical velocity, etc. The particular
function, f, proposed in Yang (1976) is given and discussed later
in this section. The above constrained optimization for a chan-
nel with width W such that Q = UHW (i.e. the case considered
in Yang, 1976, 1996) is:

QS0

WH
= a minimum subject to S0 = f (Q, H ; a) and

Q = constant (35)

Note that the minimization of (QS0)/(WH) is the same as the
minimization of the entropy, �, and the power, P, since W, ρ

and θ are all constant. Taking the derivative of QS0/WH to
determine its minimum gives:

Q
dS0

dH
H − QS0

H 2 = 0 (36)

which leads to:

dS0

S0
= dH

H
(37)

This is easily integrated to obtain:

S0 = C1H (38)
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where C1 is a constant of integration. That is, minimization
of the stream power (entropy production rate) for a fixed vol-
umetric flow rate leads to the linear relation of Eq. (38). It
is interesting to study the sediment transport equation used in
Yang (1976, 1996) to determine if it differs from a linear relation
between S0 and H. This transport equation in Yang (1976, 1996)
is:

log Cts = 5.435 − 0.286 log
(

ωd
ν

)
− 0.457 log

(
U


ω

)

+
[

1.799 − 0.409 log
(

ωd
ν

)
− 0.314 log

(
U


ω

)]

× log
(

US0

ω
− VcrS0

ω

)
(39)

where Cts is the total sediment transport concentration (in ppm
by weight); ω is the terminal velocity; d is the median sieve
diameter of sediment particles; ν is the kinematic viscosity,
U
 = √

gHS0 is the shear velocity; Vcr is the critical velocity
at incipient motion, and the logarithms are for base 10. Rewrit-
ing this equation to replace U∗ and U with the expression for the
shear velocity and the volumetric flow rate terms, followed by
rearrangement, gives:

log Cts − 5.435 − 0.286 log
(

ωd
ν

)
− 0.457 log

(√
gHS0

ω

)

1.799 − 0.409 log
(

ωd
ν

)
− 0.314 log

(√
gHS0

ω

)

= log
[

S0

(
Q

ωHW
− Vcr

ω

)]
(40)

When the parameters are specified, this equation is a relation
between H and S0. The numerical coefficients in this equation
are given to three or four significant figures, which limits the
precision of any calculations.

Yang (1996) calculated the values of S0 for different water
depths H using Eq. (40) for the case of the Rio Grande river
and provided the results for slope and power that appear here in
the first two columns of Table 1 as S0Y and US0Y. These values
are plotted in Fig. 1. Yang (1996) let H vary between 1.71 and
3.51 ft. For our calculations we use a range of 1.50–3.51 ft. Our
results are in columns 3 and 4 of the table, denoted as S0GGK

and US0GGK and are plotted in red in Fig. 1. Observe that for
both sets of data, the number of significant figures presented
is more than can be justified based on Eq. (40). The discrep-
ancy between the two sets of values is small. The difference
can be attributed to the fact that Yang (1996) did not provide
values of Vcr/ω and ω, so these had to be estimated, with val-
ues selected to be 2.5 and 0.43 m s−1, respectively. We also
assumed ν = 1 × 10−6 m2 s−1 and g = 9.81 m s−2. Data val-
ues common to both sets of calculations are Cts = 517 ppm,
d = 0.31 mm, W = 370 ft, and Q = 2877 cfs. To compare the
datasets, we performed a single-factor ANOVA analysis using
the nine values of slope (multiplied by 104) from the Y and GGK

Table 1 Values of slope and power reported by Yang (1996)
and calculated here using estimated values of Vcr/ω and ω.

H (ft) S0Y × 104
US0Y × 103

(ft/s) S0GGK × 104
US0GGK × 103

(ft/s)

3.51 11.14 2.451 11.321 2.4825
3.08 9.77 2.443 9.833 2.4573
2.75 8.70 2.435 8.722 2.4410
2.49 7.84 2.431 7.863 2.4305
2.27 7.15 2.430 7.147 2.4233
2.08 6.57 2.432 6.536 2.4185
1.93 6.08 2.433 6.058 2.4158
1.79 5.66 2.434 5.615 2.4142
1.71 5.41 2.435 5.363 2.4138
1.65 – – 5.175 2.4137
1.60 – – 5.018 2.4138
1.50 – – 4.706 2.4145

results associated with common values of H. From this analysis,
we found that Fcrit = 4.49 while F = 2.63 × 10−4. Thus there is
no statistically significant difference between the two datasets.

We performed a least square linear fit to the datasets and
found that for Yang’s data:

S0Y × 104 = 3.189H − 0.0650 (41)

with an R2 of 0.9999. For the full calculated GGK dataset, the
best fit linear equation is:

S0GGK × 104 = 3.275H − 0.2483 (42)

with R2 = 0.9997. Both datasets are thus essentially linear. Fur-
thermore, if we force a best fit of the data with a straight line
passing through the origin, the slopes of the Y and GGK data
change only slightly to 3.162 and 3.170 respectively while the
values of R2 are unchanged. These results confirm that, with
either dataset, S0 = C1H is a very good fit. The complicated
expression in Eq. (40) is essentially a linear relation between S0

and H.
So, what is the consequence of knowing that S0 = C1H

where C1 is a constant? This question can be answered by sub-
stituting this linear relation into the definition of stream power
yielding:

P = US0 = QS0

WH
= QC1

W
= C2 (43)

where C2 is a constant. This shows that the stream power
is a constant function of H and S0. Indeed, the results in
Yang (1976, 1996) show that the calculated stream power as
function of water depth is constant up to the third significant
figure! In fact, Yang (1976, 1994) needed the fourth figure to
claim that US0 has a minimum. Given measurement, round
off and modelling errors, a more reasonable conclusion is that
the minimization of stream power leads to a linear sediment
transport relation S0 = C1H . Such a linear relationship is con-
sistent with Eq. (40), providing some hope for the minimization



Journal of Hydraulic Research Vol. 56, No. 5 (2018) Does the stream power theory have a physical foundation? 591

Figure 1 Plot of S0 vs. H obtained from Eq. (40) in Yang (1996) (black squares and first column of Table 1) and calculations here (open circles and
third column of Table 1)

Figure 2 Plot of US0 vs. H obtained from values of S0 computed from Eq. (40) in Yang (1996) (black squares and second column of Table 1) and
calculations here (open circles and fourth column of Table 1)

principle. On the other hand, S0 = C1H also leads to constant
stream power and constant entropy as a function of water depth
and slope. That is, US0 is not convex and no minimum exists.
Therefore, the minimization problem has no unique solution.

As further confirmation of this conclusion, we plotted the
values of US0Y and the values of US0GGK as appears in Fig. 2.
Note that Yang’s data has a minimum, based on the fourth digit,
which he takes to be the solution of the mEPP problem. Our data
only goes through a minimum at a value of H outside the range
Yang considered. Again, we performed an ANOVA single factor
analysis of the US0 × 103 datasets. We found that Fcrit = 4.49
while F = 0.136. Thus there is no statistical difference between
the US0Y and US0GGK datasets. This means there is no basis for
claiming that the fact that one set goes through a minimum (even

at the fourth figure) while the other does not is significant and
can support a theory.

4 The mEPP for a channel with rigid walls

As an additional convenient step in examining the mEPP for an
open channel, consider the case when the density of the fluid is
constant and the walls of the channel are rigid. Clearly, Eq. (29)
cannot be directly assessed for minimum entropy generation
based on an extremum principle. This expression consists of
only one flux, Sf or Sf /H , and one force, Q; and thus there
is no quantity to be minimized. Furthermore, the mEPP relies
on the flux being linearly proportional to the force (Kay, 2003;
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Trepczyńska-Lent, 2012). This would require an expression
such as:

Sf

H
= LQ (44)

where L is a constant of proportionality. However the usual form
of the friction slope, valid for steady flow and for unsteady
flows, provided that the time scale of the wave is longer than
the time scale of turbulence diffusion, is of the form:

Sf = kQ2

H m (45)

For example, for the Manning’s formula, k = n2 and m = 10/3
while for the Chezy formula, k = 1/C2 and m = 3 where n is
Manning’s n and C is the Chezy coefficient. Then if the normal
flow is characterized as having a depth HN with:

S0 = kQ2

H m
N

(46)

we obtain:

Sf = S0

(
HN

H

)m

(47)

Substitution of Eq. (47) into Eq. (29) gives the expression for
entropy generation as:

1
θ
ρgQ

S0

HN

(
HN

H

)m+1

= � (48)

This result indicates that the entropy generation rate will be
minimized only when the flow is as deep as possible. This
makes physical sense because this would minimize the veloc-
ity, thereby minimizing energy losses due to friction. Indeed for
a fixed Q, Sf is smallest when the velocity is low and the depth
is large. Although this observation indicates that entropy gener-
ation is minimized when S0 is near zero so that HN is large for
a constant Q, this conclusion has little relevance for the mEPP
and the conditions under which it is applied. Furthermore, the
conclusion does not require that the system be at steady state.
At steady state, based on Eq. (48), when H > HN , the entropy
production rate for gradually varied flow will be less than for
normal flow. This corresponds to M1, S1 and S2 profiles. On
the other hand, when HN > H for a steady flow, the entropy
production will be greater for the gradually varied flow than for
the normal flow with the same flow rate. This corresponds to
M2, M3 and S3 profiles.

To determine the entropy production rate in light of a consti-
tutive form for Sf , we can substitute Eq. (45) into Eq. (29) to
obtain the entropy production rate in the channel as:

1
θ

(
ρg

kQ3

H m+1

)
= � (49)

Now consider the flow in the channel after the slope has adjusted
so that the depth of flow at the inlet boundary is the normal

depth. If this depth is denoted H1 and the entropy generation
rate per volume is �1, then the entropy generation rate per unit
volume is:

1
θ

(
ρg

kQ3

H m+1
1

)
= �1 (50)

The ratio of these two entropy production rates is:

�

�1
=
(

H1

H

)m+1

(51)

This equation means that if the depth of inflow to a channel is
greater than the normal depth, the entropy production rate per
unit volume will be less than the production rate for normal flow.
On the other hand, if the inlet depth is less than the normal depth,
the entropy production rate will be greater than that for normal
flow. Thus, for a fixed flow rate and depth of inflow, an adjust-
ment of the slope of the stream bed to a state where the flow
will be normal does not mean that the entropy production rate is
being minimized or even reduced. These observations are con-
sistent with the result that entropy production is smallest when
the depth is greatest. Thus, the use of an energy minimization
principle with open channel flow is not physically warranted.

5 Other examples of mEPP failures

That the minimum entropy theory does not hold for open chan-
nel flow is by no means the first instance that this theory
has been found to fail. In fact, there are a broad range of
manuscripts devoted to problems where mEPP has been found
to be inapplicable. Here, we comment on several of the common
ones.

Some manuscripts purporting to examine the mEPP look
at simple systems that can be analysed both on the basis of
mechanistic equations and in light of an effort to minimize
entropy production. For example, Herrmann (1986) examines
the voltage distribution and current when a pair of resistors are
connected in series and in parallel. The paper claims that the
entropy production is minimum at the steady state. However,
Landauer (1975) finds that even for the case of linear circuits,
the minimal entropy production theorem does not apply. Mar-
tyushev, Nazarova, and Seleznev (2007) disagree with a result
of Jaynes (1980) which involves conduction through resistors at
two different temperatures, noting that there need to be at least
two different flows. Since the study of Jaynes involves only a
single flow of current that is distributed between two resistors,
the example is actually not one that could be studied using the
mEPP.

Bertola and Cafaro (2008) and Palffy-Muhoray (2001) inves-
tigated one-dimensional heat flow in a solid. They assert that
although the steady-state temperature solution for constant ther-
mal conductivity is a linear profile, the minimum entropy pro-
duction occurs for an exponential profile. Although this seems
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to suggest a contradiction, the fact that the exponential profile
does not correspond to a steady state solution means that it does
not correspond to one of the conditions for the mEPP theorem
(Hoover, 2002). Zullo (2016) also considers heat conduction
and concludes that the breakdown of the mEPP for such prob-
lems lies in the fact that the phenomenological coefficient is not
constant but depends on temperature. Sahin (2011) concludes
that for steady state heat conduction, the entropy generation
rate at steady state is minimal only when the temperature gra-
dient is zero such that there is no heat transfer. In a related
vein, Barragán (2009) shows that the steady states described by
Newton’s law are not states having minimum entropy produc-
tion. Based on these studies, it is reasonable to assert, as did
Kay (2003), that the mEPP does not apply unless a system is
isothermal.

Martyushev et al. (2007) note that the essence of the mEPP is
that free (unfixed) thermodynamic forces in a system are mutu-
ally adjusted to bring the system to the state with a minimum
entropy dissipation. If only one force is present and it is not
zero, with the zero case equating to a system of thermodynamic
equilibrium with no entropy production, the variation used in
the proof vanishes and further discussion about making entropy
production an extreme is pointless. The mEPP has sense only
if several forces are available and some of them are fixed. The
neglect of this observation and attempts to go beyond the scope
of the theorem lead to erroneous results, which invalidate the
essence of the theorem. The mEPP has been discussed, gener-
alized, employed, and criticized by different researchers (e.g.De
Groot & Mazur, 1984; Gyarmati, 1969, 1970; Mamedov, 2003;
Reis, 2014; Veveakis & Regenauer-Lieb, 2015; Ziegler, 1963).
Auxiliary to this discussion is the question of whether the
mEPP is useful and capable of providing information beyond
that obtained from analysis of the conservation equations at
steady state. Some researchers have expressed their scepticism
(e.g. Jaynes, 1980; Klein, 1960; Martyushev et al. 2007). The
problem that arises is that the information needed to employ
the mEPP must be so extensive that nothing new is added by
including the mEPP (Martyushev, 2013).

In summary, the statements and applications of the mEPP are
criticized because it has not been applied properly, may only
hold at equilibrium, and may not really add any new information
to an analysis. These criticisms also apply when attempting to
use the mEPP to analyse open channel flow.

6 Conclusion

We have analysed application of Prigogine’s minimum entropy
production principle to the case of one-dimensional flow in
both fluvial and non-fluvial channels. The conditions under
which this principle may be applied to any physical sys-
tem have been provided. Analysis of the entropy inequal-
ity, subject to constraints provided by thermodynamic princi-
ples and the conservation equations of mass, momentum, and

total energy demonstrates that the resulting expression for the
rate of entropy production cannot be assessed making use of
the mEPP.

Minimization of the unit stream power of a sedimentary
channel subject to the same conditions imposed by proponents
of the minimum stream power theory leads to a linear relation
between channel slope and water depth which in turn leads to
a unit stream power that is constant for all slopes and depths.
These relations agree with published minimum unit stream
power data up to the available significant figures. The only log-
ical conclusion is that the stream power is a constant to within
these significant figures (i.e. no unique minimum exists). Pro-
ponents of the minimum stream power formalism have been
basing their conclusions on digits beyond those which are sig-
nificant with total disregard for the fact that their measured
parameters and their empirical relations do not allow for such
accuracy.

Parker (1977) concludes his discussion of Yang (1976) by
stating

The writer would not recommend the use of the Yang resistance
relation in its present form in practical applications. However,
serious attention should be paid to the author’s concept of
minimum stream power which appears capable of producing a
reasonable resistance relation.

Due consideration to this theory is given in the present paper
which shows that it is not capable of producing a reasonable
resistance relation systematically.

Further analysis for the case of non-sedimentary channels
shows that for a fixed flow rate, when the depth is greater than
the normal depth, the entropy production rate is less than for
normal flow. Additionally, when the depth of flow is less than
the normal depth, adjustment of the channel slope so that the
flow is uniform and normal reduces the entropy production rate
but not to a minimum. In summary, Prigogine’s mEPP does not
apply to the study of open channel flow.

It is found that the entropy generation rate, and thus the unit
stream power, is minimized when the flow is as deep as pos-
sible. This conclusion is valid for steady and unsteady as well
as uniform and non-uniform flows. For the steady state case,
the analysis reveals that the entropy production (i.e. unit stream
power) for a non-uniform flow is (i) larger than the entropy pro-
duction in uniform flow for M2, M3 and S3 profiles, but (ii)
smaller than the entropy production in a uniform flow for M1, S1
and S2 profiles. Therefore, requiring that the unit stream power
be extremum is at best ad-hoc and beyond what the conservation
laws demand.
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Notation

ANOVA = analysis of variance
a = vector of system parameters
b = entropy source per unit volume per unit time
C1 = constant of integration
C2 = scaled value of constant C1

Cts = total sediment concentration
d = median sieve diameter of sediment particles
E = internal energy per volume at a point
E = internal energy per volume at a point averaged

over the cross section and, if desired, time
g = gravitational vector
F = statistical variable for two datasets which indi-

cates datasets are statistically equivalent when
F < Fcrit

Fcrit = statistical variable used to determine if datasets
are different

f = empirical function of Q, H, and system parame-
ters proposed to be equal to S0

g = magnitude of gravitational vector
H = depth of flow
HN = depth of normal flow
h = body source of energy per unit volume per unit

time
k = coefficient
L = coefficient of proportionality
m = exponent in friction slope equation
P = stream power
p = pressure
p = averaged pressure
Q = total volumetric flow rate
Qs = volumetric flow rate of sediment
Qw = volumetric flow rate of water
q = non-advective point thermal energy flux vector
qx = averaged component of the non-advective ther-

mal energy flux vector, including contributions
from turbulence and energy non-uniformity over
the averaging region

R2 = statistical measure of correlation between data
and a regression line

S0 = channel slope
S0Y = channel slope calculated based on Yang’s data
S0GKK = channel slope calculated here based on full

dataset
Sf = friction slope
t = total stress tensor at a point in the fluid
txx = component of the stress tensor equal to i · t · i

where i is the unit vector in the direction of flow

txx = averaged component of the stress tensor acting
in the x direction on a cross-sectional face of the
channel; includes turbulent components and those
associated with spatial variability of velocity over
the cross section

t = time
U = density weighted average velocity along the

channel
U∗ = shear velocity
Vcr = flow velocity at incipient motion of sediment

particles
v = point velocity vector
W = channel width
x = coordinate direction along the channel
η = point value of entropy per volume
η = averaged entropy per unit volume
θ = point value of temperature
θ = entropy weighted average temperature
� = point rate of entropy production per volume
� = averaged rate of of entropy production per vol-

ume at a cross-section
�1 = rate of energy production per unit volume when

the inlet depth of flow is the normal depth
l = Lagrange multiplier subscripted to indicate asso-

ciation with a particular equation
μ = chemical potential at a point
ν = kinematic viscosity
μ = density weighted chemical potential
ρ = fluid mass density at a point
ρ = average fluid mass density
ϕ = non-advective entropy flux vector
ϕx = averaged component of non-advective entropy

flux in the direction of flow which also accounts
for contributions due to non-uniform entropy dis-
tribution over the surface and turbulence

ω = terminal velocity
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