

Department of Electronic & Computer Engineering 電子及計算機工程學系

電子及計算機工程學系

Sequence Design for Acoustic Reflectivity Measurements

21 June 2017

Zhao Licheng Supervisor: Prof. Daniel Palomar

Collaborator: Ross Murch, Amartansh Dubey, and Li Yue

電子及計算機工程學系

Reflectivity

- The key thing that needs to be measured is reflectivity. Useful in inverse scattering algorithm.
- Suppose we have a single transducer that transmits $V_t(f)$ and the received signal is $V_r(f)$.
- Reflectivity is defined as

 $r(f) = V_r(f)/V_t(f).$

電子及計算機工程學系

Sonar Systems

• Measuring reflectivity using a single transducer is equivalent to a sonar system

- The receiver must be isolated from the powerful transmitter
 - Isolation provided by duplexer switching

21 June 2017

電子及計算機工程學系

Transmitting Sequence Design

- Objective: maximize the quality of reflectivity
- Concerns:
 - Limited transmit power
 - Noise power spectral density, colored noise
 - Frequency response of the transmitter transducer, Required frequency range
 - Required spatial range of the sonar signals
 - Signal separation of the transmitted and received signals so practical sonar systems can be designed

電子及計算機工程學系

Low Autocorrelation Sequence

- Sequences with low autocorrelations are desired in many digital systems, e.g., coded radar systems and code-division multiple access (CDMA) cellular systems.
- Unimodular (constant modulus) sequences are desired to maximize the transmitted power available in the system.

電子及計算機工程學系

Low Autocorrelation Sequence

• Let's define the sequence as

$$\mathbf{x} = \left[x_1, \cdots, x_N\right]^T.$$

• The autocorrelation r_k is expressed as

$$r_k = \sum_{n=1}^{N-k} x_n^* x_{n+k} = r_{-k}^*, \ k = 0, \cdots, N - N$$

Integrated sidelobe level (ISL)

$$\text{ISL} = \sum_{k=1}^{N-1} |r_k|^2.$$

電子及計算機工程學系

Low Autocorrelation Sequence

ISL metric in the frequency domain (Stoica et al., 2009)

ISL =
$$\frac{1}{4N} \sum_{p=1}^{2N} \left[\left| \sum_{n=1}^{N} x_n e^{-j\omega_p(n-1)} \right|^2 - N \right]^2$$
, where

$$\omega_p = \frac{2\pi}{2N} (p-1), p = 1, \cdots, 2N.$$

ISL minimization problem

$\begin{array}{ll} \underset{x_n}{\text{minimize}} & \text{ISL}\\ \text{subject to} & |x_n| = 1, \ n = 1, \cdots, N. \end{array}$

電子及計算機工程學系

Low Autocorrelation Sequence

• Define

$$\mathbf{x} = [x_1, \cdots, x_N]^T,$$
$$\mathbf{a}_p = \left[1, e^{-j\omega_p}, \cdots, e^{-j\omega_p(N-1)}\right]^T$$

• The ISL minimization problem is

minimize
$$\sum_{p=1}^{2N} \left[\mathbf{a}_p^H \mathbf{x} \mathbf{x}^H \mathbf{a}_p - N \right]^2$$

subject to $|x_n| = 1, n = 1, \cdots, N.$

電子及計算機工程學系

Algorithm

Require: sequence length N 1: Set k = 0, initialize $\mathbf{x}^{(0)}$. 2: repeat 3: $\mathbf{p}^{(k)} = |\mathbf{A}^H \mathbf{x}^{(k)}|^2$ 4: $p_{\max}^{(k)} = \max_{p} \{ p_p^{(k)} : p = 1, \dots, 2N \}$ 5: $\mathbf{y} = -\mathbf{A} \left(\text{Diag}(\mathbf{p}^{(k)}) - p_{\max}^{(k)}\mathbf{I} - N^2\mathbf{I} \right) \mathbf{A}^H \mathbf{x}^{(k)}$ 6: $x_n^{(k+1)} = e^{j\arg(y_n)}, n = 1, \dots, N$ 7: $k \leftarrow k+1$ 8: **until** convergence

[1] J. Song, P. Babu, and D. P. Palomar, "Optimization methods for designing sequences with low autocorrelation sidelobes," IEEE Trans. Signal Process., vol. 63, no. 15, pp. 3998–4009, Aug. 2015. 21 June 2017 10

電子及計算機工程學系

Spectral Constraint

- In some applications, e.g., cognitive radar, apart from good correlation properties, some spectral constraints are needed to be satisfied.
- For example,

$$\sum_{k\in\Omega} \left| \mathbf{a}_k^H \mathbf{x} \right|^2 \le \epsilon,$$

i.e., the power in some band should be lower than a threshold.

電子及計算機工程學系

Spectral Constraint

• ISL minimization with spectral constraints

電子及計算機工程學系

Spectral Penalty

 For a given ε > 0, we can always find a λ such that the problem can be transformed into the following equivalent problem:

$$\underset{\mathbf{x}}{\mathsf{minimize}} \quad \mathrm{ISL} + \lambda \sum_{k \in \Omega} \left| \mathbf{a}_k^H \mathbf{x} \right|^2$$

subject to $|x_n| = 1, n = 1, \dots, N.$

 The previous algorithm can be adapted to deal with this problem.

電子及計算機工程學系

Algorithm

Require: sequence length N, index set Ω and λ .

- 1: Set k = 0, initialize $\mathbf{x}^{(0)}$.
- 2: repeat

3:
$$\bar{p}_{p}^{(k)} = \begin{cases} \left| \mathbf{a}_{p}^{H} \mathbf{x}^{(k)} \right|^{2} + \lambda/2, & p \in \Omega \\ \left| \mathbf{a}_{p}^{H} \mathbf{x}^{(k)} \right|^{2}, & \text{otherwise} \end{cases}$$

4: $\bar{p}_{\max}^{(k)} = \max_{p} \{ \bar{p}_{p}^{(k)} : p = 1, \dots, 2N \}$
5: $\mathbf{y} = -\mathbf{A} \left(\text{Diag}(\bar{\mathbf{p}}^{(k)}) - \bar{p}_{\max}^{(k)} \mathbf{I} - N^{2} \mathbf{I} \right) \mathbf{A}^{H} \mathbf{x}^{(k)}$
6: $x_{n}^{(k+1)} = e^{j \arg(y_{n})}, n = 1, \dots, N$
7: $k \leftarrow k + 1$
8: until convergence

^[1] J. Song, P. Babu, and D. P. Palomar, "Optimization methods for designing sequences with low autocorrelation sidelobes," IEEE Trans. Signal Process., vol. 63, no. 15, pp. 3998–4009, Aug. 2015.

電子及計算機工程學系

Simulation Result

21 June 2017

電子及計算機工程學系

Simulation Result

電子及計算機工程學系

Conclusion and Future Plans

- Sequence design is very critical to acoustic reflectivity
- Future plans
 - Maximize SNR (signal to noise ratio) at one location and then do sweeping adaptively
 - Assume a prior distribution on the channel to be estimated and improving the knowledge in successive rounds