Identification of multiple leaks in pipeline: linearized model, maximum likelihood, and super-resolution localization

Xun Wang and Mohamed S. Ghidaoui

Smart UWSS
Department of Civil and Environmental Engineering
Hong Kong University of Science and Technology
Model linearization

Maximum likelihood for detecting multiple leaks

Numerical results

Conclusion
Model linearization

Maximum likelihood for detecting multiple leaks

Numerical results

Conclusion
Model of wave propagation in a pipe

With N leaks at x^{L_n} ($n = 1, \cdots, N$), the head and discharge at a sensor x^M:

$$
\begin{pmatrix}
q^M \\
h^M
\end{pmatrix} = M^{NL}(x^M - x^{L_N}) \prod_{n=N}^{1} \left\{ M^L(x^{L_n}) M^{NL}(x^{L_n} - x^{L_{n-1}}) \right\} \begin{pmatrix}
q(x^U) \\
h(x^U)
\end{pmatrix},
$$

Easy to compute, but complex for inverse problem (leak detection) : a $2N$-parameter optimization problem.
Linear approximation of the model

Theorem

Assume that the pipe has N leaks with locations x^{L_n} and sizes s^{L_n}, $n = 1, \cdots, N$, then the head and discharge at x^M ($x^M > x^{L_N} > \cdots > x^{L_1}$) is

$$
\begin{pmatrix}
q(x^M) \\
h(x^M)
\end{pmatrix} = \left(M^{NL}(x^M) + \sum_{n=1}^{N} s^{L_n} M^{SL}(L_n, x^{L_n}, x^M) \right) \begin{pmatrix}
q(x^U) \\
h(x^U)
\end{pmatrix} + o \left(\max_{n=1, \cdots, N} (s^{L_n}) \right)
$$

(1)

as $\max_{n=1, \cdots, N} (s^{L_n}) \to 0$.
Model : numerical justification of the linearized model

\[C^d A^L / A = 0.0041 \]

\[C^d A^L / A = 0.0015 \]

Figure – FRF at \(x^M = 1900 \) m. Leak locations : \(x^{L_1} = 400 \) m, \(x^{L_2} = 520 \) m and \(x^{L_3} = 800 \) m. The pipe length is \(l = 2000 \) m.
Model: numerical justification of linearized model

![Graph showing mean relative error of FRF w.r.t. leak size](image)

Figure – Mean relative error of FRF w.r.t. leak size
Model linearization

Maximum likelihood for detecting multiple leaks

Numerical results

Conclusion
Maximum likelihood for detecting multiple leaks

Data: head difference due to leakage ($\Delta h = h^m - h^{NL}$) in the frequency domain by one (or multiple) transducer(s)

\[
\Delta h \approx G(x^L) s^L + n = \sum_{n=1}^{N} G_n(x^{L_n}) s^{L_n} + n. \quad (2)
\]

- n: Gaussian independent random noise
- Leak detection (Maximum Likelihood Estimation):

\[
\{\hat{x}^L, \hat{s}^L\} = \arg \min_{x^L, s^L} \| \Delta h - G(x^L)s^L \|^2. \quad (3)
\]
Maximum likelihood for detecting multiple leaks

Estimate the leak locations and leak sizes separately and sequentially:

- The leak locations:

\[\hat{x}^L = \arg \max_{x^L} \left(\Delta h G^H(x^L) \left(G^H(x^L)G(x^L) \right)^{-1} G^H(x^L) \Delta h \right). \] (4)

- The leak sizes:

\[s^L = \left(G^H(x^L)G(x^L) \right)^{-1} G^H(x^L) \Delta h. \] (5)
Model linearization

Maximum likelihood for detecting multiple leaks

Numerical results

Conclusion
Numerical results: double leaks

- Two leaks: $x^{L_1} = 300 \ m$, $x^{L_2} = 700 \ m$
- Plot a 2D function (locations of two leaks):

(a) likelihood function

(b) location-size estimate

$\lambda_{\min} = 258 \ m$
Numerical results: double leaks

\[x^{L_1} = 400 \text{ m}, \quad x^{L_2} = 460 \text{ m} : \quad |x^{L_1} - x^{L_2}| < \lambda_{min}/4 \]

(a) 1-D search (MFP)

(b) ML

Super-resolution localization: two leaks with a distance shorter than \(\lambda_{min}/2 \) can be separately localized

Minimum resolvable distance between leaks: \(0.5\lambda_{min} \rightarrow 0.15\lambda_{min} \).
Model linearization

Maximum likelihood for detecting multiple leaks

Numerical results

Conclusion
Conclusion

- A linear model of wave propagation in pipe: easy for inverse problem
- Separately estimating the leak location and size
- N leaks: plotting a N-D objective function
- Super-resolution: can identify very close leaks
- Any frequency can be used
- Robust with respect to noise and model uncertainties
Thank you very much for your attention!