Linear water hammer equations

Pressure head H[m] and pipe discharge $Q[m^3/s]$ satisfy

$$\begin{split} \partial_t H &+ \frac{a^2}{gA} \partial Q = 0, \qquad 0 < x < L, \quad t > 0, \\ \partial_t Q &+ gA \partial H = 0, \qquad 0 < x < L, \quad t > 0, \\ H &= Q = 0, \qquad 0 < x < L, \quad t = 0 \end{split}$$

where

$$a(x)$$
wave speed $[m/s]$ $A(x)$ pipe cross sectional area $[m^2]$ g constant of gravity $[m/s^2]$

Boundary conditions:

unknown at x = Lunit impulse discharge $Q(0, t) = \delta_0(t)$ at x = 0Measure: H(0, t). Recover: a(x), A(x)?

Solutions to inverse problem

- Gel'fand-Levitan-Krein, Gerver, + many others in the early 70's
- 1D inverse problems, both frequency and time-domain solutions
- Method used here: Sondhi–Gopinath 71
- Modern names and generalized idea: Boundary control method (Belishev 87)
 - control solution on boundary
 - make wave behave as wanted in the interior
 - get information by conservation of mass / momentum

Boundary-interior identity

For simplicity $a(x) = a_0$ constant! Recall

$$\partial_t H + \frac{a^2}{gA}\partial Q = 0$$

and integrate $\int_0^{\tau} \int_0^{a_0 \tau} \dots dx dt$ given any fixed $\tau > 0$.

$$-\int_0^\tau \int_0^{a_0\tau} \partial Q(x,t) dx dt = \int_0^\tau \int_0^{a_0\tau} \frac{gA(x)}{a_0^2} \partial_t H(x,t) dx dt$$

►
$$H = Q = 0$$
 at $t = 0$
► hence $H(x, t) = Q(x, t) = 0$ when $x \ge a_0 t$, so

$$\int_0^\tau Q(0,t)dt = \int_0^{a_0\tau} \frac{gA(x)}{a_0^2} H(x,\tau)dx$$
(1)

Area recovery

Given solutions Q, H we know from boundary measurements the value of

$$V(\tau) = \int_0^{a_0\tau} \frac{gA(x)}{a_0^2} H(x,\tau) dx.$$

If $Q(0,t) = Q_{1, au}(0,t)$ is such that $H = H_{1, au}$ and

$$\mathcal{H}_{1, au}(x, au) = \left\{egin{array}{cc} 1, & x < a_0 au \ 0, & x \geqslant a_0 au \end{array}
ight.$$
 at $t= au,$

then

$$A(x) = \frac{a_0}{g} (\partial V) \left(\frac{x}{a_0} \right)$$

Calculating a special Q-input

Measurement:

$$egin{aligned} Q(0,t) &= \delta_0(t) \ H(0,t) &= \hat{h}(t) \end{aligned}$$

where

$$\hat{h}(t)=rac{a_0}{gA(0)}(\delta_0(t)+h(t))$$

is the impulse-response function.

If $Q(0,t)=Q_{1, au}(0,t)$ at x=0 and

$$Q_{1, au}(0,t) + rac{1}{2} \int_{0}^{2 au} Q_{1, au}(0,s) h(|s-t|) ds = rac{gA(0)}{a_0}, \qquad 0 < t < 2 au$$

then the corresponding pressure wave $H=H_{1, au}$ satisfies

$$H_{1, au}(x, au) = \left\{egin{array}{cc} 1, & x < a_0 au \ 0, & x \geqslant a_0 au \end{array}
ight.$$
 at $t= au.$

$H_{1,\tau}$ displayed

Algorithm

- 1. input $Q(0,t) = \delta_0(t)$ and measure $\hat{h}(t) = H(0,t)$ for $t < 2T = 2L/a_0$
- 2. for $0 < \tau < T$ solve

$$Q_{1, au}(0,t) + rac{1}{2} \int_{0}^{2 au} Q_{1, au}(0,s) h(|s-t|) ds = rac{gA(0)}{a_0}, \qquad 0 < t < 2 au$$

3. set

$$V(\tau) = \int_0^\tau Q_{1,\tau}(0,t) dt \qquad \left(= \int_0^{a_0\tau} \frac{gA(x)}{a_0^2} dx \right)$$

- 4. repeat 2–3 (in the computer) for many τ to get a good approximation of $V(\tau)$
- 5. given x < L the area can be found by

$$A(x) = \frac{a_0}{g} (\partial V) \left(\frac{x}{a_0}\right).$$

Numerical experiment

Impulse-response simulated using MOC. Area recovered using inversion algorithm.

Advantages compared to other methods

- Uses a single measurement location
- Uses a single input discharge wave
- Recovers multiple blockages and their shape (severity)
- Does not require the knowledge of the boundary condition
- Relatively fast and does not involve optimization
- Integral equation, so stable with 0-mean noise

Laboratory experiment: setup

Measurement set up by Silvia Meniconi and Bruno Brunone's group.

Laboratory experiment: impulse-response function

Measurement set up by Silvia Meniconi and Bruno Brunone's group.

Reconstruction from measured and processed data

Measurement set up by Silvia Meniconi and Bruno Brunone's group.

