Linear water hammer equations

Pressure head $H[m]$ and pipe discharge $Q\left[m^{3} / s\right]$ satisfy

$$
\begin{array}{rll}
\partial_{t} H+\frac{a^{2}}{g A} \partial Q=0, & 0<x<L, & t>0, \\
\partial_{t} Q+g A \partial H=0, & 0<x<L, & t>0, \\
H=Q=0, & 0<x<L, & t=0
\end{array}
$$

where

$$
\begin{aligned}
a(x) & \text { wave speed }[\mathrm{m} / \mathrm{s}] \\
A(x) & \text { pipe cross sectional area }\left[\mathrm{m}^{2}\right] \\
g & \text { constant of gravity }\left[\mathrm{m} / \mathrm{s}^{2}\right]
\end{aligned}
$$

Boundary conditions:

$$
\begin{aligned}
& \text { unknown at } x=L \\
& \text { unit impulse discharge } Q(0, t)=\delta_{0}(t) \text { at } x=0
\end{aligned}
$$

Measure: $H(0, t)$. Recover: $a(x), A(x)$?

Solutions to inverse problem

- Gel'fand-Levitan-Krein, Gerver, + many others in the early 70's
- 1D inverse problems, both frequency and time-domain solutions
- Method used here: Sondhi-Gopinath 71
- Modern names and generalized idea: Boundary control method (Belishev 87)
- control solution on boundary
- make wave behave as wanted in the interior
- get information by conservation of mass / momentum

Boundary-interior identity

For simplicity $a(x)=a_{0}$ constant! Recall

$$
\partial_{t} H+\frac{a^{2}}{g A} \partial Q=0
$$

and integrate $\int_{0}^{\tau} \int_{0}^{a_{0} \tau} \ldots d x d t$ given any fixed $\tau>0$.

$$
-\int_{0}^{\tau} \int_{0}^{a_{0} \tau} \partial Q(x, t) d x d t=\int_{0}^{\tau} \int_{0}^{a_{0} \tau} \frac{g A(x)}{a_{0}^{2}} \partial_{t} H(x, t) d x d t
$$

- $H=Q=0$ at $t=0$
- hence $H(x, t)=Q(x, t)=0$ when $x \geqslant a_{0} t$, so

$$
\begin{equation*}
\int_{0}^{\tau} Q(0, t) d t=\int_{0}^{a_{0} \tau} \frac{g A(x)}{a_{0}^{2}} H(x, \tau) d x \tag{1}
\end{equation*}
$$

Area recovery

Given solutions Q, H we know from boundary measurements the value of

$$
V(\tau)=\int_{0}^{a_{0} \tau} \frac{g A(x)}{a_{0}^{2}} H(x, \tau) d x
$$

If $Q(0, t)=Q_{1, \tau}(0, t)$ is such that $H=H_{1, \tau}$ and

$$
H_{1, \tau}(x, \tau)=\left\{\begin{array}{ll}
1, & x<a_{0} \tau \\
0, & x \geqslant a_{0} \tau
\end{array} \quad \text { at } t=\tau\right.
$$

then

$$
A(x)=\frac{a_{0}}{g}(\partial V)\left(\frac{x}{a_{0}}\right)
$$

Calculating a special Q-input

Measurement:

$$
\begin{array}{r}
Q(0, t)=\delta_{0}(t) \\
H(0, t)=\hat{h}(t)
\end{array}
$$

where

$$
\hat{h}(t)=\frac{a_{0}}{g A(0)}\left(\delta_{0}(t)+h(t)\right)
$$

is the impulse-response function.
If $Q(0, t)=Q_{1, \tau}(0, t)$ at $x=0$ and
$Q_{1, \tau}(0, t)+\frac{1}{2} \int_{0}^{2 \tau} Q_{1, \tau}(0, s) h(|s-t|) d s=\frac{g A(0)}{a_{0}}, \quad 0<t<2 \tau$
then the corresponding pressure wave $H=H_{1, \tau}$ satisfies

$$
H_{1, \tau}(x, \tau)=\left\{\begin{array}{ll}
1, & x<a_{0} \tau \\
0, & x \geqslant a_{0} \tau
\end{array} \quad \text { at } t=\tau .\right.
$$

$H_{1, \tau}$ displayed

Algorithm

1. input $Q(0, t)=\delta_{0}(t)$ and measure $\hat{h}(t)=H(0, t)$ for

$$
t<2 T=2 L / a_{0}
$$

2. for $0<\tau<T$ solve

$$
Q_{1, \tau}(0, t)+\frac{1}{2} \int_{0}^{2 \tau} Q_{1, \tau}(0, s) h(|s-t|) d s=\frac{g A(0)}{a_{0}}, \quad 0<t<2 \tau
$$

3. set

$$
V(\tau)=\int_{0}^{\tau} Q_{1, \tau}(0, t) d t \quad\left(=\int_{0}^{a_{0} \tau} \frac{g A(x)}{a_{0}^{2}} d x\right)
$$

4. repeat $2-3$ (in the computer) for many τ to get a good approximation of $V(\tau)$
5. given $x<L$ the area can be found by

$$
A(x)=\frac{a_{0}}{g}(\partial V)\left(\frac{x}{a_{0}}\right) .
$$

Numerical experiment

Impulse-response simulated using MOC. Area recovered using inversion algorithm.

Advantages compared to other methods

- Uses a single measurement location
- Uses a single input discharge wave
- Recovers multiple blockages and their shape (severity)
- Does not require the knowledge of the boundary condition
- Relatively fast and does not involve optimization
- Integral equation, so stable with 0-mean noise

Laboratory experiment: setup

Measurement set up by Silvia Meniconi and Bruno Brunone's group.

Laboratory experiment: impulse-response function

 Measurement set up by Silvia Meniconi and Bruno Brunone's group.
(B) Severe blockage

Reconstruction from measured and processed data

Measurement set up by Silvia Meniconi and Bruno Brunone's group.

