

Smart UWSS

INVERSE METHODS FOR BLOCKAGE DETECTION IN PIPELINES

FEDI ZOUARI & EEMELI BLASTEN

CAUSE OF BLOCKAGE IN WATER SUPPLY PIPES

DEPOSITION OF MINERALS

FORMATION OF ICE IN COLD CLIMATE

INEFFICIENCIES CAUSED BY BLOCKAGES

- ENERGY LOSS
- INCREASE IN POTENTIAL CONTAMINATION
- INCREASE IN POTENTIAL LEAKS

3

NON SATISFACTION OF COSTUMERS

Blockage detection is important

BLOCKAGE DETECTION METHODS IN THE LITERATURE

- FREQUENCY RESPONSE ANALYSIS
- PERTURBATION BASED METHOD
- OTHER METHODS
- PROPOSED BLOCKAGE DETECTION METHODS
 - MATCHED FIELD PROCESSING
 - IMPULSE RESPONSE METHOD

HOW TO IDENTIFY BLOCKAGES ?

/isualization	Listening	Transient
No Visual trace	 Do not induce a detectable sound, if passively inspected 	 Acoustic waves propagation is modified by the presence of defects
Camera inspections	Surface Locator Insertion Device	Lessere
>> Very expensive Note: >8000 Km of pipes in HK)		Grequency
	9 (

BLOCKAGE DETECTION METHODS:

- 1. Frequency Response Analysis (FRA) method (Duan et al., 2012)
- IDEA OF THE METHOD

$$f(\boldsymbol{\omega}, \boldsymbol{l_1}, \boldsymbol{l_2}, \boldsymbol{\delta A}) = \mathbf{0}$$

$$\underset{l_1,l_2,\delta A}{\operatorname{arg\,min}} \sum_{i} |f(\boldsymbol{\omega}_i, \boldsymbol{l}_1, \boldsymbol{l}_2, \boldsymbol{\delta} A)|$$

- ADVANTAGES
 - INDEPENDENT OF THE INPUT SIGNAL
 - INDEPENDENT OF THE MEASUREMENT LOCATION

LIMITATIONS

- OPTIMIZATION OF <u>AT LEAST 3 VARIABLES</u> OF A <u>HIGHLY NON-CONVEX</u> FUNCTION
- REQUIRE ACCURATE IDENTIFICATION OF THE RESONANT FREQUENCIES

BLOCKAGE DETECTION METHODS:

2. Perturbation-based method (Schroeder, 1966)

IDEA OF THE METHOD

$$A(x) = A_0 \exp\left[-\sum_{n=1}^{\infty} \left(\frac{L}{n\pi}\right)^2 \delta_n \cos\left(\frac{2n\pi x}{L}\right) - \sum_{n=1}^{\infty} \left(\frac{2L}{(2n-1)\pi}\right)^2 \gamma_n \cos\left(\frac{(2n-1)\pi x}{L}\right)\right]$$

- ADVANTAGES
 - EASY TO IMPLEMENT

LIMITATIONS

- ASSUMES SMALL CHANGE IN AREA
- RESTRICT THE AREA TO A FOURIER-BASED FUNCTION
- <u>SLOW CONVERGENCE</u> TO THE ACTUAL AREA

 \sim 1 **WAAAAAAA** 24 AAAAAAAA 26 MAAAAAAAA 27 MMMMMM 29 mmmmm

BLOCKAGE DETECTION METHODS:

3. Other methods

PROPOSED BLOCKAGE DETECTION METHODS

MATCHED FIELD PROCESSING (MFP) METHOD

FREQUENCY DOMAIN METHOD

IMPULSE RESPONSE METHOD

TIME DOMAIN METHOD

10

MATCHED-FIELD PROCESSING (MFP) METHOD

MOTIVATION

Matched-Field Processing (MFP) Approach: Similar to (Wang X. & Ghidaoui M. S., 2017)

$$\widehat{\alpha} = (G_{m_i}^H G_{m_i})^{-1} G_{m_i}^H S_{m_i}$$

$$\begin{cases} \widehat{l_1}, \widehat{l_2} \\ Blockage \\ Estimate \end{cases} = \arg \max_{l_1, l_2} S_{m_i}^H G_{m_i} (G_{m_i}^H G_{m_i})^{-1} G_{m_i}^H S_{m_i}$$
Objective function

NUMERICAL SIMULATION

Numerical setup

ADVANTAGES:

- HAS THE ABILITY OF USING FREQUENCIES OTHER THAN THE RESONANT FREQUENCIES
- DOES NOT REQUIRE ACCURATE IDENTIFICATION OF THE RESONANT AND THE ANTI-RESONANT FREQUENCIES
- TOLERATE THE PRESENCE OF NOISE
- FINDS THE LENGTH AND THE LOCATION OF THE BLOCKAGE INDEPENDENTLY FROM ITS SIZE

LIMITATIONS:

- NOT EASILY EXTENDABLE TO MULTIPLE BLOCKAGES
- REQUIRES THE KNOWLEDGE OF THE INPUT SIGNAL

IMPULSE RESPONSE METHOD