

Department of Electronic & Computer Engineering 電子及計算機工程學系

電子及計算機工程學系

Communication: Mobile Wideband Waveguide Channels

21 June 2017

Yue Li Prof. Murch's group

PhD student since Sept 2015 Acoustic Communication Systems 電子及計算機工程學系

Background

- Communication in Urban Water Supply System for monitoring
 - Moving robots and Sensor network
 - Acoustic waveguide
- Varying communication properties
 - robot in the channel is mobile and will experience different pipe materials and geometries, generating a changing mode cutoff structure

電子及計算機工程學系

Background

- Propagation occurs in modes, each with a specific cutoff frequency
 - Delay spread characteristics of the channel change significantly across frequency domain
 - High data rate need wider bandwidth, exist more modes
- It is not a uncorrelated scattering wide sense stationary channel
 - Path delays due to modes' dispersion are not uncorrelated
 - Channel correlation function is not invariant over time 21 June 2017 4

電子及計算機工程學系

Delay spread

21 June 2017

電子及計算機工程學系

Inter-symbol interference

0.8 Amplitude 0.6 **Transmitted Pulse** 0.4 0.2 0 15 0 5 10 20 TIme(ms) ×10⁻⁴ 8 **Received Pulse** f_=26.5 kHz (carried by 6 f_=29 kHz (cut-off Amplitude different central 4 frequency) 2 0 20 0 5 10 15

Overlapping to other successive pulse

25

25

Time(ms)

電子及計算機工程學系

Method

• OFDM

- Multi-carrier method
- Divide wideband signals into multiple narrowband subcarriers
- Subcarriers are orthogonal to each other and frequency-flat across individual narrow bands

Advantages of OFDM

- Easy to implements (FFT/IFFT)
- Low complexity equalization
- Problem
 - Long guard intervals

7

電 子 及 計 算 機 工 程 學 系

Method

電子及計算機工程學系

Method

- Long guard intervals degrade the efficiency of OFDM
 - Detect the subcarriers with large delay spread(close to cutoffs)
 - Abandon those subcarriers and reallocate bits and power to other available bands.
- Subcarrier delay spread estimation
 - Variance based method
 - Coherence bandwith based method

電子及計算機工程學系

Method

- Variance based method
 - Sending multiples training symbols to estimate channel response
 - Variance of samples indicates the amount of interference
- Coherence bandwidth based method
 - Coherence bandwidth is the reciprocal to delay spread
 - Frequency Correlation function:

$$\Sigma(\delta f) = \frac{\sum_{-L/2}^{L/2} H(f) H^*(f + \delta f)}{\sum_{-L/2}^{L/2} |H(f)|^2}$$

 $C(\delta f = B_{sub}) > 0.5, B_C > B_{sub}$

電子及計算機工程學系

Simulation results

- Parameters
 - Total Bandwidth: $B = 40 \text{ kHz} (10 \text{ kHz} \sim 50 \text{ kHz})$
 - Number of total subcarriers: $N = 512 = 2^9$
 - Carrier spacing: $B_{sub} = \frac{B}{N} = 78 \text{ Hz}$
 - Number of cyclic prefix: $N_{cp} = \frac{N}{8} = 64$
 - Cyclic prefix refers to the prefixing of a symbol with a repetition • Cyclic Prefix $-N_{cp}$ bits Useful Data -N bits $x_{-N_{cp}}, ..., x_{-2}, x_{-1}, x_0, x_1, x_2, ..., x_{N-N_{cp}}, ..., x_{N-1}$ N_{cp} bits copied to the front

電子及計算機工程學系

Experimental results

Results

21 June 2017

電子及計算機工程學系

Conclusion and Future Plans

- Identify special features of Mobile wideband
 waveguide channel
- Exhibits non USWSS properties
- Use adaptive delay spread OFDM
- Demonstrated to perform well
- Future plans
 - Use FYP to prototype system
 - Extend to channels with fast fading

