

Department of Electronic & Computer Engineering 電子及計算機工程學系

電子及計算機工程學系

Inverse Scattering: Approximate Methods

21 June 2017

Wenjie Wang, Liwen JING and Zhao LI

Prof. Murch's group

PhD student since Sept 2016 Inverse scattering 電子及計算機工程學系

Background

- Exact inverse scattering solutions for 1D wave equations have been around for over 50 years
 - M. Gel' fand and B. M. Levitan, On the determination of a differential equation by its spectral function, Izv. Akad. Nauk SSSR Ser Math, 1951
 - S. Agranovich and V. A. Marchenko, The Inverse Problem of Scattering Theory, 1963
- Further generalization
 - V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).
- We introduce approximate solution techniques
- We also apply ZS to Water Hammer and Transmission line equations

電子及計算機工程學系

Background

- The exact methods (Including ZS) typically end up as the solution to Volterra equations and these can be solved using standard numerical methods
- Often difficult to understand the principles involved
- Approximate methods can provide us with
 - Intuition on the working of the process
 - Explicit formula
 - Computational simplicity
 - Are well-posed and more resistant to noise

4

電子及計算機工程學系

Wave equations

• Telegrapher's equations $\frac{\frac{dV(z,t)}{dz} + L(z)\frac{dI(z,t)}{dt} + R(z)I(z,t) = 0}{\frac{dI(z,t)}{dz} + C(z)\frac{dV(z,t)}{dt} + G(z)V(z,t) = 0}$

Water hammer equations

 $\frac{\partial h^*(x,t)}{\partial x} + \frac{1}{gA(x)} \frac{\partial q^*(x,t)}{\partial t} + Rq^*(x,t) = 0$ $\frac{\partial q^*(x,t)}{\partial x} + \frac{gA(x)}{a^2} \frac{\partial h^*(x,t)}{\partial t} = 0$

 Both sets of equations are essentially the same

電子及計算機工程學系

Approximations

- Split the total field inside the transmission line into scattered and incident parts
- Rytov approximation
 - Ignore terms which contain spatial derivatives of the scattered field
- Born approximation
 - Approximate the spatial derivative of the total field
- Both lead to expressions for the reconstructed impedance $Z(z) = \sqrt{\frac{L(z)}{C(z)}}$ along the line in terms of the reflection coefficient

電子及計算機工程學系

Rytov approximation details

Transform voltage or pressure into logarithmic domain

$$V(x,k) = e^{s(x,k)}$$
$$s(x,k) = s_i(x,k) + s_s(x,k)$$

Combine with Telegrapher's equations

 $s_{s}''(x,k) + (s_{s}'(x,k))^{2} + 2s_{i}'(x,k)s_{s}'(x,k) = \frac{Z'(x)}{Z(x)}(s_{i}'(x,k) + s_{s}'(x,k))$

• On introducing Rytov's transformation $\widetilde{V}_{s}(x,k) = s_{s}(x,k)e^{s_{i}(x,k)}$

$$\widetilde{V_{s}}''(x,k) + k^{2}\widetilde{V_{s}}(x,k) = \left[\frac{Z'(x)}{Z(x)}\left(s_{i}'(x,k) + s_{s}'(x,k)\right) - \left(s_{s}'(x,k)\right)^{2}\right]e^{s_{i}(x,k)}$$

 Apply Rytov approximation and transform measurement data into Rytov form and solve for Z(x)

$$\widetilde{V}_{S}(x,k) = V_{i}(x,k) \ln \left[\frac{V_{S}(x,k)}{V_{i}(x,k)} + 1 \right]$$

21 June 2017

電子及計算機工程學系

Simulation and Experimental setup

Simulation setup

- Lossless
- Gaussian shaped blockage or impedance profile
- Transmission line configuration
- Frequency range 1MHz-8GHz (Step=1MHz)
- Use middle frequency as reference wavelength of 2.5 cm
- Profiles from 5 to 160 wavelengths(Phase shift=0.25-8 wavelengths for 5% variation)
- AWGN added

Experimental setup

- Use microstrip transmission lines
- Collect reflection data from 1MHz to 8GHz
- Use VNA in wireless lab

電子及計算機工程學系

Simulation Results- width of impedance

電子及計算機工程學系

Simulation Results- size of impedance

電子及計算機工程學系

Simulation Results- noise

電子及計算機工程學系

Experimental Results

- Gaussian-Like Z(x) Profile(Length=25 cm)
 - $2\sigma = 5 cm$

電子及計算機工程學系

Experimental Results- Guassian

電子及計算機工程學系

Experimental Results- rect

Rectangular-Like Z(x) Profile

- *1.* 7 *cm*: 50 Ω
- *2.* 10 *cm*: 25 Ω
- *3.* 10 cm: 50 Ω

電子及計算機工程學系

Conclusion and Future Plans

- Approximate method provides surprisingly good
 performance
- Less computational complexity than ZS
- Well-posed- appears more resistant to noise than ZS
- Future plans
 - Explore noise performance in more detail
 - Extend to lossy formulation
 - Gather experimental data from water pipe at both LFW and HFW
 - Compare LFW and HFW performance of exact and approx
 - Work with Dr Pedro Lee on these plans