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OUTLINE

Inverse Obstacle/Medium Scattering Problems  

&  Mathematical Understandings

Direct Sampling Methods 

Two-stage semi-smooth Newton Method

Sampling-type Methods 
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Acoustic, electromagnetic, elastic waves 

Inverse Media/Obstacle Scattering Problem

near 

field

far  

field
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Acoustic Obstacle/Media Scattering

Take the planar incident field

then the total field              solves
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Reflective  Index

Reflective index :

Reflective index is known, then medium is known：

air, wooden, metal,  human, … …  
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Physical Properties of Obstacles

Physical Properties of obstacles:

Sound-soft: (pressure vanishes)

Sound-hard:  

(normal velocity of wave vanishes)

Impedance:

(normal velocity proport. to pressure)

or mixed type
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Identifiability of   Acoustic  Obstacles 

A long-standing problem :

Far field data from how many incident fields 

is sufficient to uniquely determine a scatterer, consisting of

many separated objects of different physical properties ?

Numerous results, answers quite  limited till 10 years ago:

for general obstacles with known physical properties , 

needs far field data from countably infinitely many incident 

fields
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Recent Advances on Identifiability

Cheng, Yamamoto, Elschner 03, 06 : reflection principle
A single sound-hard polygonal obstacle, by at most 2 incidents

D consists of finitely many polyhedral obstacles, 

either sound-soft, sound-hard, or of mixed type 

or contain sound-soft crack-type components

Liu-Zou 06, 07, 08 :   by N incident fields

Restricted D to the class of polyhedral types
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Basic tools for acoustic waves:

Reflection principle & Path argument  

Two Key Mathematical Tools
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Reflection Principle of Acoustic Wave
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Basic  Ideas in Proofs

Path argument + reflection principle 

Dirichlet plane, 

Neumann plane: 

bounded
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Identifiability:  Inverse EM Obstacle Scattering 
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Basic tools for acoustic waves:

Path argument &  reflection principle 

Two Key Ingredients to EM Waves

Path argument works  for  all  wave  models :

sound waves,  EM waves, elastic waves

(Liu-Yamamoto-Zou 07)
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Reflection Principle of  EM  Wave
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Any hyperplane :

Reflection Principle For Maxwell Equations

Then the following BCs can be reflected w.r.t. any 

hyperplane Π in  G: 

(Liu-Yamamoto-Zou 07)
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Far field data from 1 incident EM field :

sufficient to determine

general polyhedral type obstacles

Inverse EM  Obstacle Scattering

Liu-Yamamoto-Zou 08   & Liu-Zhang-Zou 09 :

Bao-Zhang-Zou (Trans. AMS 11; 12) :

periodic D :  micro-optics, grating structure ; 

Apply  EM reflection principle & dihedral group theory 

To classify  all unidentifiable gratings into 3 groups
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How To Reconstruct :  

Shape,  Location, Physics ?   
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Colton, Kress et al.:  

Newton-type methods - highly nonlinear eqns

Gruber et al.: 

Multiple Signal Classification (MUSIC) - small scatters 

Colton, Kirsch et al.:   

Linear Sampling-type Methods - blowing up indicators 

van den Berg et al.:   

Contrast Source Inversion  - nonlinear iterative optimiz

XD Chen et al.:  

Subspace-based optimizations – CSVD + CSI 

… … 

Existing  Numerical  Methods
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Newton-type Algorithms for Reconstructions

Highly nonlinear, severely ill-posed; 

Popular: numerous variants of Newton’s method, 

need good initial guess & physical properties of D, 

repeated forward solutions, 

need the derivatives of u^s w.r.t. changes of D, 

characterize evolving of the approximate boundary

Most methods target at solving the nonlinear eqn



Linear Sampling Method

a very simple idea, 

motivated by elegant math observations

Consider the far-field operator

and the far-field equation for    :

Colton-Kirsch 96 :

Clearly                     .    Look at the energy of g :
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Algorithm  of  LSM

Turns reconstructing D into computing indicator

Algorithm of LSM :   Select a cut-off value c

1.  Select a grid Th of sampling points, covering D

2.  At each z ,  solve the far-field equation  for  

3.  Determine  
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Advantages  of  LSM

No need to know the physical properties of D ;

No need to approximate geometrical boundaries of domains ;

No iterations & optimizations



23

No effective strategies to choose cut-off values.

Huge computational efforts:

need to solve the far-field equation for each sampling point, e.g.,

for an grid, need to solve n3 ill-posed equations

The grid should be very fine to get a fine reconstruction

Drawbacks of LSM
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New Techniques 

Li-Liu-Zou, SISC 09:

Multilevel Linear Sampling Method,

reduce computational complexity from

Li-Liu-Zou, SISC 10:

Strengthened LSM with a Reference Obstacle,

provide a deterministic technique to select cut-off values

Liu-Zou,  Inv Prb Sci Eng 12:

Radial Bisection Algorithm, with complexity     
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Multilevel Linear Sampling Method

MLSM : get rid of remote and inner cells
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Numerical Example I
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Numerical Example I
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Numerical Example I
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Numerical Example II



Numerical Example II
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Choice of Cut-off Values

MLSM :

Efficient strategy to reduce comput complexity of LSM

But how do we choose cut-off values ?

Cut-off values :

Sensitive to the noise in the data ;

Sensitive to the number of the obstacles ;

Sensitive to the sizes of the obstacles

No deterministic strategies to determine the cut-off values ;

Mostly : by experience,  or  by trial and error

Li-Liu-Zou, SISC 10
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Strengthened Linear Sampling Method

with a Reference Object

1.  Introduce an artificial scatterer B, with its shape, position and 

physical property all known 

2. Measure far-field data assoc. with the combined scatterer D∪B

D : the unknown scatterer, 

Main Ideas (Li-Liu-Zou, SISC 09)

5.  Use the cut-off value from B to determine D

4.  Find the best cut-off value that fits the boundary of B

3.   Solve the far-field equation at each grid point 
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Two Important Issues

For SLSM to work, it is natural to require

interaction between D and B can not be too weak

To realize this,

1. B should not be too small in size compared to D

2. B should not be too far away from D

These can be justified mathematically.
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B should not be too small or too far

Theorem

Theorem
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A  Scatterer  with  2  Objects

A reference ball, a pear displaced at (0,20), and a peanut displaced 

at (20,0):
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Contour of the peanut
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Contour of the pear
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Radial Bisection Algorithm

Simple speed-up:  applicable to all indicator type methods

Interior point algorithm
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Radial Bisection Algorithm

Parallel radial bisection algorithm
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Numerical Experiments
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Numerical Experiments
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Concluding  Part  I

may take objects with known geometry & physical property already 

inside the scattering system,

e.g., some object placed in the concerned region before, or some 

organ inside a patient body

MLSM: provides a strategy to reduce the computational 

complexity of LSM

SLSM: provide a deterministic strategy to choose the cut-off 

values

Reference Object: up to the practical convenience,

in radar or sonar imaging : place a reference object ;

in medical imaging, geophysical or scientific exploration :
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Drawback of LSMs 

Require too much data:  

data from all incident directions 

& measurements at all locations
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A Direct Sampling Algorithm 

Acoustic, TM or TE model:

(Jin-Ito-Zou, 2011)

Total field: 
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Derivation of Direct Sampling Algorithm 

Fundamental solution  G :   

Using the radiation condition :



Derivation of Direct Sampling Algorithm 

Using the radiation condition :

For the scattered field:

From the above two :
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A Direct Sampling Algorithm 
(Jin-Ito-Zou, 2011)

Index func for support of inhomog. media :

Recall 
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Numerical Examples I

Two incidents:  20% noise        
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Comparison with MUSIC

Two incidents:  20% noise        
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Numerical Examples II

One incident at (1, 1) 
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Numerical Examples III
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Numerical Examples III
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A Multilevel Sampling Algorithm 

Acoustic, TM or TE model:

(Liu-Zou, 2013)

Total field: 

Introduce the induced current :   
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A Multilevel Sampling Algorithm 
(Liu-Zou, 2013)

Approximate the contrast value  :   

Back-propagation:

over

Approximate contrast source:

Approximate the contrast value  :   
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Reconstruct    Shape,  Location & Physics    

Arrange the contrast values at all sampling points: 

1st gap interval
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A Multilevel Sampling Algorithm 

Approximate the contrast value  :   

Give a sampling domain 

Approximate contrast source by back-propagation :

Arrange the contrast values & find the 1st gap interval: 

Drop all sampling points with small values: 

Repeat 
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Numerical Examples 
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Numerical Examples 
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Numerical Examples 



6 incidents 

& 

30 receivers

12 incidents 

& 

30 receivers

36 incidents 

& 

30 receivers
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Numerical Example 
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Semi-smooth Newton with Sparsity
(Jin-Ito-Zou, 2012)

Index func           for inhomogeneous media

Using estimated medium D & inhomog.      :

Minimization with sparsity :

L1:  preserve sparsity, localized, keep clean background;

alone: instable, too spiky,  no groupwise structure

H1:  globally smooth, overly diffusive, blurry background;



Semi-smooth Newton with Sparsity

Minimization with sparsity :

Equiv to solving highly nl variational system :

Equiv to solving the variational system :



Semi-smooth Newton Algorithm

Compute



Nice Feature of Semi-smooth Newton

Major step :  solve a linear system on 

linear system becomes smaller & less ill-conditioned;

As iteration goes on :

captures more & more refined details of inhomogeneity;

convergence:  rather stable & fast

67
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Numerical  Example  I

One incident at (1, 1):    exact data;   20% noise 
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Numerical  Example  II

One incident at (1, 1):    exact data;   10%, 20% noise 
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Numerical  Example  III

One incident at (1, 1):    exact data;   20% noise 



Regularization  Parameters
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DSM’s Extension to Others
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Extensions to 

Electromagnetic medium scattering,  Ito-Jin-Zou 13;

Electric impedance tomography,  Chow-Ito-Zou 14;

Diffusive Optical Tomography, Chow-Ito-Liu-Zou 14;

Moving objects, … … 



DSM  for  EIT
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Electrical Impedance Tomography :

given   (f, g),   recover  electrical conductivity  



General  Principle of DSM
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Define  on the measurement surface  

Select a set of probing functions                  in                :

(1)  nearly orthogonal wrt , i.e.,   

like a Gaussian

(2) the probing family is fundamental:



Choice of  probing functions
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Define

Dipole potential :

Dipole potential :



Probing functions for special geometries
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Verification of properties 
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Index  function
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Numerical Experiments

79

Two separated square objects:   

Two separated square objects



Numerical  Experiments
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Four separated square objects

Thin square ring object:
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