Low-Cost Underwater Wireless Communications and Applications

Yahong Rosa Zheng

Department of Electrical & Computer Engineering Missouri University of Science and Technology, Rolla, MO (formerly University of Missouri-Rolla)

The work is supported in part by DoT, ONR and NSF

National Science Foundat

Applications:

- Unmanned Underwater Vehicles (UUV)
- Divers, Robots, and Sensors
- Possible communication means:
 - ♦ Optical beams: high BW, very short range < 2 m
 - Radio Frequency (RF): limited BW, short range
 - Magneto-Inductive (MI) Communications: low BW, short range (100 meters at 125 kHz)
 - Ultra-Sound (Acoustic Communication):

Short range (<1 km): 100 kHz (HF) Medium range (1-100 km): 10 - 40 kHz (MF or HF) Long range (1000 km): < 2 kHz (LF)

MISSOURI

- MI underwater communications: Fc=125 kHz, BW = 300 Hz~4 kHz, OOK Low power, MCU implementation; 3-Coil Antenna Short range 50 ~ 60 m, RSSI localization.
 Acoustic underwater communications:
 - Medium range shallow water ocean applications: Fc= 20 - 40 kHz, BW = 4 - 10 kHz, moving or fixed Tx. Ranges: 60 m ~ 5 km, channel length: 80 ~ 200 taps MIMO (2-by-4 to 4-by-24), QPSK to 16 QAM
 - Short range shallow water river applications: Fc= 115 kHz, BW = 5 kHz, OOK or BPSK, SISO or MIMO, Range ~100 m, DSP or MCU, TDOA localization

Applications of Short Range Systems

Bridge Scour Monitoring
Levee/Water Dam Monitoring
River Bank Monitoring
Oil/Water Pipe monitoring
Underwater robots (Fish bot)

The MI System Implementation

Ver 1 w/ small coil

Ver 2 w/ large coil

Ver 3 w/ 3-D multi coils

Field Test of MI System

Acoustic Communication Channels

Acomm Communication Systems

Acomm System: DSP Implementation

Transmitter/receiver hardware

DSP Hardware

Timing referencing among different receivers installed at two sides of the river

- Atomic clocks: on-chip module \$3000/piece
- ✤GPS timing module: \$300/module
- Radio clocks sync to NIST clock reference: \$30 but not useful

Severe multipath propagation: the strongest signal may not be the direct path – causing ranging and communication errors.

Low cost, low power consumption, small form factor

Communication Performance

River Test Results – Localization

Tx/Rx	(x,y) coordinates (m)	Distance to Tx (m)
Rx1 ch1 (point 2)	(-6.1673, -26.3122)	6.7168
Rx1 ch2 (point 1)	(-11.8589, -35.7277)	6.1316
Rx2 ch3 (point 3)	(0.5304, -29.6561)	7.6654
Rx2 ch4 (point 4)	(-3.0279, -40.9669)	8.6093
Tx (point 5)	(-6.3545, -33.0263)	0

Estimated Tx location $\hat{\mathbf{x}} = (-6.1203, -33.2003)$

Rx-Tx ranges	ground truth	measured mean	variance
Ch1-Tx and Ch2-Tx	0.5852 m	0.6177 m	0.000736 m^2
Ch1-Tx and Ch3-Tx	-0.9486 m	-1.3053 m	0.0019 m^2
Ch3-Tx and Ch4-Tx	-0.9438 m	-0.8236 m	0.0065 m^2

$$d_{12} = ||\hat{\mathbf{x}} - \mathbf{x}_{ch1}||_2 - ||\hat{\mathbf{x}} - \mathbf{x}_{ch2}||_2$$

$$d_{13} = ||\hat{\mathbf{x}} - \mathbf{x}_{ch1}||_2 - ||\hat{\mathbf{x}} - \mathbf{x}_{ch3}||_2$$

$$d_{34} = ||\hat{\mathbf{x}} - \mathbf{x}_{ch3}||_2 - ||\hat{\mathbf{x}} - \mathbf{x}_{ch4}||_2$$

$$||\hat{\mathbf{x}} - \mathbf{x}||_2 = 0.29 \text{m}$$

River Test of Smart Rocks

