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PROBABILISTIC MODELLING OF UNCERTAINTIES

Uncertainty Sources: (i) Modeling error of physical phenomena ;
(ii) Uncertainties due to incomplete information;
1 (iii)Uncertainties due to measurement noise.
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‘Frequentist’ Statistics Bayesian Statistics (Cox 1961)
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Probability: A measure of plausibility

Probability: A relative frequency of occurrences (A personal degree of belief in a proposition)

(drawing conclusions from sample data) Allows us to talk about probability of a parameter,
or probability of a model
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Bayes’ Theorem

P(A,B)=P(A|B)P(B)=P(B|A)P(A)
Therefore, P(A|B)=P(B|A)P(A)/P(B) ssol  ——pasterer
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p(9|D,M) =cp(D H,M)p(BlM) X oasf
» p(@|\D,M) isthe updated or “posterior” PDF of the model
parameters given the measured modal data D and the assumed

model class M.

> p(D|0.M) is the likelihood function that represents the PDF of

the observed data given the parameters 8 and the model class M.

> p(@|M) is the initial or “prior” PDF of the parameters given the
model class.

» ¢ is a normalizing constant that ensures that the posterior PDF
integrates to one.

[ Not only the optimal estimates (most probable values) can be determined but also

their associated uncertainties can be quantified

O The associated uncertainties are expressed through a posterior PDF which is
interpreted as a measure of plausibility

(Note that Bayes’ formulas involve conditional probabilities



BAYESIAN MODEL UPDATING

0000000000000
BAYESIAN MODEL SELECTION

The posterior probabilities of the various model classes given the data D is :(Beck and Yuen 2004)

Evidence of Model Class

|

p(DIM;) P(M;)
p(D | MFam)

Prior Probability

P(M; | D) =

Optimal model class M, is selected as the one that maximizes P(M. | D)




Structural Monitoring and Model Updating

Tall Building Long-span spatial structure

# Detect, localize and assess damage in structures
= |nevitable aging and degradation resulting from operational environment
= Damage due to natural disasters, such as earthquakes and hurricanes or man
made actions, such as terrorist attacks, accidents, etc.

# Validate structural designs and evaluate structural performance
# Monitor and control construction process

# Characterize loads in situ and assess load carrying capacities

# Vibration control



Wired structural
monitoring system

** Pros:
* High-fidelity data can be achieved

% Cons:

* Time consuming due to required
cabling installation

* All data are collected and
processed at a central station,
making it costly to store and
process such huge amounts of
data

Wireless structural
monitoring system

Flexible and easy deployment

Able to locally process data within
each sensor and transmit only
important information to the central
station

Reduced amount of data to be
collected and able to distribute the
computing burden to all sensors

Cons:

Hardware limitations (limited
processing and storage capacity)
Sensing synchronization errors
Power constraints due to battery
limitations



Model Updating
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2 : . .

—>  Y(¢)(c/s?) _0:_
(1) '

" Time'(sec)

U(t) (cm/s?) EEMM

u()



Different defects, different signatures!!
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Blockages induce frequency shift

Leaks induce damped pattern, but no shift

Wall thinning; changes wave speed

Air blockages; changes wave speed and damp pressure

W e



Model Updating Algorithms

U Deterministic model updating

Measured input

In

Class of Physical
Models M(a)

Measured output

P

Model output
Qu(a, Iy)

¥ /

qi(ar IN)

Least squares: arg min X(9; — q;(a, Iy))?
a

= Does not allow for explicit treatment of uncertainties (modeling error, parameter
uncertainties)
= Unable to handle and interpret locally identifiable and unidentifiable cases

U Probabilistic model updating

Class of Physical
Models M(a)

Measured input

In

Measured output

Py

System output
YN(alol IN)

/A

i /
P(yi = yila; g, IN -
qi(al IN)
p(yi(a’r a, IN))
Vi =qi T &
M(a) P(o)

10



STATISTICAL SYSTEM IDENTIFICATION

BAYES’ THEOREM

pla,ol D, )= cp(]AZN | a,0')7r(a,0')

% —;ex _ VN, a
(7, Ia,cr)—(mo_ - p[ =l )}
I@)=—— [5)- 5, a(a)

NNO n=1

p(aIDN) =c,J(a) " n(a,é(a))

-1
6*(a)=J(a), N, =%

: structural parameters
. output-error parameter

a
c
Yy o {50).5(v)}

$(n) : observed response at t = nAt

q(n;a) : model response at ¢ = nAt

N . number of observed response vectors

N, : number of observed DOF — dimension of ¥y

D, ; {?NJ N } measured dynamic data (output and
input)



STATISTICAL SYSTEM IDENTIFICATION

OPTIMAL PARAMETER(S) a

The parameter(s) which maximize p(aIDN) or (assuming

slowly varying prior ﬂ(a,o')) the parameters that minimize
J(a) , that is:

J@lo,)= n}gi(n)J(a)

Note:

Only Models M(a) with J(a) equal (or “very close”) to J(&)
have significant probability.

1
“Very close” means J(a) < J(a)e "
where € is a threshold of “significant” relative PDF values
[e.g. =107, N, =1000, J(a)<1007J(4)]

Thus, the updated PDF is concentrated in a very small sub-
region of the parameter space.



IDENTIFIABILITY (DEFINITION)

R =400, £ = 0.001, r = 0.18585 R =400, £ = 0.001, r = 0.18585
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p(a :‘ Dy, Mp) with Al(AN(ﬁ)) = 1000 and )\Q(AN(ﬁ)) = 10

p(a| Dy, Mp) with A\1(An(4)) = X2(An(4)) = 1000



IDENTIFIABILITY (DEFINITIONS)

IDENTIFIABILITY (Weak Definition)

There exists a finite number of optimal parameters
a® k=1,..,K

IDENTIFIABILITY OF ORDER R (Strong Definition)

There exists a finite number of optimal parameters

a® k=1,...,K

and

In addition, palDy) decays “rapidly” in all directions in the

neighborhood of each optimal point, as one moves away
from that point.

“Rapidly” means: min 4, (A(@))> R >0 ()

Ala)=V?*[N, InJ(a)]

Note:

e Equation () implies that if one moves away from any
optimal point a distance x in any direction, the PDF will
decay faster thanexp(-Rx*/2) .

¢ |t also implies that the region of “significant” probabilities
(relative PDF larger than a chosen threshold 0 <& <1)
consists of neighborhoods of the optimal points contained

within spheres of radius r =v—-2Ine/R .



ASYMPTOTIC APPROXIMATIONS FOR
IDENTIFIABLE CASES

The following approximations are valid for a strongly
identifiable case.

UPDATED PDF

K

plalD, )= ZWkN(a;ﬁ(“,A"l (ﬁ(")))

k=1

Ala)=V?[N,InJ(a)] (assume slowly varying 7(a, o))

w, =), 60|

PREDICTIVE RESPONSE

P(YN+1,M 1D, )’"‘ Z Wi p(YN+1,M | ﬁ(k))

Remark:

In an identifiable case all optimal models are output-
equivalent. An algorithm for finding the set of all optimal
solutions, given one of them, can be found in [Katafygiotis
and Beck 1997]

Katafygiotis L. S. and Beck J. L., “Updating models and their
Unertainties. 1l: Model Identifiability”, Journal of Engineering
Mechanics, ASCE, 124(4), 463-467, 1998.



relative probability
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TWO-STORY SHEAR BUILDING
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NON-IDENTIFIABLE CASE - MANIFOLD

NON-IDENTIFIABILITY

There exist a finite or infinite number of optimal solutions.
Given an optimal solution 4, the PDF p@lDy) does not
decay “rapidly” in all directions in the neighborhood of a.
The PDF is concentrated in the neighborhood of a manifold
of dimension 0<Ng; <N,

The dimension Ng of the manifold is determined by the
number of eigenvalues satisfying:

L(A@)<R i=1...,N;<N

a

The corresponding eigenvectors span a hyperplane
tangential to the manifold at a .

Note:

1) The identifiable case is a special case, where Ng = 0.

2) The manifold can be connected or disconnected.

3) Optimization algorithms will usually yield just one point,
not necessarily optimal, on the manifold.

CHALLENGES
e Representation of manifold.

e Asymptotic approximations for updated PDF and
predictive response.



NON-IDENTIFIABLE CASE - MANIFOLD

Representation of Manifold

Represent the manifold by a finite set of points
{a(’), l= 1,.-.,L} located on it. The set of points should:

1) represent the entire manifold, not only part of it.
2) be almost uniformly distributed.

Each point a”) is assigned a weighting W, representing the
volume of the PDF in its neighborhood.

w=c, TaOT" 760, 6@O) [0, A0 A0 T2 10)

where:
NI

¢y : normalizing constant so that ;Wz =d

AD A 0 AV the (Na-Ng) largest eigenvalues of A@®)
I ( (l)) . coefficient proportional to the tributary area of the

manifold corresponding to a® [e.g. I( ) Lfor
uniform spacing.]

Asymptotic Approximations
L
plalp, 2 w,0 ( )

L
p(YN+1,M lDN)zzwlp(YNH,M |a(l))

1=1



Example: Elastically supported bridge

H 10 1‘ 10 I 10 I 10 I
2N N e N e N 1 N
koa 1 3 5 ‘7 9 kor
A B C D E

kya | kyp | kea | ke | Elap | Elgc | Elcp | Elpg
107 | 107 | 10° | 10° 106 106 106 106
nominal 14 45 | 120 | 0.90 | 0.85 | 095 | 1.05 | 090 | 0.95
undamaged )
nominal
damaged 110 | 1.20 | 0.90 | 0.85 0.76 1.05 0.90 0.95
model 1 01 01 6o 6~ O3 03 03 03
model 2 01 0> 03 B 04 04 04 04
model 3 01 01 [ [ 03 03 04 04
model 4 01 0 03 B4 Os 05 05 Os
Note:
model 1: identifiable

model 2 & 3: one-dimensional manifold

model 4: two-dimensional manifold




MANIFOLD

manifold in 91, 92 & 93 space




cumulative probability

cumulative probability
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Cumulative probability for maximum responses
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Structural Health Monitoring

coennnnenenenen - Spructural Health- Monitoring (SHIMY) oo




Baseline Condition J : Damage Condition J

Building
Bridge
) S
\ : Sh
[ Maodel Updating E ' Model updating ]
| :
[ PDF of stiffness parameters ] [ PDF of stiffness parameters ]

\! : A
Based on the Gaussian approximation of stiffness scaling factors in two states(6" and&™), the probability
of damage (Vanik 1997) is

(1-d)é" -6™

Ja-ay(82) +(6)

|
v

Pidam (d) ~®

Risk Analysis, Reliability Analysis, and Decision Making




PROBABILISTIC
ENGINEERING
MECHANICS

Probabilistic Engineering Mechanics 18 (2003) 315-327

www.elsevier.com/locate/probengmech

Leakage detection in water pipe networks using
a Bayesian probabilistic framework

Z. Poulakis, D. Valougeorgis, C. Papadimitriou™

Department of Mechanical and Industrial Engineering, University of Thessaly, Pedion Areos, Volos 38334, Greece

Received 17 November 2002; revised 1 July 2003; accepted 1 July 2003

Abstract

A Bayesian system identification methodology is proposed for leakage detection in water pipe networks. The methodology properly
handles the unavoidable uncertainties in measurement and modeling errors. Based on information from flow test data, it provides estimates of
the most probable leakage events (magnitude and location of leakage) and the uncertainties in such estimates. The effectiveness of the
proposed framework is illustrated by applying the leakage detection approach to a specific water pipe network. Several important issues are
addressed, including the role of modeling error, measurement noise, leakage severity and sensor configuration (location and type of sensors)
on the reliability of the leakage detection methodology. The present algorithm may be incorporated into an integrated maintenance network
strategy plan based on computer-aided decision-making tools.
© 2003 Elsevier Ltd. All rights reserved.

Keywords: System identification; Bayesian method; Leakage detection; Water pipe networks

Poulakis, Z., Valougeorgis, D., & Papadimitriou, C. (2003). Leakage detection in water pipe networks
using a Bayesian probabilistic framework. Probabilistic Engineering Mechanics, 18(4), 315-327.
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e Particular example involves a mixture of
discrete and continuous optimizations.
Discrete parameters may grow rapidly.
Discrete optimizations can be treated using
genetic optimization algorithms.
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Peak values of normalized PDF at each pipe section using (A) manometers and (B) flow meters.
Leakage is located at pipe 26 with severity equal to 22.8 I/s (1.5% of the total water volume).
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Peak values of normalized PDF at each pipe section using (A) manometers and (B) flow meters.
Leakage is located at pipe 26 with severity equal to 22.8 I/s (1.5% of the total water volume). A
perturbation a % 5 and 10% is assumed in the piping roughness coefficient.
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perturbation b =2 and 5% is assumed in the demands.
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Peak values of normalized PDF at each pipe section using (A) manometers and (B) flow meters.
Leakage is located at pipe 26 with severity equal to (i) 57.0 and (ii) 22.8 I/s (3.7 and 1.5% of the total
water volume). A perturbation c = 2 and 5% is assumed in the modeled measurements.
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SIMULATION BASED APPROACHES
Metropolis-Hastings algorithm
Orrs ~ h(6)
0.~ 0,1 with symmetric “proposal PDE” p*(£]0)

1. Generate candidate state 6

Simulate & according to p*(&€|0;) and
compute the ratio r = h(&)/h(8y)
Set @ = £ if r > 1(c(€) < c(6y))

otherwise,

- £ with r
Set @ =
0, with1—r

Nh6)

2. Accept/Reject 6

0.6
N/

0 ifOeQ Ot
Or i1 =
0, otherwise



Metropolis-Hastings algorithm

Difficult to choose the spread of the p*(£]0) to ensure:

o0 e

1. The acceptance rate is not too small CE R

2. The concentration volume can be
effectively explored

Not suitable for populating the distribution concentrated on a small volume




Transitional Markov chain Monte Carlo (Ching & Chen 2007)

Introduce a series of intermediate PDF's
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Transitional Markov chain Monte Carlo

1. Determine 7,4 for h; 1(0) = h(0;T; 1),

(g
(DV{w@ﬁU_hZﬁEng_L“HN}_COW

Use Markov chain Monte Carlo for samples
selected repeatedly.

{9$X.H,99}




Concluding Remarks

A Bayesian Probabilistic Framework for Model Updating has been presented

This framework allows for the explicit treatment of modeling errors, measurement noise, and
non-uniqueness in the inverse problem

Identifiability depends on prior information, the fidelity of the model class, the number of
model parameters to be updated, as well as the amount and quality of measured data

As a result, probability distributions of the updated model parameters are obtained. Shifts of
such distributions can be used to infer damage

Significant modeling error may pollute the results of the methodology; estimated severity of
damage as well as location of damage may become unreliable

The importance of good modeling (appropriate class of models and parameters to be
updated) cannot be overemphasized

Application-specific algorithms, asymptotic or simulation-based, need to be designed to
make most efficient use of the particular data on hand

The methodology can be extended to select of an optimal class of models among different
such classes

It can also be used to design an optimal sensor layout by minimizing the asymptotic estimate
of the information entropy



Uncertainty 1s

the only certainty there 1is,

and knowing how to [ive with inseg

1S the only security.

u_-:/@//_/}/’l_l Allen Pavilos Mathematics writer)



