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PROBABILISTIC MODELLING OF UNCERTAINTIES

Uncertainty Sources:  (i) Modeling error of physical phenomena ;
(ii) Uncertainties due to incomplete information;
(iii)Uncertainties due to measurement noise.

Probability: A relative frequency of occurrences

(drawing conclusions from sample data)

Probability: A measure of plausibility 

(A personal degree of belief in a proposition)

Allows us to talk about probability of a parameter, 

or probability of a model

Bayesian Statistics (Cox 1961)‘Frequentist’ Statistics

Bayes’ theorem plays an increasingly 

prominent role in statistical applications!



Bayes’ Theorem

 Not only the optimal estimates (most probable values) can be determined but also 
their associated uncertainties can be quantified

 The  associated  uncertainties are expressed through a posterior PDF which is 
interpreted as a measure of plausibility

Note that Bayes’ formulas involve conditional probabilities

P(A,B)=P(A|B)P(B)=P(B|A)P(A)
Therefore,   P(A|B)=P(B|A)P(A)/P(B)

 is the updated or “posterior” PDF of the model 
parameters given the measured modal data D  and the assumed 
model class  M.
 is the likelihood function that  represents the PDF of 
the observed data given the parameters θ and the model class M.
 is the initial  or “prior” PDF of the parameters given the 
model class.
 c is a normalizing constant that ensures that the posterior PDF 
integrates to one.



BAYESIAN MODEL UPDATING

BAYESIAN MODEL SELECTION

The posterior probabilities of the various model classes given the data      is :(Beck and Yuen 2004)

Prior Probability

Evidence of Model Class

Optimal model class          is selected as the one that maximizesbest
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Structural Monitoring and Model Updating
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Detect, localize and  assess damage in structures
 Inevitable aging and degradation resulting from operational environment
 Damage due to natural disasters, such as earthquakes and hurricanes or man   
made actions, such as terrorist attacks, accidents, etc.

Validate structural designs and evaluate structural performance
Monitor and control construction process
Characterize loads in situ and assess load carrying capacities
Vibration control



Structural Monitoring Employing Wireless Sensor Networks

Wired structural 
monitoring system

Wireless structural 
monitoring system

 Pros:  
• High-fidelity data can be achieved

 Cons: 
• Time consuming due to required  

cabling installation
• All data are collected and 

processed at a central station, 
making it costly to store and 
process such huge amounts of 
data

 Pros: 
• Flexible and easy deployment
• Able to locally process data within 

each sensor and transmit only 
important information to the central 
station

• Reduced amount of data to be 
collected and able to distribute the 
computing burden to all sensors

 Cons: 
• Hardware limitations (limited 

processing and storage capacity)
• Sensing synchronization errors
• Power constraints due to battery 

limitations
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Different defects, different signatures!!
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1. Blockages induce frequency shift
2. Leaks induce damped pattern, but no shift 
3. Wall thinning; changes wave speed
4. Air blockages; changes wave speed and damp pressure



Class of Physical 
Models M(a)

Model Updating Algorithms
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 Deterministic model updating

 Probabilistic model updating

Measured input

IN
Model output

QN(a, IN)

 Does not allow for explicit treatment of uncertainties (modeling error, parameter 
uncertainties)

 Unable to handle and interpret locally identifiable and unidentifiable cases

Measured input

IN

System output

YN(a,σ, IN)

Class of Physical 
Models M(a)

Class of Probability 
Models P(σ)
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Structural Health Monitoring (SHM)

Damage Existence Damage Location Damage Extent Remaining Life
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Structural Health Monitoring
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Based on the Gaussian approximation of stiffness scaling factors in two states( ud

i
  and pd

i
 ), the probability 

of damage (Vanik 1997) is 
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Model updating

PDF of stiffness parameters

Model updating

PDF of stiffness parameters

Risk Analysis, Reliability Analysis, and Decision Making



Poulakis, Z., Valougeorgis, D., & Papadimitriou, C. (2003). Leakage detection in water pipe networks 

using a Bayesian probabilistic framework. Probabilistic Engineering Mechanics, 18(4), 315-327.



Water pipe network configuration



• Particular example involves a mixture of 
discrete and continuous optimizations. 
Discrete parameters may grow rapidly. 
Discrete optimizations can be treated using 
genetic optimization algorithms. 



Peak values of normalized PDF at each pipe section using (A) manometers and (B) flow meters. 
Leakage is located at pipe 26 with severity equal to 22.8 l/s (1.5% of the total water volume).



Peak values of normalized PDF at each pipe section using (A) manometers and (B) flow meters. 
Leakage is located at pipe 26 with severity equal to 22.8 l/s (1.5% of the total water volume). A 
perturbation a ¼  5 and 10% is assumed in the piping roughness coefficient.



Peak values of normalized PDF at each pipe section using (A) manometers and (B) flow meters. 
Leakage is located at pipe 26 with severity equal to 22.8 l/s (1.5% of the total water volume). A 
perturbation b = 2 and 5% is assumed in the demands.



Peak values of normalized PDF at each pipe section using (A) manometers and (B) flow meters. 
Leakage is located at pipe 26 with severity equal to (i) 57.0 and (ii) 22.8 l/s (3.7 and 1.5% of the total 
water volume). A perturbation c = 2 and 5% is assumed in the modeled measurements.



Peak values of normalized PDF at each pipe section using (A) manometers in the nodes 
(17, 18, 19, 23, 24, 25, 31) and (B) flow meters in the pipe sections (1, 2, 3, 7, 18, 25, 26). Leakage is 
located in pipe 26 with severity equal to 57.0 l/s.



SIMULATION BASED APPROACHES

Metropolis-Hastings algorithm



Metropolis-Hastings algorithm



Transitional Markov chain Monte Carlo (Ching & Chen 2007)
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Transitional Markov chain Monte Carlo



Concluding Remarks

• A Bayesian Probabilistic Framework for Model Updating has been presented

• This framework allows for the explicit treatment of modeling errors, measurement noise, and 
non-uniqueness in the inverse problem

• Identifiability depends on prior information, the fidelity of the model class, the number of 
model parameters to be updated, as well as the amount and quality of measured data

• As a result, probability distributions of the updated model parameters are obtained. Shifts of 
such distributions can be used to infer damage

• Significant modeling error may pollute the results of the methodology; estimated severity of 
damage as well as location of damage may become unreliable

• The importance of good modeling (appropriate class of models and parameters to be 
updated) cannot be overemphasized

• Application-specific algorithms, asymptotic or simulation-based, need to be designed to 
make most efficient use of the particular data on hand 

• The methodology can be extended to select of an optimal class of models among different 
such classes

• It can also be used to design an optimal sensor layout by minimizing the asymptotic estimate 
of the information entropy



Mathematics writer


