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Transient Waves in Pressurized Pipelines

- Wave propagation in an “intact” pipeline system
(defect-free)
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Transient Waves in Pressurized Pipelines

- Wave propagation in the pipeline with a leakage
(e.q., crack/hole)
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Transient Waves in Pressurized Pipelines

- Wave propagation in the pipeline with a discrete
blockage (e.g., partially-closed inline valves)
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Transient Waves in Pressurized Pipelines

- Wave propagation in the pipeline with an
extended blockage (e.g., corrosion/sediment)
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Transient Waves in Pressurized Pipelines

- Wave propagation in the pipeline with a dead-end
side-branch (e.g., illegal/unknown sections)
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Information of Defects in Waves

- Reflections (oscillations)
- Local inhomogeneities due to defects
- Wave reflection / transmission / superposition

- Attenuation (damping)
- Local head loss (turbulence/friction at defects)
- Local mass loss (e.g., leaking/side-branch cases)

Wave Reflections & Damping —
Essential Information for TBM
(Duan et al. 2010, etc.)



How to Utllize Wave Information in TBM?

- Long-period wave methods (“whole” signal)

- Direct calibration and analysis
- Time-domain signal fitting
- Frequency-domain signal fitting
- Time consuming and data dependent
- easlly contaminated (turbulence, noises, low-flow stabilities)

- Short-period wave methods (partial signal):

- Inverse analysis of analytical “pattern” (pre-derived)
- Time-domain “pattern”
-« Frequency-domain “pattern”



.
Transient-Based Methods (TBM)

- Procedure of TBM for Defect Detection:
- (a) Sending waves (input signals)
- (b) Measuring signals at accessible locations (response
signals)

- (c) Analyzing data (characterizing noise/defects/system)
- (d) Predicting defects (locating/sizing defects)
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Part — 1;
TBM for Single/Simple Pipe Systems




Transient Signature: Leakage
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Transient Signature: Discrete Blockage
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Transient Signature: Extended Blockage
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Transient Signature: Dead-End Side-Branch
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Applications and Accuracy of TBM

- Numerical Applications (“ldeal” tests)

- TDM:

- Ferrante and Brunone (2003, 2004); Ferrante et al. (2007); Tuck et al.
(2013, 2014);

- Liggett and Chen (1994); Beck et al. (2005); AL-Khomairi (2008); etc.
- FDM:

- Lee et al. (2008, 2013, 2014); Duan et al. (2010, 2011, 2012a, 2012b, 2014,
2015);

- Mpesha et al. (2001); Kim (2005); Mohapatra et al. (2006), Sattar et al.
(2008); etc.

Experimental Applications (Lab/Field tests)

- TDM:
- Brunone et al. (1999, 2001); Meniconi et al. (2009, 2011, 2012, 2013);
- Stephens et al. (2004, 2008); Vitkovsky et al. (2007); etc.
- FDM:
- Lee et al. (2006, 2014); Duan et al. (2013, 2014); Meniconi et al. (2013);
- Wang et al. (2002, 2005); Covas et al. (2005); etc.

Results: more accurate to locating defects than to sizing defects!




Comparison of TDM & FDM

(For simple pipe systems)

- Theoretically, both TDM & FDM are capable of
detecting (locating and sizing) these four types of
defects by the pre-derived “patterns’;

- But In applications,

- FDM is more comprehensive and accurate than TDM,
because some common complex factors such as friction
and local dissipation effects are excluded in TDM,;

- TDM is more efficient and more simple to use than FDM
In practical case studies.



Combination of TDM & FDM

- Meniconi et al. (2014) — Lab experiment tests
- Pipe test system in New Zealand
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Part — 2:
TBM for More Complex Pipe Systems
(Using FDM for lllustration)



(2.1) Multiple-Pipe Systems

- Leakage In series pipes (Duan et al. 2011)
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(2.2) Viscoelastic Pipe Systems
- Plastic pipelines (Duan et al. 2012)

66

H{m)|

36 A

6

46 A

— — — = Mleasured in VE pipe svstem
r . Numerical bvelasticmodel
’

||

1 1

i ]

' 1

1 ]

i A

1 \

\ \

\

S (a)
10 1 20
7[s]

Elastic amplitude, [s/m?]

b
1.0E+05 ( )
Elastic pipeline ~  ====- Viscoelastic pipeline
8.0E+04
| ) ) 3
6.0E+04 —.}.l A § A 4
[ []
I A (R S
[ 1 H 1
4.0E+04 4 i i i ::I
1 'l 1 : ] 11 1y
Iy [ H ' ‘| 1y
L} ' [} H [} ] \ 1y
2.0E+04 —,L'z I FN L N [ R
] oy [ [ )
H vVl ] v R 'l' \ '
! ‘\‘ ! W g .
0.0E+00 - T T
2 3 4
@, [Hz]

* * » Drive
FDM — Pattern: hIeak-a\s = A|eak-a5[1_cos(2xL Lj}

a

rf —Elastic

HVE W

a

W: visco-elastic
parameter

The existing method can be extended to visco-elastic

pipelines as long as the W is known!

1.0E+04

8.0E+03

~ 6.0E+03

- 4.0E+03

- 2.0E+03

”
- 0.0E+00

Viscoelasticamplitude, [s/m?]



(2.3) Pipeline with Ends / EIbows
., 2015)

- Air-pocket detection (Duan & Lee &..
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(2.4) Pipe Networks

Numerical Test Case

Reservoir, with
available head,

e.g., H,=50m Blockage location with

Leakage location 30% pipe area
with 20% plpe flow

Inline /
side-discharge valve

Measurement
location

Notations:
[1] = nodal number
P1 = pipe number



Transient Responses at Valve
Numerical Results
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Practical Influence Factors

- Input Signals (Lee et al. 2015)
- Bandwidth
- Amplitude

- System Complexities (Duan et al. 2011, 2015, etc.)
- Pipe configurations
- Defect characteristics (types, inhomogeneities)
- Noises & uncertainties



Future Development of TBM
(on the basis of current achievements)

- TDM & FDM (& Combination)

- For complex pipe systems (e.g., networks)
- Characterization of different types of defects

- LFW & HFW (& Combination)

- Range vs. Resolution
- Efficiency vs. Accuracy
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