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Transient Waves in Pressurized Pipelines 

• Wave propagation in an “intact” pipeline system 

(defect-free) 
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Transient Waves in Pressurized Pipelines 

• Wave propagation in the pipeline with a leakage 

(e.g., crack/hole) 
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Transient Waves in Pressurized Pipelines 

• Wave propagation in the pipeline with a discrete 

blockage (e.g., partially-closed inline valves) 
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Transient Waves in Pressurized Pipelines 

• Wave propagation in the pipeline with an 

extended blockage (e.g., corrosion/sediment) 
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• Wave propagation in the pipeline with a dead-end 

side-branch (e.g., illegal/unknown sections) 

 

Transient Waves in Pressurized Pipelines 
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Information of Defects in Waves 

• Reflections (oscillations) 

• Local inhomogeneities due to defects 

• Wave reflection / transmission / superposition 

 

• Attenuation (damping) 

• Local head loss (turbulence/friction at defects) 

• Local mass loss (e.g., leaking/side-branch cases) 
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Wave Reflections & Damping – 

Essential Information for TBM 
(Duan et al. 2010, etc.) 



How to Utilize Wave Information in TBM? 

• Long-period wave methods (“whole” signal) 

• Direct calibration and analysis 

• Time-domain signal fitting 

• Frequency-domain signal fitting 

• Time consuming and data dependent 

• easily contaminated (turbulence, noises, low-flow stabilities) 

 

• Short-period wave methods (partial signal): 

• Inverse analysis of analytical “pattern” (pre-derived) 

• Time-domain “pattern” 

• Frequency-domain “pattern” 
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Transient-Based Methods (TBM) 

• Procedure of TBM for Defect Detection: 

• (a) Sending waves (input signals) 

• (b) Measuring signals at accessible locations (response 

 signals) 

• (c) Analyzing data (characterizing noise/defects/system) 

• (d) Predicting defects (locating/sizing defects) 
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Part – 1:  

TBM for Single/Simple Pipe Systems 
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Data collection 

location 



Transient Signature: Leakage 
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Time-domain: 

        xL
* = 2Dt* 

        AL
* ≈ ϕDh*(1-Dh*)-0.5  

(Brunone 1999, etc.) 

Frequency-domain: 

(Lee et al. 2006, etc.) 

( )*ˆ cos 2
L

P kx    - 

xL
* = leak location;  = leak size; 

k = number of resonant peaks; 

,  = coefficients 

Dt* 
Dh* 



Transient Signature: Discrete Blockage 
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(b) 

Time-domain: 

        xL
*  = 2Dt* 

        𝜉d0
* ≈ Dh*

 

(Contractor 1965, Meniconi et 

al. 2011a, etc.) 

Dt* 
Dh* 

Frequency-domain: 

(Lee et al. 2008, etc.) 

xB
* = discrete blockage location; IB

* = 

discrete blockage impedance; m = number 

of resonant peaks; ,  = coefficients 

( ) ( )( )  - *** 2cos1 BB mxImF



Transient Signature: Extended Blockage 
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(Meniconi et al. 2013) 
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Transient Signature: Dead-End Side-Branch 
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Applications and Accuracy of TBM 
• Numerical Applications (“Ideal” tests) 

• TDM: 
• Ferrante and Brunone (2003, 2004); Ferrante et al. (2007); Tuck et al. 

(2013, 2014); 

• Liggett and Chen (1994); Beck et al. (2005); AL-Khomairi (2008); etc. 

• FDM:  
• Lee et al. (2008, 2013, 2014); Duan et al. (2010, 2011, 2012a, 2012b, 2014, 

2015); 

• Mpesha et al. (2001); Kim (2005); Mohapatra et al. (2006), Sattar et al. 
(2008); etc. 

• Experimental Applications (Lab/Field tests) 
• TDM:  

• Brunone et al. (1999, 2001); Meniconi et al. (2009, 2011, 2012, 2013); 

• Stephens et al. (2004, 2008); Vıtkovsky et al. (2007); etc. 

• FDM: 
• Lee et al. (2006, 2014); Duan et al. (2013, 2014); Meniconi et al. (2013); 

• Wang et al. (2002, 2005); Covas et al. (2005); etc. 
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Results: more accurate to locating defects than to sizing defects! 



Comparison of TDM & FDM 
(For simple pipe systems) 

• Theoretically, both TDM & FDM are capable of 

detecting (locating and sizing) these four types of 

defects by the pre-derived “patterns”; 
 

• But in applications,  

• FDM is more comprehensive and accurate than TDM, 

because some common complex factors such as friction 

and local dissipation effects are excluded in TDM; 

• TDM is more efficient and more simple to use than FDM 

in practical case studies. 
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Combination of TDM & FDM 
• Meniconi et al. (2014) – Lab experiment tests 

• Pipe test system in New Zealand  

 

 

 

 

 

• Pipe test system in Italy (Brunonoe) 

17 

0

10

20

30

40

0 1 2 3 4 5 6

TDM

FDM

TDM+FDM

Test case no. 

P
re

d
ic

ti
o
n
 e

rr
o
r 

(%
) 

Prediction for the length of extended blockage 



Part – 2:  

TBM for More Complex Pipe Systems 
(Using FDM for Illustration) 
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(2.1) Multiple-Pipe Systems 

• Leakage in series pipes (Duan et al. 2011) 
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(2.2) Viscoelastic Pipe Systems 

• Plastic pipelines (Duan et al. 2012) 
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The existing method can be extended to visco-elastic 

pipelines as long as the W is known! 
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(2.3) Pipeline with Ends / Elbows 

• Air-pocket detection (Duan & Lee &…, 2015) 
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End of pipeline (closed in-line 

valve) 

Solenoid valve produces 

transient 

Dynamic pressure transducer 
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(Burrows and Qiu 1995) Streeter and Wylie (1993) 
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(2.4) Pipe Networks 

Inline / 
side-discharge valve 

Notations:  
 [1] = nodal number 
 P1 = pipe number 

Reservoir, with 
available head, 
e.g., Ha=50m 
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Practical Influence Factors 

• Input Signals (Lee et al. 2015) 

• Bandwidth 

• Amplitude 

 

• System Complexities (Duan et al. 2011, 2015, etc.) 

• Pipe configurations 

• Defect characteristics (types, inhomogeneities) 

• Noises & uncertainties 

• … 
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Future Development of TBM  
(on the basis of current achievements) 

• TDM & FDM (& Combination) 

• For complex pipe systems (e.g., networks) 

• Characterization of different types of defects 

 

• LFW & HFW (& Combination) 

• Range vs. Resolution 

• Efficiency vs. Accuracy 
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Thank you ! 
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