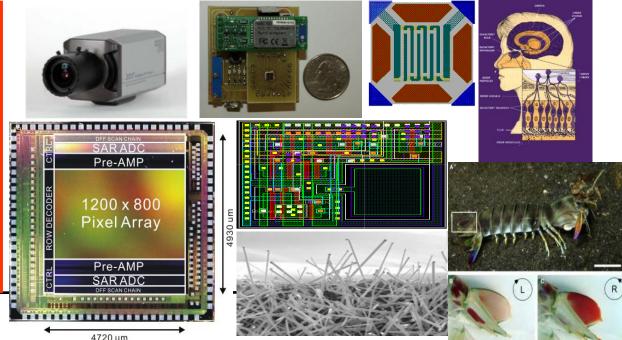


Electronic and Computer Engineering Department

Low Power Sensors for Urban Water System Applications

Prof. Amine Bermak



🗓 Smart Sensory Integrated Systems Lab 🗓

Circuit

Sensor

Autonomous integrated smart sensing systems capable of "sensing, processing and communicating" Wireless Sensing Platforms

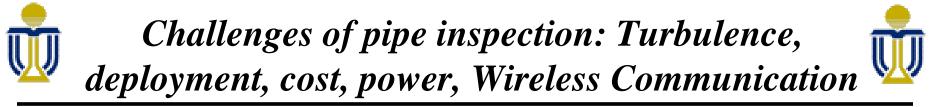
* RFID with sensors, wireless sensor Network (WSN) etc.

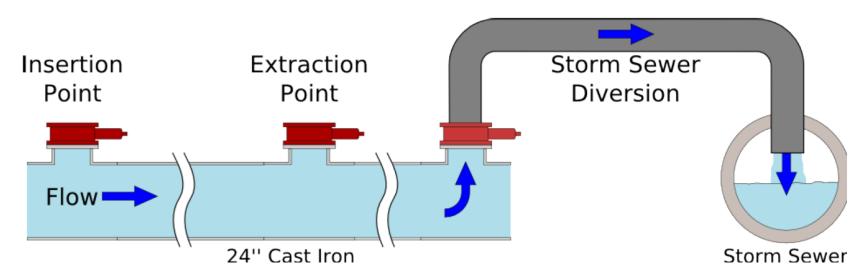
Challenges to be Addressed

Challenges in WSN

- 4 main challenging requirements in "install and Forget" Electronics
 - Requirement 1: Low-cost \rightarrow Mainstream CMOS technology (system integration)
 - Requirement 2: Battery-less: replacement hinders massive deployment in remote locations, cost issue → Self-powered + ultra-low power operation
 - Requirement 3: No human intervention for maintenance \rightarrow Self-calibration.
 - Requirement 4: Low-Power communication: Information rather than data communications → Intelligent converters & Compress before communication

S2IS


4



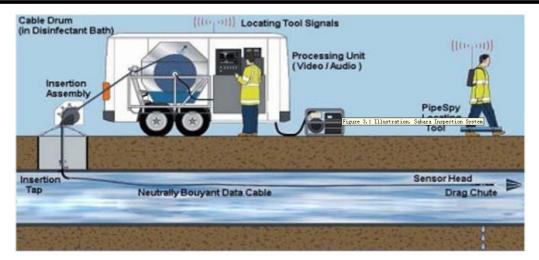
🗓 Talk Agenda –Towards Autonomous sensors 🗓

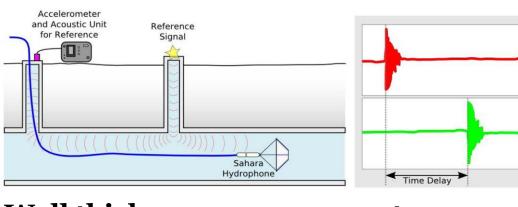
- State-of-the-Art Water Pipe Sensing
- ◆ Time-Domain Imaging –Low power alternative
- Time-Domain Image Processing Smart Vision Sensor
 - Compression, Histogram Equalization, Adaptive quantization
- Alternative ADCs: Analog-to-information AIC converters.
- Energy harvesting Image Sensors
- Conclusion

Flow created by sinking current into Storm Sewer

- ◆ Deployment cost must be low, it is preferable to use existing tapping sites (2 6 inch) as insertion, extraction, and measurement sites.
- Low-cost \rightarrow Miniaturization \rightarrow Low-power and integration
- Wireless communication

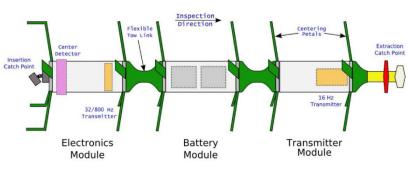
S2IS


6



The Pressure Pipe Inspection Company (PPIC)

Sahara Inspection System



Wall thickness measurement

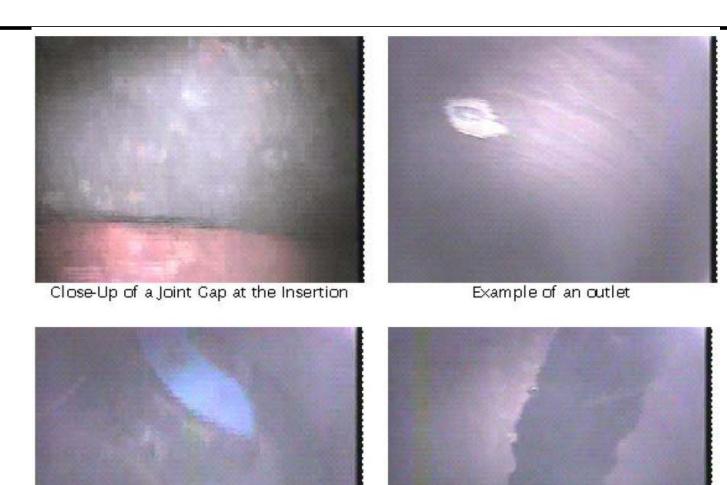
Video Head

- Both acoustic and video measurement are available.
- CCTV provides the best in terms of accuracy

Smart Sensory

Integrated

Systems Lab


S2IS

7

Video Samples from Sahara System

Extraction Point, 24×24×12" Tee

Workshop on "Smart Urban Water Systems" HKUST 2015

Smart Sensory Integrated Systems Lab

Example of Large Air Pocket

8

Pure Technologies Ltd.

Calibration is needed

9

- Data is not available for real-time diagnosis.
- The most expensive technology (USD\$9/ft).
- Accuracy and range (limited by battery lifetime).
- ♦ Ball (1000-2000 US\$) can be lost

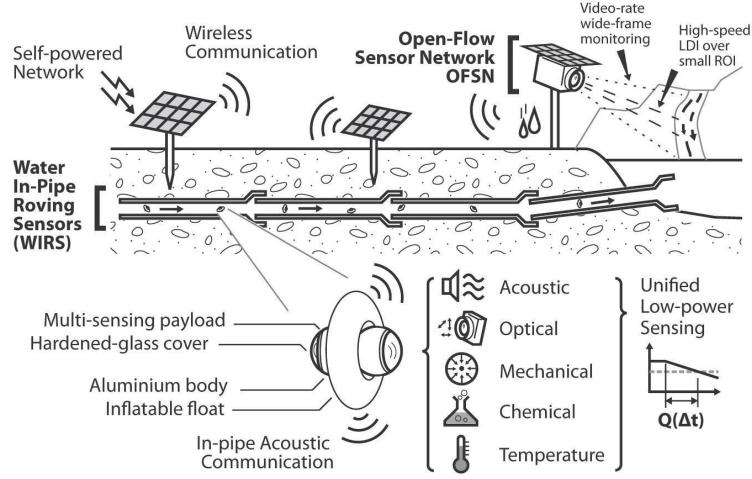
Echologics Engineering Inc.

Wireless Transmitter Hydrophone Installation

- ◆ Installed at the surface of the pipe (limitation).
- Poor sensitivity and limited dynamic range.
- Worst accuracy.
- ◆ Lowest in cost (USD \$2/ft) and easiest to deploy.

	PPIC Sahara	Pure Tech. SmartBall	Echologic	
Pressure resolution (gpm)	0.06	0.06	0.6	
Range (km)	2	25	-	
Installation	Tethered	Swimming	External	
Cost (USD\$/ft)	2-4	4-9	2-3	

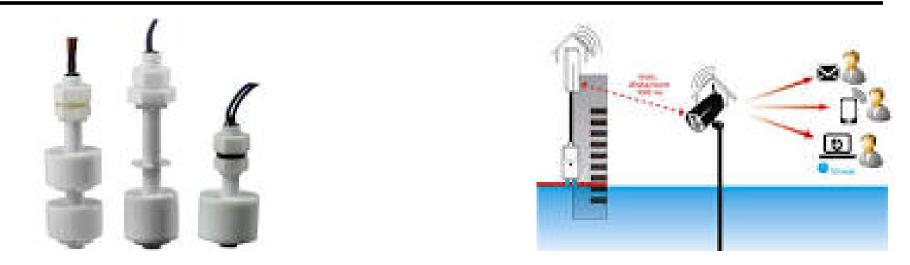
- Echologic system is the most cost efficient but present many issues: Accuracy, Deployment issues (surface of the pipe),
- Smart Ball offers very interesting features but "offline" approach, expensive
- Acoustic medium is prone to interference from: traffic, construction, and air pocket.



S₂IS

Objective: Multi-sensing platform

- Water In-Pipe Roving Sensors (WIRS) rove inside the pipe.
- Open-Flow Sensor Networks (OFSN) for monitoring open-flow areas.


Smart Sensory Integrated Systems Lab

Challenges for open flow video sensors

- Existing open flow sensors include Water Level Sensors and video camera
- Very expensive, costly maintenance and hence deployed at very small scale and only downstream (Urban areas).
- Need a separate energy harvesting unit (costly).
- Transmit only few frames/day

"Wireless Camera Network"

Can we deploy cameras at large scale?

Challenges:

- Vision sensors are power-hungry
- Transmit a lot of data (1.1Mpixel translates to 1GB/s)

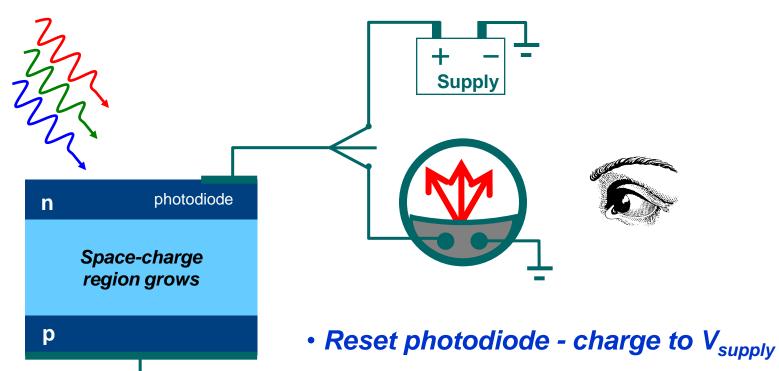
Key questions:

- Can we use the light to self-power the sensor?
- Can we transmit information rather than data?

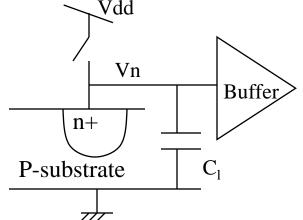
Objectives:

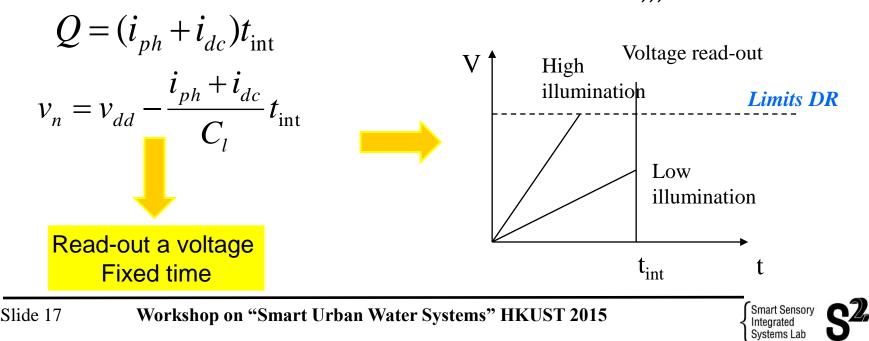
- 1. Ultra-low power vision sensors
- 2. Self-powered sensors (Sensors that can be reconfigured as energy harvesters
- 3. Design intelligent data converters (Analog-to-information Converters rather than ADC).

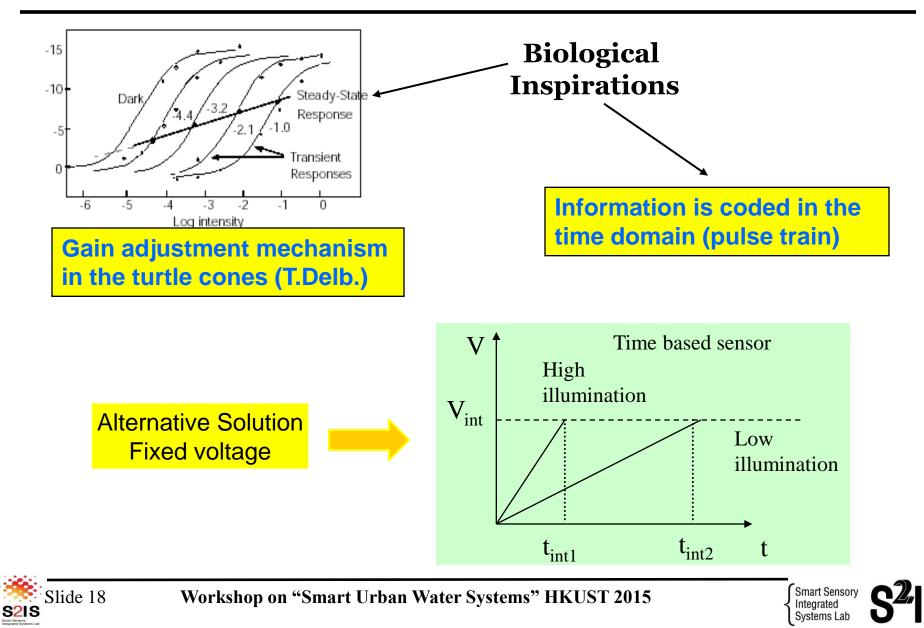
Talk Agenda – Towards Autonomous sensors 🕠

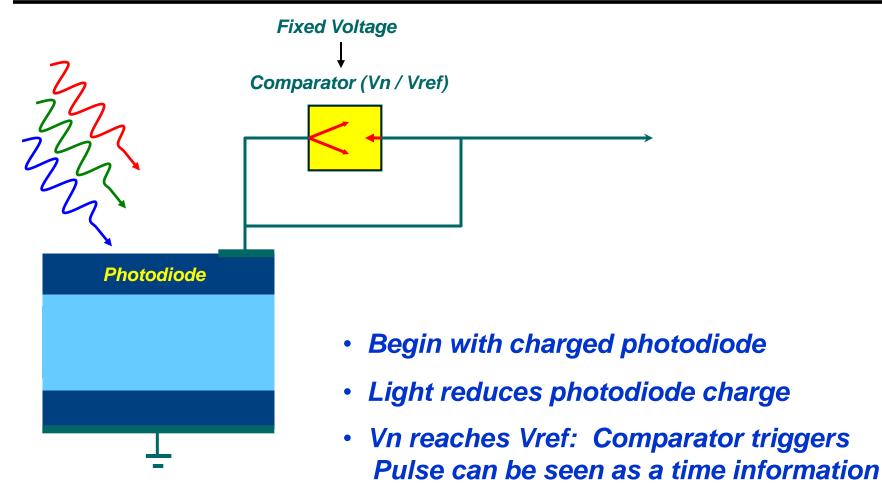

- State-of-the-Art Water Sensing
- Time-Domain Imaging –Low power alternative
- Time-Domain Image Processing Smart Vision Sensor
 - Compression, Histogram Equalization, Adaptive quantization
- Alternative ADCs: Analog-to-information AIC converters.
- Energy harvesting Image Sensors
- Conclusion

Conventional Image Sensor

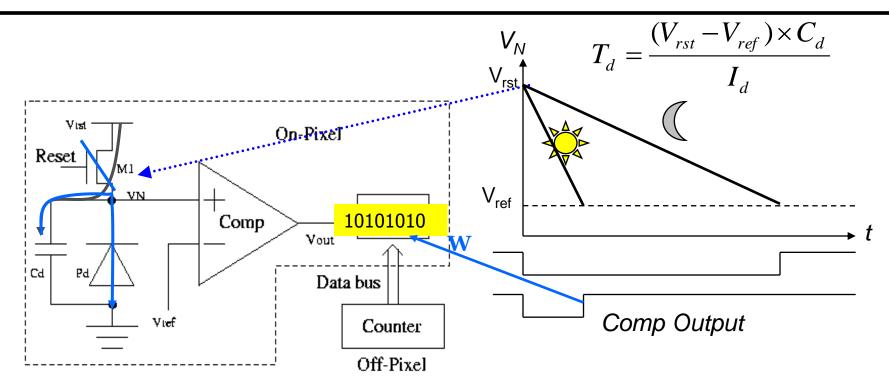

- Monitor photodiode voltage
- Photons discharge photodiode
- Measure final photodiode voltage
- Reset repeat



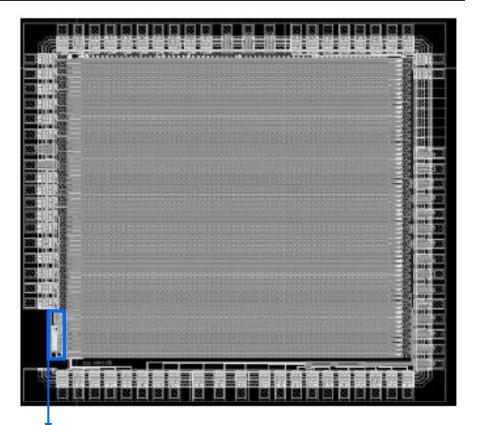

- The three phases operation (basic of APS, by E. Fossum at JPL).
 - 1. Reset: The switch is closed and the voltage Vn is reset to Vdd
 - 2. Integration: The switch is open and charges are collected during t_{int}
 - 3. Read-out: At the end of integration the accumulated charges or voltage is read-out.



Time-Based Vision Sensor


Feedback pulse restores charge


- The comparator pulse is used as a write pulse to the memory which will then write in from the global data bus
- ◆ The comparator pulse is also used to reset the voltage of the photodiode to Vdd → Feedback circuit.



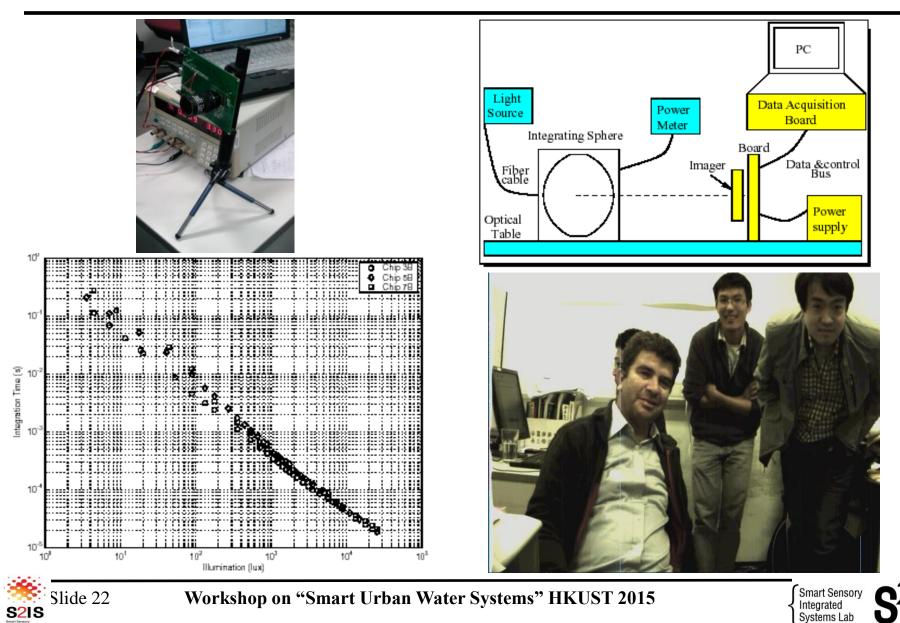
Prototype Chip

Feature	Specifications			
Resolution	64 x 64			
Pixel size	45 x 45 um ²			
Fill-factor	12%			
Image array area	95% of the chip area			
Die size	15 mm ²			
Dynamic range	100 dB			
Process	0.35 um CMOS tech			

Control circuitry:

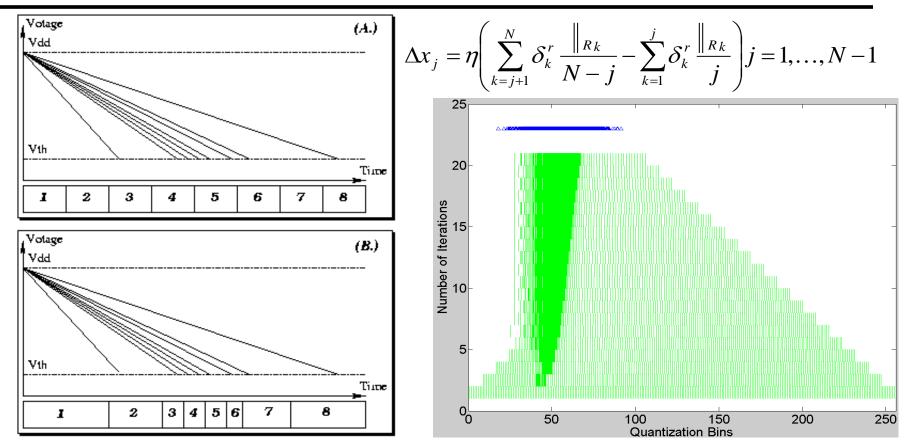
* NUQ circuit* Blanking circuit

Slide 21



Sample Images and results

S



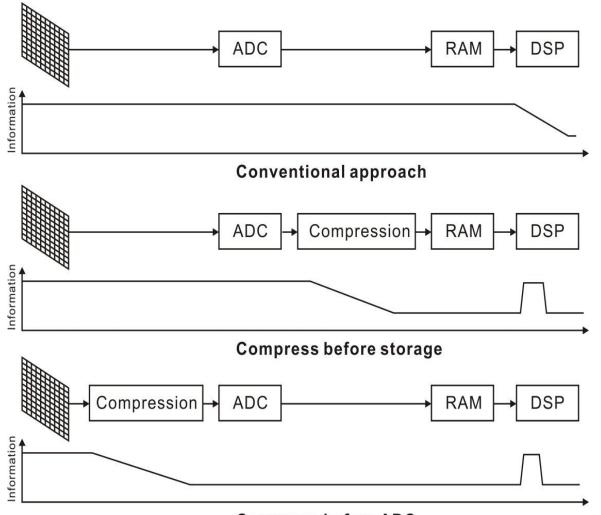
Slide 23

S₂IS

Image Processing Perspective Adaptive Quantization

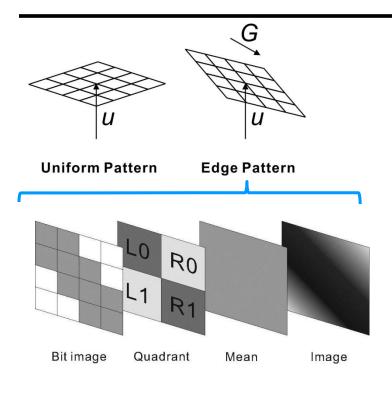
- Quantization boundaries are adjusted as the pixels' spikes are received.
- The quantization levels are adapted to the image statistics

<u>前</u> Talk Agenda –Towards Autonomous sensors <u>前</u>

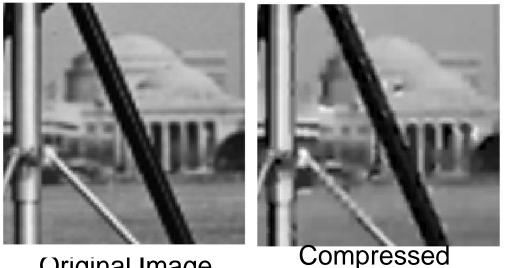

- State-of-the-Art Water Sensing
- ◆ Time-Domain Imaging –Low power alternative
- Time-Domain Image Processing Smart Vision Sensor
 - Compression, Histogram Equalization, Adaptive quantization
- Alternative ADCs: Analog-to-information AIC converters.
- Energy harvesting Image Sensors
- Conclusion

Analog to Information Imager

Compress before ADC


- Key idea: Compression is performed prior to ADC
- Analog read-out attempts to remove redundancy.
- Image is divided into blocks
- Useful information within the block is extracted in analog domain.
- ADC only operates on useful data

Analog to Information Imager


$$u(4k,4l) = \frac{1}{4} \times (L1 + L0 + R1 + R0)$$
$$G(4k,4l) = \frac{1}{4} \times (|L0 - R1| + |L1 - R0|)$$

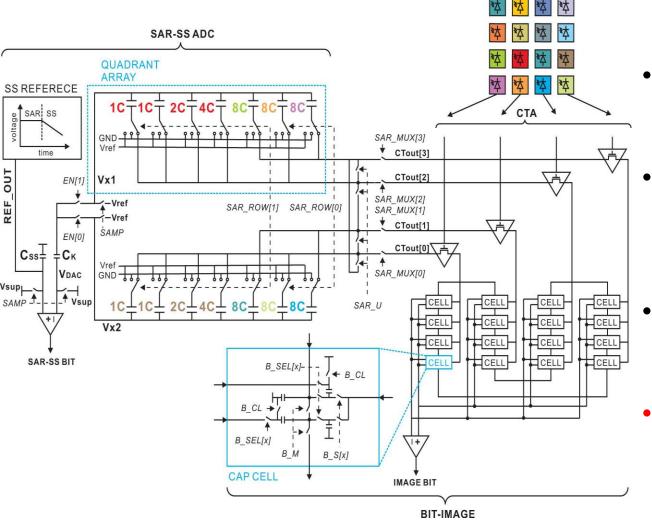
" A 12 pJ/pixel Analog-to-Information Converter based 816 x 640 CMOS Image Sensor," IEEE Journal of Solid-State Circuits, submitted 2013.

Slide 26

S2IS

- If the gradient is within a threshold: uniform pattern (UP), only the u is sent
- Otherwise it's an edge pattern (EP) and the mean, G, and the bit-mage are sent
- Analog switch cap techniques are used to compute u, G and ADC is ON only when needed (EP) (10% of the time).

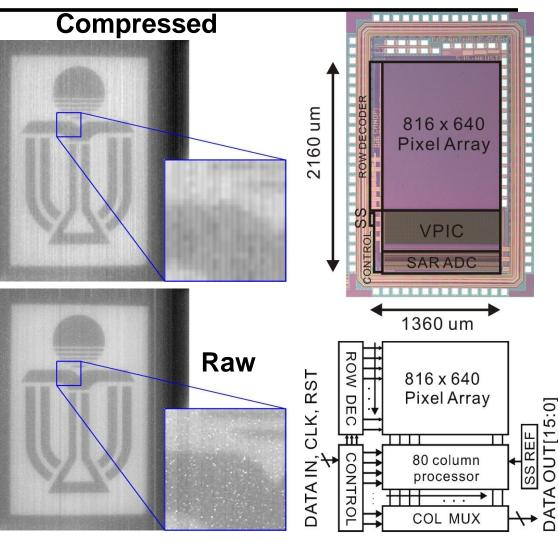
Original Image


Smart Sensory Integrated Systems Lab

31.2 dB PSNR @ 0.7 bpp

Analog to Information Architecture

- A single quadrant is processed in one readout cycle
- Switched Cap techniques are used to compute the mean and quadrants
- SAR-SS is used for best trade-off between power and area.
- ADC is On only for Edge Block → power saving



Prototype Measurement

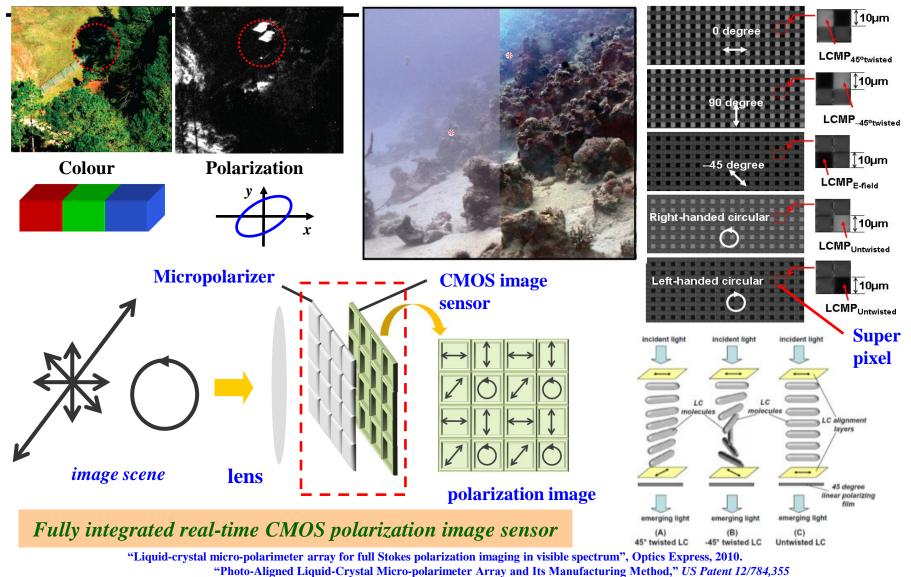
	Compressed	Raw				
Process	0.18 μm 1P6M Mixed-signal CMOS					
Supply voltage	3.3 V, 1.8 V					
Chip clock	4 Mhz					
Imager size	816 × 640					
Frame rate	111 fps	28.7 fps				
Pixel size	$1.85 \ \mu \mathrm{m} \times 1.85 \ \mu \mathrm{m}$					
Fill factor	13 %					
Dark current	<4307 <i>e</i> ⁻ /sec					
Saturation level	7718 e ⁻					
Conv. gain	$35.76 \ \mu V/e^-$					
Sensitivity	309 e ⁻ /Lux.sec @ 1167 Lux					
Dynamic range	46 dB	34 dB				
ADC resolution	8b	9b				
Temporal noise	2 LSB _{rms}	4 LSB_{rms}				
Power	0.69 mW	0.72 mW				
Energy	12 pJ/pixel	48 pJ/pixel				
Data rate	3 bpp (1 bpp after FPGA)	9 bpp				
PSNR	20 dB	25 dB				

We can achieve 0.7BPP and 30dB SNR Power level of less than 1mW (12pJ/p) (lowest ever reported power for imager) We can achieve about 111fps

" A 12 pJ/pixel Analog-to-Information Converter based 816 x 640 CMOS Image Sensor," IEEE Journal of Solid-State Circuits, May 2014.

Slide 28

Reference	[1	9]	[25]	[26]		[10]		[17]		16]	This	work	
Year	20	12	2007	2009		2011	2	2008		006	20)13	
Algorithm	C	S	Lossless	Haar	wavelet	QTD	S	PIHT	D	СТ	VI	PIC	
Architecture	Colum	n level	Column level	Colu	mn level	Chip level	Pixe	Pixel level		Pixel level		Column level	
ADC	Δ	Σ	Single slope	1	$\Delta\Sigma$	Single slope	I	none		none		SAR	
ADC resolution	12	b	8b		8b	8b		-		-	9)b	
Technology (µm)	0.1	15	0.35	().35	0.35		0.5	0).5	0.	18	
Supply (V)	3.3, 2.	0, 1.8	3.3		3.3	3.3		-	3	3.3	3.3, 1	.8, 1.2	
Area (mm ²)	2.9×	<3.5	2.6×6.0	4.4	×2.9	3.3×3.2	2.3	3×2.3	2.4	$\times 1.8$	2.16	×1.36	
Resolution	256×	<256	80×44	128	3×128	64×64	33	3×25	104	×128	816 :	× 640	
Pixel pitch (µm)	5.	5	32	1	5.4	39		69	1	3.5	1.	85	
Fill factor (%)	-		18		28	12		21	4	46	1	3	
Pixel circuit	4T pinr	ned PD	8T		7T	PWM DPS	Hetre	rogenous	Floati	ng gate	3T	APS	
DR (dB)	7	8	-		-	>100		-		-	34	46	
Frame rate (fps)	120	1920	435		30	-	1	0000	1	25	28.7	111	
Throughput (Mp/s)	7.9	125.8	1.5		0.5	-		8.3	0).3	15.0	58.0	
Power (mW)	93.1	96.2	150	2	26.2	17	0.25	@ 30fps		2	0.72	0.69	
Energy (pJ/pixel)	11838	765	21973	5	3304	-	1	0101	60	010	48	12	
Compression ratio	1	16	<1.5	3.5	8	9.1	80	8	1.3	13.7	1	8	
PSNR (dB)	-	32.5	-	32	15	23	24.5	40	47.1	25.7	25	20	

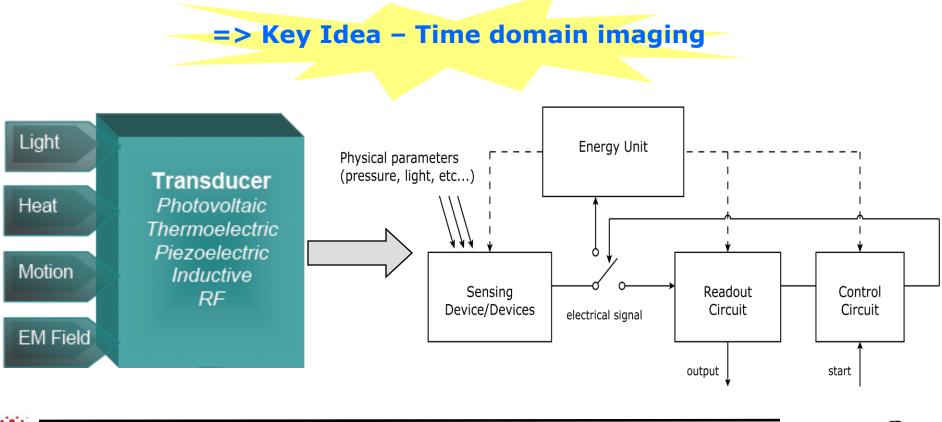

 Lowest energy/power consumption ever reported due to AIC and novel circuit techniques (dynamic circuits).

Polarization Imaging

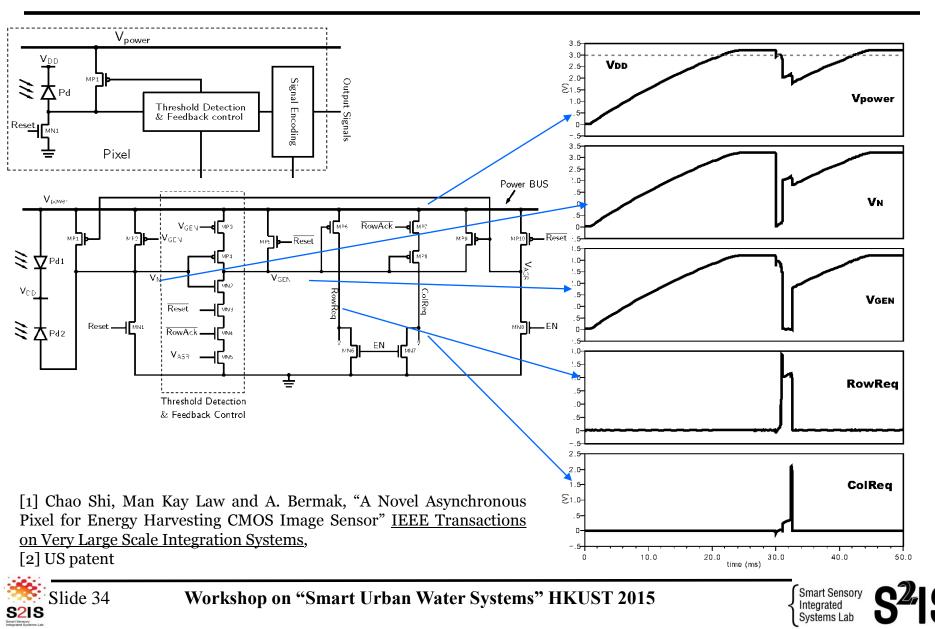
<u>ຫຼ</u>້ Talk Agenda –Towards Autonomous sensors <u>ຫ</u>ຼື

- State-of-the-Art Water Sensing
- ◆ Time-Domain Imaging –Low power alternative
- Time-Domain Image Processing Smart Vision Sensor
 - Compression, Histogram Equalization, Adaptive quantization
- Alternative ADCs: Analog-to-information AIC converters.
- Energy harvesting Image Sensors
- Conclusion

Power is still the main issue

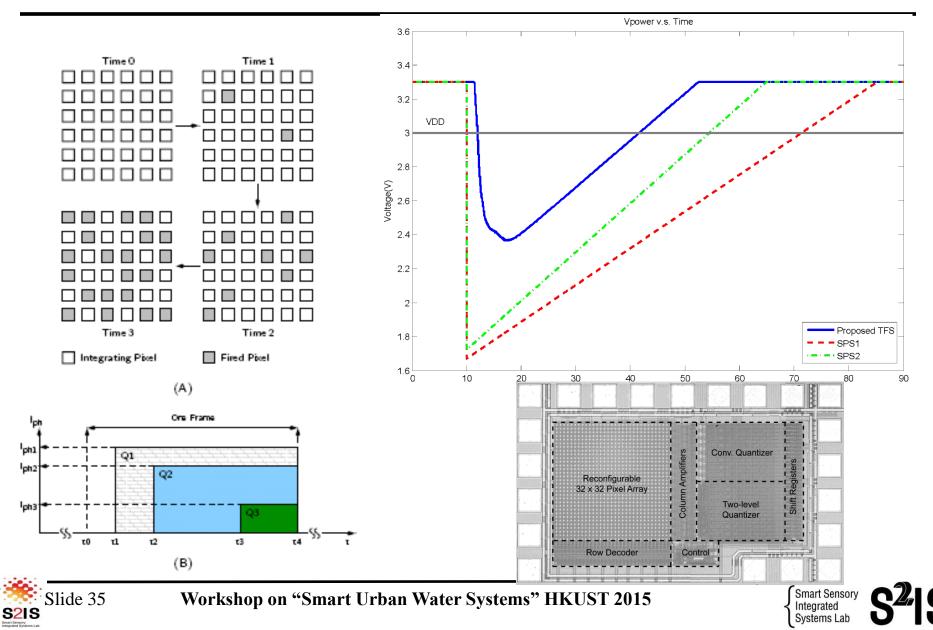

- Portable system and wireless sensing platforms lifetime is usually limited battery capacity
- Considerations for cost and system lifetime
 - Low power/energy consumption
 - * Passively powered/energy harvesting capability

Using the same photodetector for Sensing/Energy harvesting: Improved FF and pixel size


Smart Sensory Integrated

Systems Lab

Proposed concept



Avalanche Energy generation

<u>ញ</u> Reconfigurable array: Performance summary <u>ញ</u>

	[24]	[25]	This work	
Process	$0.35 \mu m$	0.35µm	0.35µm	Contrastanti 100 ; 100
Array Size	160×240	128×96	32×32	
Supply Voltage	3.3V/1.5V	1.35V	1.5V	Input in
Pixel Size	$5.6 \times 5.6 \mu m$	$10 \mu m^2$	$15 \times 15 \mu m$	
Fill Factor	32%	18.5%	21%	
Frame Rate	N/A	9.6fps	up to 21 fps	
Dynamic Range	68dB	53.7dB	>84.9dB	Half reso
FPN	0.52%	0.12%	18.42%	
Power	$3.12mW^{(2,5)}$	$0.42\mu W^{(1)}$	$15.8\mu W^{(2,3)}$	
Consumption		$55.2\mu W^{(2)}$	$8.83 \mu W^{(2,4)}$	
Normalized Power	N/A	$3.6^{(1)}$	735(2,3)	Full resol
(pW/frame/pixel)		$468^{(2)}$	$821^{(2,4)}$	
Power	No	No	35.6 @ 29kLux,	
Generation (nW)			$4.7 M\Omega$ load	

- Incorporate sensing and harvesting capabilities is feasible
- Power generated vs. power consumed: duty cycle of about 1%
 - [24] D. Lee et al, "Low-Noise In-Pixel Comparing Active Pixel Sensor Using Column-Level Single-Slope ADC", IEEE Trans. Electronic Devices, vol. 55, no. 12, pp. 3383-3388, Dec. 2008.
 - [25] K. Kagawa et al, "A 3.6pW/frame pixel 1.35V PWM CMOS Imager with Dynamic Pixel Readout and no Static Bias Current", IEEE Int. Solid-State Circuits Conf. Dig., pp. 54-55, Feb. 2008.

Slide 36

<u>ຫຼ</u>້ Talk Agenda –Towards Autonomous sensors <u>ຫ</u>ຼື

- State-of-the-Art Water Sensing
- Time-Domain Imaging –Low power alternative
- Time-Domain Image Processing Smart Vision Sensor
 - Compression, Histogram Equalization, Adaptive quantization
- Alternative ADCs: Analog-to-information AIC converters.

Smart Sensory Integrated

Systems Lab

Energy harvesting Image Sensors

nolucio

Conclusion

- Smart water system is a multi-disciplinary area: Requires collaboration from different disciplines.
- Electronic Engineers have a key role to play particularly: Sensors design and communications
- Smart Water Systems need to be equipped with sensing, processing and wireless comm and need to be low power/harvest energy.
- Time-domain encoding (in analogy with biological systems) presents a number of advantages:
 - * Immunity against noise: as data are represented in digital domain.
 - * Reduced power: as data can be represented in single transition.
 - Simplified processing

Slide 38

S2IS

 "The difficulties posed by integrating: sensing, processing and Communications for smart water system applications will eventually lead to more opportunities for innovations"

- My students who have significantly contributed to this work
- HK RGC for providing funding for this research program.

